Cadmium (Cd) Minimization and Zinc (Zn) Biofortification in Wheat (Triticum aestivum L.) Grains by Spraying with the Foliar Zn Fertilizer in Cd-Contaminated Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of the Foliar Zn Fertilizer
2.2. Field Experiments
2.3. Plant Sample Collection and Chemical Analysis
2.4. Human Health Risk Assessment
2.5. Statistical Analysis
3. Results
3.1. Grain Yield of Wheat
3.2. Cd Accumulation and Translocation in Wheat
3.3. Human Health Risk Assessment of Cd
3.4. Zn, Ca, Fe, Mn Concentrations of Wheat Grains
3.5. Nutritional Quality of Wheat Grains
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, F.J.; Ma, Y.B.; Zhu, Y.G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Saifullah; Sarwar, N.; Bibi, S.; Ahmad, M.; Ok, Y.S. Effectiveness of zinc application to minimize cadmium toxicity and accumulation in wheat (Triticum aestivum L.). Environ. Earth Sci. 2014, 71, 1663–1672. [Google Scholar] [CrossRef]
- Ali, S.; Mfarrej, M.F.B.; Hussain, A.; Akram, N.A.; Rizwan, M.; Wang, X.; Maqbool, A.; Nafees, M.; Ali, B. Zinc fortification and alleviation of cadmium stress by application of lysine chelated zinc on different varieties of wheat and rice in cadmium stressed soil. Chemosphere 2022, 295, 133829. [Google Scholar] [CrossRef] [PubMed]
- Naveed, M.; Saifullah; Riaz, U.; Murtaza, G.; Bibi, S.; Arooj, A.; Zaman, Q.U. Strategic use of water: A step toward cadmium-free basmati rice (Oryza sativa L.). Paddy Water Environ. 2018, 16, 867–873. [Google Scholar] [CrossRef]
- Seyfferth, A.L.; Amaral, D.; Limmer, M.A.; Guilherme, L.R.G. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice. Environ. Int. 2019, 128, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.H.; Liu, C.; Huang, M.L.; Liu, K.Z.; Yan, D.Y. Effects of foliar fertilization: A review of current status and future perspectives. J. Soil Sci. Plant Nut. 2021, 21, 104–118. [Google Scholar] [CrossRef]
- Wu, C.; Dun, Y.; Zhang, Z.J.; Li, M.L.; Wu, G.Q. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 190, 110091. [Google Scholar] [CrossRef]
- Wang, F.J.; Tan, H.F.; Huang, L.H.; Cai, C.; Ding, Y.F.; Bao, H.; Chen, Z.X.; Zhu, C. Application of exogenous salicylic acid reduces Cd toxicity and Cd accumulation in rice. Ecotoxicol. Environ. Saf. 2021, 207, 111198. [Google Scholar] [CrossRef]
- Xie, R.H.; Zhao, J.Q.; Lu, L.L.; Ge, J.; Brown, P.H.; Wei, S.; Wang, R.Z.; Qiao, Y.B.; Webb, S.M.; Tian, S.K. Efficient phloem remobilization of Zn protects apple trees during the early stages of Zn deficiency. Plant Cell Environ. 2019, 42, 3167–3181. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, A.M.; Rengel, Z. Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Sci. Total Environ. 2019, 654, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Zeng, J.; Ming, X.Y.; He, Q.L.; Tao, Q.; Jiang, M.Y.; Gao, S.P.; Li, X.; Lei, T.; Pan, Y.Z.; et al. The presence of zinc reduced cadmium uptake and translocation in Cosmos bipinnatus seedlings under cadmium/zinc combined stress. Plant Physiol. Biochem. 2020, 151, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Dapkekar, A.; Deshpande, P.; Oak, M.D.; Paknikar, K.M.; Rajwade, J.M. Zinc use efficiency is enhanced in wheat through nanofertilization. Sci. Rep. 2018, 8, 6832. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, H.J.; Carmona, V.M.V.; Inocencio, M.F.; Neto, A.E.F.; Mauad, M. Zinc application improves the yield and nutritional quality of three green bean genotypes grown in a Red Latosol. Sci. Hortic. 2020, 274, 109636. [Google Scholar] [CrossRef]
- Lian, J.P.; Cheng, L.P.; Zhai, X.; Wu, R.F.; Huang, X.W.; Chen, D.; Pan, J.Q.; Shohag, M.J.I.; Xin, X.P.; Ren, X.W.; et al. Zinc glycerolate (Glyzinc): A novel foliar fertilizer for zinc biofortification and cadmium reduction in wheat (Triticum aestivum L.). Food Chem. 2023, 402, 134290. [Google Scholar] [CrossRef]
- Xu, M.; Liu, M.J.; Si, L.L.; Ma, Q.X.; Sun, T.; Wang, J.; Chen, K.J.; Wang, X.J.; Wu, L.H. Spraying high concentrations of chelated zinc enhances zinc biofortification in wheat grain. J. Sci. Food Agric. 2022, 102, 3590–3598. [Google Scholar] [CrossRef]
- Hussain, A.; Rizwan, M.; Ali, S.; Rehman, M.Z.U.; Qayyum, M.F.; Nawaz, R.; Ahmad, A.; Asrar, M.; Ahmad, S.R.; Alsahli, A.A.; et al. Combined use of different nanoparticles effectively decreased cadmium (Cd) concentration in grains of wheat grown in a field contaminated with Cd. Ecotoxicol. Environ. Saf. 2021, 215, 112139. [Google Scholar] [CrossRef]
- Tang, L.; Hamid, Y.; Liu, D.; Shohag, M.J.I.; Zehra, A.; He, Z.L.; Feng, Y.; Yang, X.E. Foliar application of zinc and selenium alleviates cadmium and lead toxicity of water spinach-Bioavailability/cytotoxicity study with human cell lines. Environ. Int. 2020, 145, 106122. [Google Scholar] [CrossRef]
- GB 15618-2018; Soli Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment and State Administration for Market Regulation: Beijing, China, 2018. (In Chinese)
- Ghasemi, S.; Khoshgoftarmanesh, A.H.; Afyuni, M.; Hadadzadeh, H. The effectiveness of foliar applications of synthesized zinc-amino acid chelates in comparison with zinc sulfate to increase yield and grain nutritional quality of wheat. Eur. J. Agron. 2013, 45, 68–74. [Google Scholar] [CrossRef]
- Lu, M.; Cao, X.R.; Pan, J.Q.; Gurajala, H.K.; He, Z.L.; Yang, X.E.; Khan, M.B. Genotypic variations in zinc accumulation and bioaccessibility among wheat (Triticum aestivum L.) genotypes under two different field conditions. J. Cereal Sci. 2020, 93, 102953. [Google Scholar] [CrossRef]
- Liu, Z.H.; Cheng, F.M.; Zhang, G.P. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chem. 2005, 89, 49–52. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, Y.M.; Zhang, W.; Chen, X.P.; Zou, C.Q. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 2017, 9, 465. [Google Scholar] [CrossRef] [PubMed]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478S–1483S. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Zhong, J.M.; Yu, M.; Liu, L.Q.; Chen, Y.P.; Hu, R.Y.; Gong, W.W. Study on the dietary nutrition intake level in Zhejiang Province. Dis. Surveill. 2006, 21, 670–672. (In Chinese) [Google Scholar]
- Tang, L.; Hamid, Y.; Zehra, A.; Shohag, M.J.I.; He, Z.L.; Yang, X.E. Endophytic inoculation coupled with soil amendment and foliar inhibitor ensure phytoremediation and argo-production in cadmium contaminated soil under oilseed rape-rice rotation system. Sci. Total Environ. 2020, 748, 142481. [Google Scholar] [CrossRef]
- Lian, J.P.; Cheng, L.P.; Zhai, X.; Wu, R.F.; Liu, W.T.; Pan, J.Q.; Shohag, M.J.I.; Xin, X.P.; He, Z.L.; Yang, X.E. Foliar spray of combined metal-oxide nanoparticles alters the accumulation, translocation and health risk of Cd in wheat (Triticum aestivum L.). J. Hazard. Mater. 2022, 440, 129857. [Google Scholar] [CrossRef]
- Zhen, S.; Shuai, H.; Xu, C.; Lv, G.H.; Zhu, X.D.; Zhang, Q.; Zhu, Q.H.; Núñez-Delgado, A.; Conde-Cid, M.; Zhou, Y.Y.; et al. Foliar application of Zn reduces Cd accumulation in grains of late rice by regulating the antioxidant system, enhancing Cd chelation onto cell wall of leaves, and inhibiting Cd translocation in rice. Sci. Total Environ. 2021, 770, 145302. [Google Scholar] [CrossRef]
- Manzoor, N.; Ahmed, T.; Noman, M.; Shahid, M.; Nazir, M.M.; Ali, L.; Alnusaire, T.S.; Li, B.; Schulin, R.; Wang, G. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake. Sci. Total Environ. 2021, 769, 145221. [Google Scholar] [CrossRef]
- Yang, J.Y.; Chen, X.; Lu, W.C.; Chen, R.C.; Liu, M.N.; Yao, H.L.; Li, J.H.; Hong, J.L.; Mao, X.Y. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition. Chemosphere 2020, 258, 127135. [Google Scholar] [CrossRef] [PubMed]
- Ali, W.; Mao, K.; Zhang, H.; Junaid, M.; Xu, N.; Rasool, A.; Feng, X.; Yang, Z. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J. Hazard. Mater. 2020, 397, 122720. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.S.; Yue, L.; Wang, C.X.; Luo, X.; Zhang, C.C.; Zhao, X.L.; Wu, F.C.; White, J.C.; Wang, Z.Y.; Xing, B.S. Foliar application with iron oxide nanomaterials stimulate nitrogen fixation, yield, and nutritional quality of soybean. ACS Nano 2022, 16, 1170–1181. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Saifullah; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Liu, Y.L.; Yu, X.F.; Feng, Y.M.; Zhang, C.; Wang, C.; Zeng, J.; Huang, Z.; Kang, H.Y.; Fan, X.; Sha, L.N.; et al. Physiological and transcriptome response to cadmium in cosmos (Cosmos bipinnatus Cav.) seedlings. Sci. Rep. 2017, 7, 14691. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.; Ishimaru, Y.; Shimo, H.; Ogo, Y.; Senoura, T.; Nishizawa, N.K.; Nakanishi, H. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 2012, 35, 1948–1957. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, A.; Yamaji, N.; Ma, J.F. Overexpression of OsHMA3 enhances Cd tolerance and expression of Zn transporter genes in rice. J. Exp. Bot. 2014, 65, 6013–6021. [Google Scholar] [CrossRef]
- Tan, L.T.; Zhu, Y.X.; Fan, T.; Peng, C.; Wang, J.R.; Sun, L.; Chen, C.Y. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem. Biophys. Res. Commun. 2019, 512, 112–118. [Google Scholar] [CrossRef]
- Tian, S.Q.; Liang, S.; Qiao, K.; Wang, F.H.; Zhang, Y.X.; Chai, T.Y. Co-expression of multiple heavy metal transporters changes the translocation, accumulation, and potential oxidative stress of Cd and Zn in rice (Oryza sativa). J. Hazard. Mater. 2019, 380, 120853. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Wang, C.; Peng, F.; Wang, R.J.; Xiao, X.; Zeng, J.; Kang, H.Y.; Fan, X.; Sha, L.N.; et al. Transcriptomic profiles reveal the interactions of Cd/Zn in dwarf polish wheat (Triticum polonicum L.) roots. Front. Physiol. 2017, 8, 168. [Google Scholar] [CrossRef]
- Sarwar, N.; Ishaq, W.; Farid, G.; Shaheen, M.R.; Imran, M.; Geng, M.; Hussain, S. Zinc-cadmium interactions: Impact on wheat physiology and mineral acquisition. Ecotoxicol. Environ. Saf. 2015, 122, 528–536. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Hussain, A.; Ali, Q.; Shakoor, M.B.; Zia-ur-Rehman, M.; Farid, M.; Asma, M. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 2017, 187, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Monasterio, J.I.; Palacios-Rojas, N.; Meng, E.; Pixley, K.; Trethowan, R.; Peña, R.J. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J. Cereal Sci. 2007, 46, 293–307. [Google Scholar] [CrossRef]
- Olsen, L.I.; Palmgren, M.G. Many rivers to cross: The journey of zinc from soil to seed. Front. Plant Sci. 2014, 5, 30. [Google Scholar] [CrossRef] [PubMed]
- Li, L.P.; Zhang, Y.Q.; Ippolito, J.A.; Xing, W.Q.; Qiu, K.Y.; Wang, Y.L. Cadmium foliar application affects wheat Cd, Cu, Pb and Zn accumulation. Environ. Pollut. 2020, 262, 114329. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, M.F.; Li, H.B.; Ren, Y.Y.; Siddique, K.H.M.; Chen, Y.L.; Zhang, S.Q. Effects of zinc fertilizer on maize yield and water-use efficiency under different soil water conditions. Field Crop Res. 2020, 248, 107718. [Google Scholar] [CrossRef]
- Bohn, L.; Meyer, A.S.; Rasmussen, S.K. Phytate: Impact on environment and human nutrition. A challenge for molecular breeding. J. Zhejiang Univ. Sci. B 2008, 9, 165–191. [Google Scholar] [CrossRef]
- Erdal, I.; Yilmaz, A.; Taban, S.; Eker, S.; Torun, B.; Cakmak, I. Phytic acid and phosphorus concentrations in seeds of wheat cultivars grown with and without zinc fertilization. J. Plant Nutr. 2002, 25, 113–127. [Google Scholar] [CrossRef]
- Hussain, S.; Maqsood, M.A.; Rengel, Z.; Aziz, T. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant Soil 2012, 361, 279–290. [Google Scholar] [CrossRef]
T1 | T2 | T3 | T4 | T5 | |
---|---|---|---|---|---|
The first year | 3241 ± 76.2 b | 2520 ± 20.2 d | 2878 ± 31.1 c | 3402 ± 16.4 a | 3422 ± 26.6 a |
The second year | 3283 ± 75.0 bc | 3340 ± 26.0 bc ** | 2960 ± 107 c | 3622 ± 134 ab | 3870 ± 184 a |
Adults | Children | Infants | |||||
---|---|---|---|---|---|---|---|
The First Year | The Second Year | The First Year | The Second Year | The First Year | The Second Year | ||
T1 | 6.55 × 10−5 ± 6.98 × 10−7 b | 8.46 × 10−5 ± 3.06 × 10−7 a | 7.26 × 10−5 ± 7.75 × 10−7 b | 9.38 × 10−5 ± 3.39 × 10−7 a | 5.85 × 10−5 ± 6.24 × 10−7 b | 7.55 × 10−5 ± 2.73 × 10−7 a | |
T2 | 4.17 × 10−5 ± 3.39 × 10−7 d | 4.00 × 10−5 ± 9.26 × 10−8 d | 4.62 × 10−5 ± 3.76 × 10−7 d | 4.44 × 10−5 ± 1.03 × 10−7 d | 3.72 × 10−5 ± 3.02 × 10−7 d | 3.57 × 10−5 ± 8.27 × 10−8 d | |
T3 | 6.22 × 10−5 ± 8.88 × 10−7 c | 6.46 × 10−5 ± 5.71 × 10−7 b | 6.90 × 10−5 ± 9.85 × 10−7 c | 7.17 × 10−5 ± 6.34 × 10−7 b | 5.55 × 10−5 ± 7.93 × 10−7 c | 5.77 × 10−5 ± 5.10 × 10−7 b | |
T4 | 4.07 × 10−5 ± 5.09 × 10−7 d | 4.72 × 10−5 ± 4.75 × 10−7 c | 4.52 × 10−5 ± 5.64 × 10−7 d | 5.24 × 10−5 ± 5.27 × 10−7 c | 3.64 × 10−5 ± 4.54 × 10−7 d | 4.22 × 10−5 ± 4.24 × 10−7 c | |
T5 | 9.51 × 10−5 ± 9.76 × 10−7 a | 8.35 × 10−5 ± 1.17 × 10−6 a | 1.05 × 10−4 ± 1.08 × 10−6 a | 9.26 × 10−5 ± 1.30 × 10−6 a | 8.49 × 10−5 ± 8.72 × 10−7 a | 7.45 × 10−5 ± 1.04 × 10−6 a | |
T1 | 6.55 × 10−2 ± 6.98 × 10−4 b | 8.46 × 10−2 ± 3.06 × 10−4 a | 7.26 × 10−2 ± 7.75 × 10−4 b | 9.38 × 10−2 ± 3.39 × 10−4 a | 5.85 × 10−2 ± 6.24 × 10−4 b | 7.55 × 10−2 ± 2.73 × 10−4 a | |
T2 | 4.17 × 10−2 ± 3.39 × 10−4 d | 4.00 × 10−2 ± 9.26 × 10−5 d | 4.62 × 10−2 ± 3.76 × 10−4 d | 4.44 × 10−2 ± 1.03 × 10−4 d | 3.72 × 10−2 ± 3.02 × 10−4 d | 3.57 × 10−2 ± 8.27 × 10−5 d | |
T3 | 6.22 × 10−2 ± 8.88 × 10−4 c | 6.46 × 10−2 ± 5.71 × 10−4 b | 6.90 × 10−2 ± 9.85 × 10−4 c | 7.17 × 10−2 ± 6.34 × 10−4 b | 5.55 × 10−2 ± 7.93 × 10−4 c | 5.77 × 10−2 ± 5.10 × 10−4 b | |
T4 | 4.07 × 10−2 ± 5.09 × 10−4 d | 4.72 × 10−2 ± 4.75 × 10−4 c | 4.52 × 10−2 ± 5.64 × 10−4 d | 5.24 × 10−2 ± 5.27 × 10−4 c | 3.64 × 10−2 ± 4.54 × 10−4 d | 4.22 × 10−2 ± 4.24 × 10−4 c | |
T5 | 9.51 × 10−2 ± 9.76 × 10−4 a | 8.35 × 10−2 ± 1.17 × 10−3 a | 10.55 × 10−2 ± 1.08 × 10−3 a | 9.26 × 10−2 ± 1.30 × 10−3 a | 8.49 × 10−2 ± 8.72 × 10−4 a | 7.45 × 10−2 ± 1.04 × 10−3 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Yuan, C.; Liu, Y.; Feng, Y.; Qi, B.; He, Z.; Yang, X. Cadmium (Cd) Minimization and Zinc (Zn) Biofortification in Wheat (Triticum aestivum L.) Grains by Spraying with the Foliar Zn Fertilizer in Cd-Contaminated Fields. Agronomy 2024, 14, 18. https://doi.org/10.3390/agronomy14010018
Lu M, Yuan C, Liu Y, Feng Y, Qi B, He Z, Yang X. Cadmium (Cd) Minimization and Zinc (Zn) Biofortification in Wheat (Triticum aestivum L.) Grains by Spraying with the Foliar Zn Fertilizer in Cd-Contaminated Fields. Agronomy. 2024; 14(1):18. https://doi.org/10.3390/agronomy14010018
Chicago/Turabian StyleLu, Min, Changbo Yuan, Yuankun Liu, Ying Feng, Bin Qi, Zhenli He, and Xiaoe Yang. 2024. "Cadmium (Cd) Minimization and Zinc (Zn) Biofortification in Wheat (Triticum aestivum L.) Grains by Spraying with the Foliar Zn Fertilizer in Cd-Contaminated Fields" Agronomy 14, no. 1: 18. https://doi.org/10.3390/agronomy14010018
APA StyleLu, M., Yuan, C., Liu, Y., Feng, Y., Qi, B., He, Z., & Yang, X. (2024). Cadmium (Cd) Minimization and Zinc (Zn) Biofortification in Wheat (Triticum aestivum L.) Grains by Spraying with the Foliar Zn Fertilizer in Cd-Contaminated Fields. Agronomy, 14(1), 18. https://doi.org/10.3390/agronomy14010018