Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Cultivation Practices
2.2. Weather Data
2.3. Treatments
2.4. Plant Measurement
2.5. Essential Oil Extraction
2.6. Statistical Analysis
3. Results
3.1. Analysis of Rainfall and Air Temperature Trends at the Experimental Site
3.2. Effects of Year and Biostimulants on Morphological and Yield Parameters of Rosemary
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Licata, M.; Maggio, A.M.; La Bella, S.; Tuttolomondo, T. Medicinal and aromatic plants in agricultural research, when considering criteria of multifunctionality and sustainability. Agriculture 2022, 12, 529. [Google Scholar] [CrossRef]
- Napoli, E.; Ruberto, G.; Carrubba, A.; Sarno, M.; Muscarà, C.; Speciale, A.; Cristani, M.; Cimino, F.; Saija, A. Phenolic profiles, antioxidant and anti-inflammatory activities of hydrodistillation wastewaters from five Lamiaceae species. Molecules 2022, 27, 7427. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Tomar, J.M.S.; Kaushal, R.; Kadam, D.M.; Rathore, A.C.; Mehta, H.; Ojasvi, P.R. Aromatic Plants Based Environmental Sustainability with Special Reference to Degraded Land Management. J. Appl. Res. Med. Aromat. Plants 2021, 22, 100298. [Google Scholar] [CrossRef]
- La Bella, S.; Virga, G.; Iacuzzi, N.; Licata, M.; Sabatino, L.; Consentino, B.B.; Leto, C.; Tuttolomondo, T. Effects of Irrigation, Peat-Alternative Substrate and Plant Habitus on the Morphological and Production Characteristics of Sicilian Rosemary (Rosmarinus officinalis L.) Biotypes Grown in Pot. Agriculture 2021, 11, 13. [Google Scholar] [CrossRef]
- Andrade, J.M.; Faustino, C.; Garcia, C.; Ladeiras, D.; Reis, C.P.; Rijo, P. Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Futur. Sci. OA 2018, 4, FSO283. [Google Scholar] [CrossRef] [PubMed]
- Tuttolomondo, T.; Virga, G.; Licata, M.; Iacuzzi, N.; Farruggia, D.; Bella, S.L. Assessment of Production and Qualitative Characteristics of Different Populations of Salvia sclarea L. Found in Sicily (Italy). Agronomy 2021, 11, 1508. [Google Scholar] [CrossRef]
- Méndez-Tovar, I.; Novak, J.; Sponza, S.; Herrero, B.; Asensio-S-Manzanera, M.C. Variability in essential oil composition of wild populations of Labiatae species collected in Spain. Ind. Crops Prod. 2016, 79, 18–28. [Google Scholar] [CrossRef]
- Novák, J.; Lukas, B.; Franz, C. Temperature Influences Thymol and Carvacrol Differentially in Origanum spp. (Lamiaceae). J. Essent. Oil Res. 2010, 22, 412–415. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J.C. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Farruggia, D.; Iacuzzi, N.; La Bella, S.; Sabatino, L.; Consentino, B.B.; Tuttolomondo, T. Effect of Foliar Treatments with Calcium and Nitrogen on Oregano Yield. Agronomy 2023, 13, 719. [Google Scholar] [CrossRef]
- Elsayed, A.A.A.; Ahmed, E.Z.K.; Taha, H.; Farag, M.; Hussein, M.S.; AbouAitah, K. Hydroxyapatite nanoparticles as novel nano-fertilizer for production of rosemary plants. Sci. Hortic. 2022, 295, 110851. [Google Scholar] [CrossRef]
- Sotiropoulou, D.E.; Karamanos, A.J. Field studies of nitrogen application on growth and yield of Greek oregano (Origanum vulgare ssp. hirtum (Link) Ietswaart). Ind. Crop. Prod. 2010, 32, 450–457. [Google Scholar] [CrossRef]
- Giannoulis, K.D.; Kamvoukou, C.A.; Gougoulias, N.; Wogiatzi, E. Irrigation and nitrogen application affect Greek oregano (Origanum vulgare ssp. hirtum) dry biomass, essential oil yield and composition. Ind. Crop. Prod. 2020, 150, 112392. [Google Scholar] [CrossRef]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health BT—Microbiota and Biofertilizers. In Ecofriendly Tools for Reclamation of Degraded Soil Environs; Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived from the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-Based Fertilizers: A Practical Approach towards Circular Economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Virga, G.; Sabatino, L.; Licata, M.; Tuttolomondo, T.; Leto, C.; La Bella, S. Effects of irrigation with different sources of water on growth, yield and essential oil compounds in oregano. Plants 2020, 9, 1618. [Google Scholar] [CrossRef] [PubMed]
- Licata, M.; Farruggia, D.; Iacuzzi, N.; Leto, C.; Tuttolomondo, T.; Di Miceli, G. Effect of irrigation with treated wastewater on bermudagrass (Cynodon dactylon (L.) Pers.) production and soil characteristics and estimation of plant nutritional input. PLoS ONE 2022, 17, e0271481. [Google Scholar] [CrossRef]
- Morshedloo, M.R.; Craker, L.E.; Salami, A.; Nazeri, V.; Sang, H.; Maggi, F. Effect of prolonged water stress on essential oil content, compositions and gene expression patterns of mono-and sesquiterpene synthesis in two oregano (Origanum vulgare L.) subspecies. Plant Physiol. Biochem. 2017, 111, 119–128. [Google Scholar] [CrossRef]
- Yadav, R.K.; Sangwan, R.S.; Sabir, F.; Srivastava, A.K.; Sangwan, N.S. Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant Physiol. Biochem. 2014, 74, 70–83. [Google Scholar] [CrossRef]
- Krein, D.D.C.; Rosseto, M.; Cemin, F.; Massuda, L.A.; Dettmer, A. Recent trends and technologies for reduced environmental impacts of fertilizers: A review. Int. J. Environ. Sci. Technol. 2023, 20, 12903–12918. [Google Scholar] [CrossRef]
- Di Miceli, G.; Farruggia, D.; Iacuzzi, N.; Bacarella, S.; La Bella, S.; Consentino, B.B. Planting Date and Different N-Fertilization Rates Differently Modulate Agronomic and Economic Traits of a Sicilian Onion Landrace and of a Commercial Variety. Horticulturae 2022, 8, 454. [Google Scholar] [CrossRef]
- Licata, M.; Farruggia, D.; Tuttolomondo, T.; Iacuzzi, N.; Leto, C.; Di Miceli, G. Seasonal Response of Vegetation on Pollutants Removal in Constructed Wetland System Treating Dairy Wastewater. Ecol. Eng. 2022, 182, 106727. [Google Scholar] [CrossRef]
- Consentino, B.B.; Sabatino, L.; Vultaggio, L.; Rotino, G.L.; La Placa, G.G.; D’Anna, F.; Leto, C.; Iacuzzi, N.; De Pasquale, C. Grafting Eggplant onto Underutilized Solanum Species and Biostimulatory Action of Azospirillum brasilense Modulate Growth, Yield, NUE and Nutritional and Functional Traits. Horticulturae 2022, 8, 722. [Google Scholar] [CrossRef]
- Di Mola, I.; Conti, S.; Cozzolino, E.; Melchionna, G.; Ottaiano, L.; Testa, A.; Sabatino, L.; Rouphael, Y.; Mori, M. Plant-based protein hydrolysate improves salinity tolerance in hemp: Agronomical and physiological aspects. Agronomy 2021, 11, 342. [Google Scholar] [CrossRef]
- Rojas-Rodríguez, M.L.; Ramírez-Gil, J.G.; González-Concha, L.F.; Balaguera-López, H.E. Biostimulants Improve Yield and Quality in Preharvest without Impinging on the Postharvest Quality of Hass Avocado and Mango Fruit: Evaluation under Organic and Traditional Systems. Agronomy 2023, 13, 1917. [Google Scholar] [CrossRef]
- Ma, Y.; Freitas, H.; Dias, M.C. Strategies and prospects for biostimulants to alleviate abiotic stress in plants. Front. Plant Sci. 2022, 13, 1024243. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total. Environ. 2020, 751, 141763. [Google Scholar] [CrossRef]
- Arioli, T.; Mattner, S.W.; Winberg, P.C. Applications of Seaweed Extracts in Australian Agriculture: Past, Present and Future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of Water Stress and Modern Biostimulants on Growth and Quality Characteristics of Mint. Agronomy 2020, 10, 6. [Google Scholar] [CrossRef]
- Papenfus, H.B.; Kulkarni, M.G.; Stirk, W.A.; Finnie, J.F.; Van Staden, J. Effect of a commercial seaweed extract (Kelpak®) and polyamines on nutrient-deprived (N, P and K) okra seedlings. Sci. Hortic. 2013, 151, 142–146. [Google Scholar] [CrossRef]
- Nardi, S.; Schiavon, M.; Francioso, O. Chemical Structure and Biological Activity of Humic Substances Define Their Role as Plant Growth Promoters. Molecules 2021, 26, 2256. [Google Scholar] [CrossRef] [PubMed]
- Zanin, L.; Tomasi, N.; Cesco, S.; Varanini, Z.; Pinton, R. Humic substances contribute to plant iron nutrition acting as Chelators and biostimulants. Front. Plant Sci. 2019, 10, 675. [Google Scholar] [CrossRef] [PubMed]
- Aytaç, Z.; Gülbandılar, A.; Kürkçüoğlu, M. Humic Acid Improves Plant Yield, Antimicrobial Activity and Essential Oil Composition of Oregano (Origanum vulgare L. subsp. hirtum (Link.) Ietswaart). Agronomy 2022, 12, 2086. [Google Scholar] [CrossRef]
- Di Miceli, G.; Vultaggio, L.; Sabatino, L.; De Pasquale, C.; La Bella, S.; Consentino, B.B. Synergistic Effect of a Plant-Derived Protein Hydrolysate and Arbuscular Mycorrhizal Fungi on Eggplant Grown in Open Fields: A Two-Year Study. Horticulturae 2023, 9, 592. [Google Scholar] [CrossRef]
- Rouphael, Y.; Carillo, P.; Garcia-Perez, P.; Cardarelli, M.; Senizza, B.; Miras-Moreno, B.; Colla, G.; Lucini, L. Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner. Sci. Hortic. 2022, 305, 111368. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 2014, 5, 448. [Google Scholar] [CrossRef] [PubMed]
- Paul, K.; Sorrentino, M.; Lucini, L.; Rouphael, Y.; Cardarelli, M.; Bonini, P.; Miras Moreno, M.B.; Reynaud, H.; Canaguier, R.; Trtílek, M.; et al. A Combined Phenotypic and Metabolomic Approach for Elucidating the Biostimulant Action of a Plant-Derived Protein Hydrolysate on Tomato Grown Under Limited Water Availability. Front. Plant Sci. 2019, 10, 493. [Google Scholar] [CrossRef]
- Consentino, B.B.; Virga, G.; La Placa, G.G.; Sabatino, L.; Rouphael, Y.; Ntatsi, G.; Iapichino, G.; La Bella, S.; Mauro, R.P.; D’Anna, F.; et al. Celery (Apium graveolens L.) Performances as Subjected to Different Sources of Protein Hydrolysates. Plants 2020, 9, 1633. [Google Scholar] [CrossRef]
- Kanabar, P.; Nandwani, D. Effect of fulvic acid on yield performance of organic bell pepper (Capsicum annuum L.) under open-field conditions in Tennessee. Org. Agric. 2023, 13, 431–444. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Herrero, M. Rosemary (Rosmarinus officinalis) as a functional ingredient: Recent scientific evidence. Curr. Opin. Food Sci. 2017, 14, 13–19. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A Novel Insight on an Ancient Aromatic Plant: The Rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Najar, B.; Pistelli, L.; Ferri, B.; Angelini, L.G.; Tavarini, S. Crop Yield and Essential Oil Composition of Two Thymus vulgaris Chemotypes along Three Years of Organic Cultivation in a Hilly Area of Central Italy. Molecules 2021, 26, 5109. [Google Scholar] [CrossRef]
- Borrás-Linares, I.; Stojanovic, Z.; Quirantes-Piné, R.; Arráez-Román, D.; Švarc-Gajić, J.; Fernández-Gutiérrez, A.; Segura Carretero, A. Rosmarinus officinalis Leaves as a Natural Source of Bioactive Compounds. Int. J. Mol. Sci. 2014, 15, 20585–20606. [Google Scholar] [CrossRef]
- Tawfeeq, A.; Culham, A.; Davis, F.; Reeves, M. Does fertilizer type and method of application cause significant differences in essential oil yield and composition in rosemary (Rosmarinus officinalis L.)? Ind. Crop. Prod. 2016, 88, 17–22. [Google Scholar] [CrossRef]
- Waly, A.A.; El-Fattah, A.; Hassan, M.A.E.; El-Ghadban, E.A.E.; Abd Alla, A.S. Effect of foliar spraying with seaweeds extract, chitosan and potassium silicate on Rosmarinus officinalis L. plants in sandy soil. Sci. J. Flow. Ornam. Plants 2019, 6, 191–209. [Google Scholar] [CrossRef]
- Al-Fraihat, A.H.; Al-Dalain, S.Y.; Zatimeh, A.A.; Haddad, M.A. Enhancing Rosemary (Rosmarinus officinalis, L.) Growth and Volatile Oil Constituents Grown under Soil Salinity Stress by Some Amino Acids. Horticulturae 2023, 9, 252. [Google Scholar] [CrossRef]
- Servizio Informativo Agrometeorologico Siciliano. Available online: www.sias.regione.sicilia.it (accessed on 30 May 2023).
- Ruiz-Navarro, A.; Fernández, V.; Abadía, J.; Abadía, A.; Querejeta, J.I.; Albaladejo, J.; Barberá, G.G. Foliar Fertilization of Two Dominant Species in a Semiarid Ecosystem Improves Their Ecophysiological Status and the Use Efficiency of a Water Pulse. Environ. Exp. Bot. 2019, 167, 103854. [Google Scholar] [CrossRef]
- Alyemeni, M.N.; Ahanger, M.A.; Wijaya, L.; Alam, P.; Bhardwaj, R.; Ahmad, P. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 2018, 255, 459–469. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Determination of Essential Oils in Herbal Drugs, 6th ed.; Council of Europe European, European Directorate for the Quality of Medicines: Strasbourg, France, 2008; pp. 251–252. [Google Scholar]
- Rao, K.S.; Haran, R.H.; Rajpoot, V.S. Value Addition: A Novel Strategy for Quality Enhancement of Medicinal and Aromatic Plants. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100415. [Google Scholar] [CrossRef]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Singh, M.; Wasnik, K. Effect of vermicompost and chemical fertilizer on growth, herb, oil yield, nutrient uptake, soil fertility, and oil quality of rosemary. Commun. Soil Sci. Plant Anal. 2013, 44, 2691–2700. [Google Scholar] [CrossRef]
- Ciriello, M.; Formisano, L.; El-Nakhel, C.; Corrado, G.; Rouphael, Y. Biostimulatory Action of a Plant-Derived Protein Hydrolysate on Morphological Traits, Photosynthetic Parameters, and Mineral Composition of Two Basil Cultivars Grown Hydroponically under Variable Electrical Conductivity. Horticulturae 2022, 8, 409. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.S.A.; Abdel-Kader, A.A.S. Response of Fennel (Foeniculum vulgare, Mill) plants to foliar application of moringa leaf extract and benzyladenine (BA). S. Afr. J. Bot. 2020, 129, 113–122. [Google Scholar] [CrossRef]
- Bandurska, H. Drought Stress Responses: Coping Strategy and Resistance. Plants 2022, 11, 922. [Google Scholar] [CrossRef]
- Harb, A.; Krishnan, A.; Ambavaram, M.M.; Pereira, A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol. 2010, 154, 1254–1271. [Google Scholar] [CrossRef]
- Chetouani, M.; Mzabri, I.; Aamar, A.; Boukroute, A.; Kouddane, N.; Berrichi, A. Morphological-Physiological and Biochemical Responses of Rosemary (Rosmarinus officinalis) to Salt Stress. Mater. Today Proc. 2019, 13, 752–761. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Schwarz, K.; Alegre, L. α-Tocopherol protection against drought-induced damage in Rosmarinus officinalis L. and Melissa officinalis L. Zeitschrift für Naturforschung C 1999, 54, 698–703. [Google Scholar] [CrossRef]
- Rahimi, A.; Mohammadi, M.M.; Siavash Moghaddam, S.; Heydarzadeh, S.; Gitari, H. Effects of Stress Modifier Biostimulants on Vegetative Growth, Nutrients, and Antioxidants Contents of Garden Thyme (Thymus vulgaris L.) Under Water Deficit Conditions. J. Plant Growth Regul. 2022, 41, 2059–2072. [Google Scholar] [CrossRef]
- Shafie, F.; Bayat, H.; Aminifard, M.H.; Saeid Daghighi, S. Biostimulant Effects of Seaweed Extract and Amino Acids on Growth, Antioxidants, and Nutrient Content of Yarrow (Achillea millefolium L.) in the Field and Greenhouse Conditions. Commun. Soil Sci. Plant Anal. 2021, 52, 964–975. [Google Scholar] [CrossRef]
- Khorasaninejad, S.; Ahmadabadi, A.; Hemmati, K. The Effect of Humic Acid on Leaf Morphophysiological and Phytochemical Properties of Echinacea purpurea L. under Water Deficit Stress. Sci. Hortic. 2018, 239, 314–323. [Google Scholar] [CrossRef]
- Colombo, C.; Palumbo, G.; Sellitto, V.M.; Rizzardo, C.; Tomasi, N.; Pinton, R.; Cesco, S. Characteristics of insoluble, high molecular weight iron-humic substances used as plant iron sources. Soil Sci. Soc. Am. J. 2012, 76, 1246–1256. [Google Scholar] [CrossRef]
- Mwithiga, G.; Maina, S.; Gitari, J.; Muturi, P. Rosemary (Rosmarinus officinalis L.) growth rate, oil yield and oil quality under differing soil amendments. Heliyon 2022, 8, e09277. [Google Scholar] [CrossRef] [PubMed]
- Barreca, S.; La Bella, S.; Maggio, A.; Licata, M.; Buscemi, S.; Leto, C.; Pace, A.; Tuttolomondo, T. Flavouring Extra-Virgin Olive Oil with Aromatic and Medicinal Plants Essential Oils Stabilizes Oleic Acid Composition during Photo-Oxidative Stress. Agriculture 2021, 11, 266. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Dugo, G.; Ruberto, G.; Leto, C.; Napoli, E.M.; Cicero, N.; Gervasi, T.; Virga, G.; Leone, R.; Licata, M.; et al. Study of quantitative and qualitative variations in essential oils of Sicilian Rosmarinus officinalis L. Nat. Prod. Res. 2015, 29, 1928–1934. [Google Scholar] [CrossRef]
- Truzzi, E.; Benvenuti, S.; Bertelli, D.; Francia, E.; Ronga, D. Effects of Biostimulants on the Chemical Composition of Essential Oil and Hydrosol of Lavandin (Lavandula x intermedia Emeric ex Loisel.) Cultivated in Tuscan-Emilian Apennines. Molecules 2021, 26, 6157. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2017, 82, 277–285. [Google Scholar] [CrossRef]
Biostimulant | Dose 1 [L hL−1] | Total Amount 2 [L ha−1] |
---|---|---|
EM = Eklonia maxima | 0.25 | 6 |
AN = Ascophyllum nodosum | 0.25 | 6 |
FA = Fulvic acids | 0.05 | 12 |
PH = Protein hydrolysate | 0.50 | 1.2 |
Plant Height | Primary Stem | Stem Diameter | Chlorophyll Content | RWC | Total Fresh Yield | Total Dry Yield | Essential Oil Content | Essential Oil Yield | |
---|---|---|---|---|---|---|---|---|---|
[cm] | [n.] | [mm] | [µg cm−2] | [%] | [t ha−1] | [t ha−1] | [% v/w] | [kg ha−1] | |
Year (Y) | |||||||||
2020–2021 | 52.0 ± 1.3 b | n.s. | 3.1 ± 0.3 a | 29.1 ± 0.6 a | 67.0 ± 0.9 b | n.s. | n.s. | n.s. | n.s. |
2021–2022 | 54.7 ± 1.5 a | n.s. | 8.8 ± 0.2 b | 28.3 ± 0.6 b | 70.1 ± 1.8 a | n.s. | n.s. | n.s. | n.s. |
Biostimulant (B) | |||||||||
C | 48.8 ± 0.6 d | 8 ± 0.2 d | 7.4 ± 0.2 d | 25.7 ± 0.4 c | 60.3 ± 0.7 d | 8.3 ± 0.2 c | 2.7 ± 0.1 d | 1.72 ± 0.03 a | 46.5 ± 1.96 d |
EM | 52.8 ± 2.1 c | 19 ± 1.2 a | 9.6 ± 0.2 ab | 28.2 ± 0.3 b | 68.6 ± 1.4 c | 12.3 ± 0.8 b | 4.0 ± 0.2 b | 1.61 ± 0.05 b | 65.0 ± 3.85 a |
AN | 53.7 ± 0.5 bc | 12 ± 0.5 c | 9.1 ± 0.3 c | 29.2 ± 0.8 b | 71.1 ± 1.1 b | 11.8 ± 0.3 b | 3.9 ± 0.2 c | 1.44 ± 0.03 d | 55.9 ± 1.93 b |
FA | 54.0 ± 2.0 b | 17 ± 0.5 b | 9.7 ± 0.3 a | 29.4 ± 1.0 b | 67.8 ± 0.8 c | 13.1 ± 0.6 a | 4.3 ± 0.2 a | 1.14 ± 0.04 e | 48.5 ± 3.66 c |
PH | 60.5 ± 0.3 a | 13 ± 0.4 c | 9.2 ± 0.2 bc | 31.0 ± 0.5 a | 74.2 ± 2.0 a | 13.6 ± 0.3 a | 4.4 ± 0.1 a | 1.52 ± 0.13 c | 66.5 ± 6.99 a |
p-value | |||||||||
Y | 0.000 | 0.493 | 0.028 | 0.022 | 0.000 | 0.730 | 0.751 | 0.378 | 0.131 |
B | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Y × B | 0.000 | 0.198 | 0.116 | 0.002 | 0.000 | 0.001 | 0.000 | 0.010 | 0.010 |
Plant Height | Chlorophyll Content | RWC | Total Fresh Yield | Total Dry Yield | Essential Oil Content | Essential Oil Yield | |
---|---|---|---|---|---|---|---|
[cm] | [µg cm−2] | [%] | [t ha−1] | [t ha−1] | [% v/w] | [kg ha−1] | |
Y × B | |||||||
Y1 × C | 47.0 ± 0.3 f | 26.5 ± 0.3 cd | 61.6 ± 0.5 g | 8.2 ± 0.2 e | 2.7 ± 0.1 d | 1.73 ± 0.03 a | 46.1 ± 0.42 f |
Y1 × EM | 48.2 ± 0.6 ef | 28.8 ± 0.4 b | 65.6 ± 0.7 f | 12.0 ± 0.2 cd | 3.9 ± 0.1 c | 1.64 ± 0.02 b | 63.2 ± 0.57 c |
Y1 × AN | 54.6 ± 0.2 c | 30.6 ± 0.6 a | 68.8 ± 0.8 de | 12.0 ± 0.3 cd | 4.1 ± 0.0 b | 1.39 ± 0.03 e | 56.6 ± 0.07 d |
Y1 × FA | 49.7 ± 0.8 e | 28.2 ± 0.4 b | 68.8 ± 0.8 de | 13.6 ± 0.3 a | 4.5 ± 0.1 a | 1.11 ± 0.02 f | 49.4 ± 0.46 e |
Y1 × PH | 60.3 ± 0.2 a | 31.5 ± 0.6 a | 69.8 ± 0.4 cd | 13.4 ± 0.3 ab | 4.3 ± 0.1 b | 1.53 ± 0.01 cd | 65.1 ± 0.86 bc |
Y2 × C | 44.6 ± 0.3 g | 24.9 ± 0.3 d | 59.1 ± 0.6 g | 8.5 ± 0.1 e | 2.7 ± 0.0 d | 1.71 ± 0.02 a | 46.9 ± 1.08 f |
Y2 × EM | 57.3 ± 0.2 b | 27.7 ± 0.1 bc | 71.6 ± 0.6 bc | 12.6 ± 0.2 c | 4.2 ± 0.1 b | 1.58 ± 0.01 bc | 66.8 ± 1.34 ab |
Y2 × AN | 52.7 ± 0.2 d | 27.7 ± 0.4 bc | 73.4 ± 0.3 b | 11.6 ± 0.1 d | 3.7 ± 0.0 c | 1.50 ± 0.01 d | 55.2 ± 0.99 d |
Y2 × FA | 58.3 ± 0.2 b | 30.5 ± 0.5 a | 66.9 ± 0.9 ef | 12.7 ± 0.2 bc | 4.1 ± 0.1 b | 1.17 ± 0.01 f | 47.6 ± 0.84 ef |
Y2 × PH | 60.6 ± 0.5 a | 30.5 ± 0.5 a | 78.3 ± 1.1 a | 13.9 ± 0.1 a | 4.5 ± 0.0 a | 1.51 ± 0.03 d | 68.0 ± 0.49 a |
p-value | |||||||
Y × B | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.010 | 0.010 |
2021–2022 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Plant Height [cm] | Primary Stems [n.] | Primary Stems Diameter [mm] | Chlorophyll Content [µg L−1] | RWC [%] | Total Fresh Yield [t ha−1] | Total Dry Yield [t ha−1] | EO Content [%] | EO Yield [kg ha−1] | ||
2020–2021 | Plant height [cm] | 0.797 ** | 0.931 ** | 0.865 ** | 0.762 ** | 0.975 ** | 0.974 ** | −0.586 | 0.630 | |
Primary Stems [n.] | −0.115 | 0.819 ** | 0.604 | 0.392 | 0.754 ** | 0.788 ** | −0.627 | 0.400 | ||
Primary Stems diameter [mm] | 0.077 | 0.779 ** | 0.791 ** | 0.709 ** | 0.931 ** | 0.909 ** | −0.624 | 0.549 | ||
Chlorophyll content [µg L−1] | 0.844 ** | 0.127 | 0.385 | 0.617 | 0.839 ** | 0.814 ** | −0.757 ** | 0.309 | ||
RWC [%] | 0.728 ** | 0.382 | 0.544 | 0.680 ** | 0.846 ** | 0.814 ** | −0.146 | 0.802 ** | ||
Total Fresh Yield [t ha−1] | 0.472 | 0.668 ** | 0.837 ** | 0.574 | 0.826 ** | 0.976 ** | −0.562 | 0.655 ** | ||
Total Dry Yield [t ha−1] | 0.525 | 0.584 | 0.797 | 0.620 | 0.879 ** | 0.969 ** | −0.489 | 0.730 ** | ||
EO Content [%] | −0.134 | −0.299 | −0.595 | −0.161 | −0.641 ** | −0.681 ** | −0.761 ** | 0.233 | ||
EO Yield [kg ha−1] | 0.621 | 0.469 | 0.402 | 0.733** | 0.479 | 0.541 | 0.488 | 0.191 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farruggia, D.; Tortorici, N.; Iacuzzi, N.; Alaimo, F.; Leto, C.; Tuttolomondo, T. Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System. Agronomy 2024, 14, 158. https://doi.org/10.3390/agronomy14010158
Farruggia D, Tortorici N, Iacuzzi N, Alaimo F, Leto C, Tuttolomondo T. Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System. Agronomy. 2024; 14(1):158. https://doi.org/10.3390/agronomy14010158
Chicago/Turabian StyleFarruggia, Davide, Noemi Tortorici, Nicolò Iacuzzi, Federica Alaimo, Claudio Leto, and Teresa Tuttolomondo. 2024. "Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System" Agronomy 14, no. 1: 158. https://doi.org/10.3390/agronomy14010158
APA StyleFarruggia, D., Tortorici, N., Iacuzzi, N., Alaimo, F., Leto, C., & Tuttolomondo, T. (2024). Biostimulants Improve Plant Performance of Rosemary Growth in Agricultural Organic System. Agronomy, 14(1), 158. https://doi.org/10.3390/agronomy14010158