Effect of Common Vetch (Vicia sativa L.) Green Manure on the Yield of Corn in Crop Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Characteristics of Precipitation and Temperature during the Research Period
2.3. Experimental Design
2.4. Agrotechnical Datas and Measurements
2.5. Statistical Analysis
3. Results
3.1. Effect of Different Seed Densities and Amount of Precipitation on Above-Ground Biomass Production of Common Vetch
3.2. Effect of Green Manuring on Soil Moisture Content in the Growing Period of Corn
3.3. Effect of Common Vetch Green Manure on Corn Yield in Different Crop Years
3.3.1. Effect of Common Vetch Green Manure on Corn Yield in 2021
3.3.2. Effect of Common Vetch Green Manure on Corn Yield in 2022
3.3.3. Effect of Common Vetch Green Manure on Corn Yield in 2023
3.4. Correlation between the Examined Parameters
4. Discussion
4.1. Effects of Precipitation and Different Seed Densities on the Biomass Weight of Green Manure
4.2. Effects of Green Manuring on Soil Moisture Content during the Main Crop Growing Period
4.3. Comparison of the Effects of Green Manuring and Fertilization on the Yield of Corn
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Plaza-Bonilla, D.; Coulter, J.A.; Kutcher, H.R.; Beckie, H.J.; Wang, L.; Floch, J.B.; Hamel, C.; Siddique, K.H.M.; Li, L.; et al. Diversifying crop rotations enhances agroecosystem services and resilience. Adv. Agron. 2022, 173, 299–335. [Google Scholar] [CrossRef]
- Zotarelli, L.; Zatorre, N.P.; Boddey, R.M.; Urquiaga, S.; Jantalia, C.P.; Franchini, J.C.; Alves, B.J. Influence of no-tillage and frequency of a green manure legume in crop rotations for balancing N outputs and preserving soil organic C stocks. Field Crops Res. 2012, 132, 185–195. [Google Scholar] [CrossRef]
- Shah, K.K.; Modi, B.; Pandey, H.P.; Subedi, A.; Aryal, G.; Pandey, M.; Shrestha, J. Diversified Crop Rotation: An Approach for Sustainable Agriculture Production. Adv. Agric. 2021, 2021, 8924087. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Lawson, A.; Cogger, C.; Bary, A.; Fortuna, A.-M. Influence of Seeding Ratio, Planting Date, and Termination Date on Rye-Hairy Vetch Cover Crop Mixture Performance under Organic Management. PLoS ONE 2015, 10, e0129597. [Google Scholar] [CrossRef]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C.A. Nitrogen Management Strategies to Reduce Nitrate Leaching in Tile-Drained Midwestern Soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Meersmans, J.; Serlet, L. Cover crops and their erosion-reducing effects during concentrated flow erosion. Catena. 2011, 85, 237–244. [Google Scholar] [CrossRef]
- Zeng, Z.-H.; Lu, Z.-H.; Jiang, Y.; Zhang, K.; Yang, Y.-D.; Zhao, P.-Y. Legume-cereal crop rotation systems in China. In Crop Rotation; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2016; pp. 51–69. [Google Scholar]
- Higgs, R.L.; Peterson, A.E.; Paulson, W.H. Crop rotations sustainable and profitable. J. Soil Water Conserv. 1990, 45, 68–70. [Google Scholar]
- Tanaka, D.L.; Aase, J.K. Fallow method influuences on soil water and precipitation storage effciency. Soil Tillage Res. 1987, 9, 307–316. [Google Scholar] [CrossRef]
- Black, A.L.; Bauer, A. Strategies for storing and conserving soil water in the northern Great Plains. In Challenges in Dryland Agriculture: A Global Perspective, Proceedings of the International Conference on Dryland Agriculture, Amarillo, TX, USA, 15–19 August 1988; Unger, P.W., Jordan, W.R., Sneed, T.V., Eds.; Texas Agric. Exp. Stn.: College Station, TX, USA, 1988; pp. 137–139. [Google Scholar]
- Steiner, J.L. Simulation of evaporation and water use effciency of fallow-based cropping systems. In Challenges in Dryland Agriculture: A Global Perspective, Proceedings of the International Conference on Dryland Agriculture, Amarillo, TX, USA, 15–19 August 1988; Unger, P.W., Jordan, W.R., Sneed, T.V., Eds.; Texas Agric. Exp. Stn.: College Station, TX, USA, 1988; pp. 176–178. [Google Scholar]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Biederbeck, V.O. Sustainable crop production in the Canadian Prairies. Conserv. Tillage. Proc. Great Plains Conserv. Tillage Symp. Great Plains Agric. Counc. Bull. 1990, 131, 291–305. [Google Scholar]
- Wright, A.T. Yield effect of pulses on subsequent cereal crops in the northern prairies. Can. J. Plant Sci. 1990, 70, 1023–1032. [Google Scholar] [CrossRef]
- Campbell, C.A.; Schnitzer, M.; Lafond, G.P.; Zentner, R.P.; Knipfel, J.E. Thirty-year crop rotations and management practices effects on soil and amino nitrogen. Soil Sci. Soc. Am. J. 1991, 55, 739–745. [Google Scholar] [CrossRef]
- Walley, F.L.; Clayton, G.W.; Miller, P.R.; Carr, P.M.; Lafond, G.P. Nitrogen economy of pulse crop production in the Northern Great Plains. Agron. J. 2007, 99, 1710–1718. [Google Scholar] [CrossRef]
- Larkin, R.P. Relative effects of biological amendments and crop rotations on soil microbial communities and soil borne diseases of potato. Soil Biol. Biochem. 2008, 40, 1341–1351. [Google Scholar] [CrossRef]
- Yu, Y.L.; Xue, L.H.; Yang, L.Z. Winter legumes in rice crop rotations reduces nitrogen loss, and improves rice yield and soil nitrogen supply. Agron. Sustain. Dev. 2013, 34, 633–640. [Google Scholar] [CrossRef]
- Martens, D.A.; Frankenberger, W.T., Jr. Modification of infiltration rates in an organic-amended irrigated soil. Agron. J. 1992, 84, 707–717. [Google Scholar] [CrossRef]
- Bresson, L.M.; Koch, C.; Le Bissonnais, Y.; Barriuso, E.; Lecomte, V. Soil surface structure stabilization by municipal waste compost application. Soil Sci. Soc. Am. J. 2001, 65, 1804–1811. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Hababi, A.; Javanmard, A.; Mosavi, S.B.; Rezaei, M.; Sabaghina, N. Effect of green manure on some soil physicochemical characteristics. Int. J. Agron. Plant Prod. 2013, 4, 3089–3095. [Google Scholar]
- Nyiraneza, J. Nitrogen Recovery and Nitrogen Balance with 15N in Potato Systems Amended with Cover Crops and Manure. Master’s Thesis, Michigan State University, East Lansing, MI, USA, 2003. [Google Scholar]
- Couëdel, A.; Alletto, L.; Tribouillois, H.; Justes, É. Cover crop crucifer-legume mixtures provide eddefctive nitrate catch crop and nitrogen green manure ecosystem services. Agric. Ecosyst. Environ. 2018, 254, 50–59. [Google Scholar] [CrossRef]
- Nemecek, T.; von Richthofen, J.S.; Dubois, G.; Casta, P.; Charles, R.; Pahl, H. Environmental impacts of introducing grain legumes into European crop rotations. Eur. J. Agron. 2008, 28, 380–393. [Google Scholar] [CrossRef]
- Roesch-McNally, G.E.; Basche, A.D.; Arbuckle, J.G.; Tyndall, J.C.; Miguez, E.F.; Bowman, T.; Clay, R. The trouble with cover crops: Farmers’ experiences with overcoming barriers to adoption. Renew. Agric. Food Syst. 2017, 33, 322–333. [Google Scholar] [CrossRef]
- Brandsæter, L.O.; Heggen, H.; Riley, H.; Stubhaug, E.; Trond, E.; Henriksen, M. Winter survival, biomass accumulation and N mineralization of winter annual and biennial legumes sown at various times of year in Northern Temperate Regions. Eur. J. Agron. 2008, 28, 437–448. [Google Scholar] [CrossRef]
- Murrell, E.G.; Schipanski, M.E.; Finney, D.M.; Hunter, M.C.; Burgess, M.; LaChance, J.C.; Baraibar, B.; White, C.M.; Mortensen, D.A.; Kaye, J.P. Achieving Diverse Cover Crop Mixtures: Effects of Planting Date and Seeding Rate. Agron. J. 2017, 109, 259–271. [Google Scholar] [CrossRef]
- Gabriel, J.L.; Quemada, M. Replacing bare fallow with cover crops in a maize cropping system: Yield, N uptake and fertiliser fate. Eur. J. Agron. 2011, 34, 133–143. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.H.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, M.D.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Behnke, G.D.; Villamil, M.B. Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA. Field Crops Res. 2019, 241, 107580. [Google Scholar] [CrossRef]
- Forte, C.T.; Beutler, A.N.; Galon, L.; Castoldi, C.T.; Winter, F.L.; Holz, C.M.; Bianchessi, F.; Concenço, G.; Chechi, L.; Ferreira, M.M.; et al. Soil Physical Properties and Grain Yield Influenced by Cover Crops and Crop Rotation. Am. J. Plant Sci. 2014, 9, 584. [Google Scholar] [CrossRef]
- Turgut, I.; Bilgili, U.; Duman, A.; Acikgoz, E. Effect of green manuring on the yield of sweet corn. Agron. Sustain. Dev. 2005, 25, 433–438. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Review of Corn Yield Response under Winter Cover Cropping Systems Using Meta-Analytic Methods. Crop Sci. 2005, 45, 2318–2329. [Google Scholar] [CrossRef]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Griffin, T.; Liebman, M.; Jemison, J. Cover Crops for Sweet Corn Production in a Short-Season Environment. Agron. J. 2000, 92, 144–151. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Pan, F.; Lu, J.; Liu, W.; Geng, M.; Li, X.; Cao, W. Effect of different green manure application on soil fertility. J. Plant Nutr. Fertil. 2011, 17, 1359–1364. [Google Scholar] [CrossRef]
- Szabóné, C.K. Tavaszi bükköny (Vicia sativa L.). In Az Alternatív Növények Szerepe az Észak-alföldi Régióban; Gondola, I., Ed.; DE Agrár- és Műszaki Tudományok Centrum Kutató központja: Nyíregyháza, Hungary, 2010; pp. 48–49. [Google Scholar]
- Uzun, A.; Bilgili, U.; Sinicik, M.; Acikgoz, E. Effects of seeding rates on yield and yield components of Hungarian vetch (Vicia pannonica Crantz.). Turk. J. Agric. For. 2004, 28, 179–182. [Google Scholar]
- Tigka, E.; Beslemes, D.; Kakabouki, I.; Pankou, C.; Bilalis, D.; Tokatlidis, I.; Vlachostergios, D.N. Seed Rate and Cultivar Effect on Contribution of Vicia sativa L. Green Manure to Soil Amendment under Mediterranean Conditions. Agriculture 2021, 11, 733. [Google Scholar] [CrossRef]
- Mohammadi, G.R.; Ghobad, M.E. The effects of different autumn-seeded cover crops on subsequent irrigated corn response to nitrogen fertilizer. Sci. Res. 2010, 1, 148–153. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Pancorbo, J.L.; Quemada, M. Interseeding cover crops into maize: Characterization of species performance under Mediterranean conditions. Field Crops Res. 2020, 249, 107762. [Google Scholar] [CrossRef]
- Chen, Z.; Chang, D.; Han, M.; Li, Z.; Yan, Q.; Zhang, J.; Zhou, G.; Sun, X.; Cao, W. Capability evaluation of 47 Common vetch cultivars (lines) as autumn green manure in Qinghai Province, Northwest China. Acta Prataculturae Sin. 2022, 31, 39–51. [Google Scholar]
- Talgre, L. Biomass Production of Different Green Manure Crops and Their Effect on the Succeeding Crops Yield. Ph.D. Thesis, Estonian University of Life Sciences, Tartu, Estonia, 2013. [Google Scholar]
- Vojnov, B.; Jačimovič, G.; Seremešič, S.; Pezo, L.; Lončar, B.; Krstić, Ð.; Vujič, S.; Čupina, B. The Effects of Winter Cover Crops on Maize Yield and Crop Performance in Semiarid Conditions—Artificial Neural Network Approach. Agronomy 2022, 12, 2670. [Google Scholar] [CrossRef]
- Jannink, J.-L.; Liebman, M.; Merrick, L.C. Biomass Production and Nitrogen Accumulation in Pea, Oat, and Vetch Green Manure Mixtures. Agron. J. 1996, 88, 231–240. [Google Scholar] [CrossRef]
- Ambartsumova, K.A. Prospects for the Cultivation of Vicia sativa L. in Mixed Crops on Green Manure in Novgorod Region. IOP Conf. Ser. Earth Environ. Sci. 2021, 852, 012004. [Google Scholar] [CrossRef]
- Biederbeck, V.O.; Bouman, O. Water use by annual green manure legumes in dryland cropping systems. Agron. J. 1994, 86, 543–549. [Google Scholar] [CrossRef]
- Mikó, P. Examining the Effects of Green Manuring on Soil Conditions and Subsequent Crops. Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2009; pp. 1–163. [Google Scholar]
- O’Dea, J.K.; Miller, P.R.; Jones, C.A. Greening summer fallow with legume green manures: On-farm assessment in north-central Montana. J. Soil Water Conserv. 2013, 68, 270–282. [Google Scholar] [CrossRef]
- Ma, D.; Yin, L.; Ju, W.; Li, X.; Liu, X.; Deng, X.; Wang, S. Meta-analysis of green manure effects on soil properties and crop yield in northern China. Field Crops Res. 2021, 266, 108–146. [Google Scholar] [CrossRef]
- Liebman, M.; Graef, R.L.; Nettleton, D.; Cambardella, A.C. Use of legume green manures as nitrogen sources for corn production. Renew. Agric. Food Syst. 2011, 27, 180–191. [Google Scholar] [CrossRef]
- Stute, J.K.; Posner, J.L. Synchrony between legume nitrogen relase and corn demand in the upper Midwest. Agron. J. 1995, 87, 1063–1069. [Google Scholar] [CrossRef]
- Mueller, T.; Thorup-Kristensen, K. N-Fixation of Selected Green Manure Plants in an Organic Crop Rotation. Biol. Agric. Hortic. 2001, 18, 345–363. [Google Scholar] [CrossRef]
- Tao, J.; Liu, X.; Liang, Y.; Niu, J.; Xiao, Y.; Gu, Y.; Ma, L.; Meng, D.; Zhang, Y.; Huang, W.; et al. Maize growth responses to soil microbes and soil properties after fertilization with different green manures. Appl. Microbiol. Biotechnol. 2017, 101, 1289–1299. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.S.; Bruulsema, T.W.; Jensen, T.L.; Fixen, P.E. Review of greenhouse gas emissions from crop production systems and fertilizer management effects. Agric. Ecosyst. Environ. 2009, 133, 247–266. [Google Scholar] [CrossRef]
Soil Depth | 0–25 cm | 25–50 cm |
---|---|---|
pH (KCl 1:2.5) [-] | 7.4 | 7.4 |
Arany-type plasticity index [KA] | 31 | 31 |
Total soluble salt content [m/m%] | <0.02 | <0.02 |
Carbonated lime content [m/m%] | 1.65 | 2.90 |
Organic matter content [m/m%] | 1.43 | 1.30 |
Nitrogen–nitrite + nitrate (KCl soluble) [mg/kg d.m.] | 4.1 | 4.0 |
Potassium-oxide (AL-soluble) [mg/kg d.m.] | 293 | 234 |
Phosphorus-pentoxide (AL-soluble) [mg/kg d.m.] | 263 | 214 |
Year/Period | CR 1 | CR 2 | CR 3 |
---|---|---|---|
2020—CCP | Triticale | Oat | Triticale |
2020—GMP | Green manure—Common vetch | Green manure—Common vetch | Green manure—Common vetch |
2021—CCP | Corn | Triticale | Oat |
2021—GMP | Fallow | Green manure—Common vetch | Green manure—Common vetch |
2022—CCP | Triticale | Corn | Triticale |
2022—GMP | Green manure—Common vetch | Fallow | Green manure—Common vetch |
2023—CCP | Oat | Triticale | Corn |
Operation/Year | 2020/2021 | 2021/2022 | 2022/2023 |
---|---|---|---|
Green manure sowing | 11 August | 12 August | 3 August |
Green manure sampling | 27 October | 27 October | 26 October |
Green manure termination | 28 October | 28 October | 27 October |
Corn sowing | 15 April | 3 May | 3 May |
Soil sampling | 19 May | 16 May | - |
Fertilization (80 kg ha−1 N) | 30 May | 1 June | 15 June |
Corn harvest | 12 October | 14 October | 5 October |
Crop Year | Treatment | Depth (cm) | |||
---|---|---|---|---|---|
0–25 | 25–50 | 50–75 | 75–100 | ||
2021 | GM | 19.79 a | 19.22 a | 18.64 b | 18.08 b |
N80 | 20.10 a | 19.61 a | 18.86 b | 15.07 a | |
Control | 20.51 a | 20.25 a | 16.65 a | 15.58 a | |
2022 | GM | 15.72 a | 15.47 b | 16.15 b | 14.10 c |
N80 | 14.40 a | 16.28 b | 13.15 a | 8.35 a | |
Control | 15.11 a | 13.56 a | 13.81 a | 12.16 b |
BiomassGM | YieldCORN | PGMVP | PCVP | YieldTRITICALE | PTVP | |
---|---|---|---|---|---|---|
BiomassGM | 1 | |||||
YieldCORN | 0.562 ** | 1 | ||||
PGMVP | 0.865 ** | 0.870 ** | 1 | |||
PCVP | 0.411 * | 0.941 ** | 0.767 ** | 1 | ||
YieldTRITICALE | 0.383 * | −0.430 * | −0.001 | −0.629 ** | 1 | |
PTVP | 0.554 ** | −0.248 | 0.195 | −0.480 ** | 0.960 ** | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pál, V.; Zsombik, L. Effect of Common Vetch (Vicia sativa L.) Green Manure on the Yield of Corn in Crop Rotation System. Agronomy 2024, 14, 19. https://doi.org/10.3390/agronomy14010019
Pál V, Zsombik L. Effect of Common Vetch (Vicia sativa L.) Green Manure on the Yield of Corn in Crop Rotation System. Agronomy. 2024; 14(1):19. https://doi.org/10.3390/agronomy14010019
Chicago/Turabian StylePál, Vivien, and László Zsombik. 2024. "Effect of Common Vetch (Vicia sativa L.) Green Manure on the Yield of Corn in Crop Rotation System" Agronomy 14, no. 1: 19. https://doi.org/10.3390/agronomy14010019
APA StylePál, V., & Zsombik, L. (2024). Effect of Common Vetch (Vicia sativa L.) Green Manure on the Yield of Corn in Crop Rotation System. Agronomy, 14(1), 19. https://doi.org/10.3390/agronomy14010019