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Abstract: Breeding technology is one of the necessary means for agricultural development, and the
automatic identification of poor seeds has become a trend in modern breeding. China is one of the
main producers of buckwheat, and the cultivation of Hongshan buckwheat plays an important role
in agricultural production. The quality of seeds affects the final yield, and improving buckwheat
breeding technology is particularly important. In order to quickly and accurately identify broken
Hongshan buckwheat seeds, an identification algorithm based on an improved YOLOv5s model is
proposed. Firstly, this study added the Ghost module to the YOLOv5s model, which improved the
model’s inference speed. Secondly, we introduced the bidirectional feature pyramid network (BiFPN)
to the neck of the YOLOv5s model, which facilitates multi-scale fusion of Hongshan buckwheat
seeds. Finally, we fused the Ghost module and BiFPN to form the YOLOV5s+Ghost+BiFPN model
for identifying broken Hongshan buckwheat seeds. The results show that the precision of the
YOLOV5s+Ghost+BiFPN model is 99.7%, which is 11.7% higher than the YOLOv5s model, 1.3%
higher than the YOLOv5+Ghost model, and 0.7% higher than the YOLOv5+BiFPN model. Then,
we compared the FLOPs value, model size, and confidence. Compared to the YOLOv5s model,
the FLOPs value decreased by 6.8 G, and the model size decreased by 5.2 MB. Compared to the
YOLOv5+BiFPN model, the FLOPs value decreased by 8.1 G, and the model size decreased by
7.3MB. Compared to the YOLOv5+Ghost model, the FLOPs value increased by only 0.9 G, and the
model size increased by 1.4 MB, with minimal numerical fluctuations. The YOLOv5s+Ghost+BiFPN
model has more concentrated confidence. The YOLOv5s+Ghost+BiFPN model is capable of fast and
accurate recognition of broken Hongshan buckwheat seeds, meeting the requirements of lightweight
applications. Finally, based on the improved YOLOv5s model, a system for recognizing broken
Hongshan buckwheat seeds was designed. The results demonstrate that the system can effectively
recognize seed features and provide technical support for the intelligent selection of Hongshan
buckwheat seeds.

Keywords: broken buckwheat seeds; improved YOLOv5s algorithm; feature extraction

1. Introduction

China is the origin of buckwheat and has the richest buckwheat germplasm resources
in the world. Buckwheat, as a dual-use crop for food and medicine, has been an important
food crop in many regions for thousands of years due to its fast growth, wide adaptability,
and rich nutritional value [1]. China is a major buckwheat producer, with cultivation
mainly concentrated in the northern and southwestern regions [2]. According to data from
the Food and Agriculture Organization of the United Nations, China ranked second in both
the harvested area and production volume of buckwheat in the world from 2012 to 2021,
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as shown in Figure 1. A series of nutritional and health foods have been developed using
buckwheat, and its unique secondary metabolites, such as flavonoids, can also be used as
high-quality forage to promote the development of animal husbandry [3].
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Hongshan buckwheat is a type of buckwheat. As an important coarse grain, it has
strong resistance to disease and drought and is rich in nutrients, making it the main food
for people in the major local producing areas. Excellent seed sources are the foundation
for a high-quality and stable yield of Hongshan buckwheat, as well as the basis for large-
scale cultivation. Currently, the detection of buckwheat seeds mainly relies on manual
identification by technicians [4], which is labor-intensive and low in production efficiency,
resulting in the slow development of breeding technology for buckwheat. Therefore,
designing a fast and accurate algorithm to replace manual detection for use in buckwheat
breeding work can help improve buckwheat yield and expand its planting area.

With the rapid development of spectral imaging technology [5], machine vision [6],
and artificial intelligence [7], a foundation has been laid for crop breeding research.
Ambrose et al. [8] used hyperspectral imaging (HSI) to distinguish vigorous and non-
vigorous maize seeds and established a partial least-squares discriminant analysis (PLS-DA)
to classify the hyperspectral images. Jia et al. [9] utilized near-infrared spectroscopy to
quickly determine the variety of maize-coated seeds and established four maize variety dis-
crimination models using SVM, SIMCA, and BPR. Mukasa et al. [10] used Fourier transform
infrared spectroscopy to distinguish between viable and nonviable Hinoki cypress seeds
collected within a certain range, and this method achieved the non-destructive detection
of seed purity. However, the high cost of spectrometers makes it difficult to widely use
them in practical breeding work. To ensure production quality and reduce breeding costs,
machine vision and deep learning provide a solution.

In agricultural breeding work, many seeds are not only very small but also similar in
appearance, which makes seed detection a challenge and increases the difficulty of breeding
work [11]. Tu et al. [12] developed a new software called AIseed based on machine vision
technology that can perform a high-throughput phenotypic analysis of 54 characteristics
of individual plant seeds. With the emergence of deep learning algorithms, accuracy has
significantly improved in traditional target recognition tasks and has been applied to crop
breeding tasks due to their powerful computing capabilities and information classification
abilities [13]. Wang et al. [14] collected hyperspectral images of sweet corn seeds and
evaluated the classification performance of varieties using four machine learning methods
and six deep learning algorithms. The results showed that the deep learning algorithms
had better performance. Singh Thakur et al. [15] obtained laser backscatter images of
soybean seeds through a designed photon sensor and processed the images based on a
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convolutional neural network (CNN) and various deep learning models. Among them,
InceptionV3 achieved a precision of 98.31% and accelerated the classification efficiency.
Luo et al. [16] proposed a detection system for the intelligent classification of 47 weed
seeds, comparing six deep learning models, where AlexNet had the highest classification
accuracy and efficiency, while GoogLeNet had the strongest classification accuracy. The
YOLO model, proposed by Redmon et al. [17], as a regression network, uses a single CNN
backbone to predict bounding boxes with label probabilities in a single evaluation pattern,
with advanced performance in object detection. Ouf et al. [18] collected 11 legume plant
seeds of different colors, sizes, and shapes to increase research diversity and compared
the detection performance of Faster RCNN and YOLOv4, showing that YOLOv4 had
significantly higher accuracy, detection ability, and speed than Faster RCNN. Zhao et al. [19]
proposed a rotation-aware model called YOLO-rot for automatically measuring the quantity
and size of seeds. To address the challenge of recognizing small and broken Hongshan
buckwheat seeds, this study proposes a lightweight improved model based on YOLOv5s.
The improved YOLOv5s+GhostNet+BiFPN model achieves fast detection speed, meets the
requirements for lightweight applications, and enables the rapid and accurate identification
of broken Hongshan buckwheat seeds.

1. The GhostNet module is introduced to reduce the size and parameters of the model.
While ensuring precision, this lightweight design improves detection speed, making it
suitable for deployment on mobile or embedded devices.

2. The BiFPN module is introduced to realize multi-scale feature fusion in the model.
Given the small and similar shapes of Hongshan buckwheat seeds, this module enables the
model to focus more on subtle broken features, preventing the loss of target information
and improving detection precision.

3. Ablation experiments evaluate the effects of the GhostNet and BiFPN modules on
the improved model. The compatibility between different modules is analyzed, verifying
the advantages of the YOLOv5s+GhostNet+BiFPN model.

4. A Hongshan buckwheat seed recognition system is designed based on the
YOLOv5s+GhostNet+BiFPN model. The system can identify seeds through both image
and video detection. After testing the system, it demonstrates good performance in terms
of accuracy and speed, accurately identifying broken seeds.

2. Materials and Methods
2.1. Data Acquisition Systems and Experiment Samples

The image acquisition system used in this study includes a computer, camera, and
light source. The camera chosen is a Chinese Hikvision Gigabit Ethernet industrial line
scan camera, positioned parallel to the desktop at a height of 14 cm. The copyright of the
camera belongs to Chinese Hangzhou Hikang Robot Technology Co., Ltd. or its customs
Associated company. A circular LED light with adjustable brightness is fixed below the
camera on a support at a height of 7 cm, set to constant brightness, and designed to ensure
uniform lighting for high-quality seed images. Seeds are placed beneath the system, and
the images are uploaded to the MVS client in real time, with the camera operated using
computer control. This acquisition system is the camera supporting system, as shown
in Figure 2.

The buckwheat seeds of Hongshan originated in Shuozhou City, Shanxi Province,
China. The seed characteristics are random, and not all are complete with clear stripes.

To meet breeding requirements, it is necessary to ensure the purity of Hongshan
buckwheat seeds. Therefore, the seeds are classified into four categories, as shown in
Figure 3, including complete and with clear texture; complete but with unclear texture;
complete without texture; and broken, which were, respectively, represented by WL,
WLBMX, WWL, and PS in the experimental results. The uneven distribution of the original
buckwheat seeds can lead to errors in training. To ensure the diversity of the dataset
and prevent overfitting caused by an imbalanced sample distribution, it is necessary to
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preprocess the original data. Data augmentation was carried out in this study using the
following process, as shown in Figure 4.
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1. Random rotation and flipping: simulating different shooting angles in various recog-
nition environments.

2. Brightness adjustment: simulating different lighting conditions in various environments.
3. Adding pepper and salt noise: the model is capable of resisting random perturbations,

which aids in improving the generalization performance.

Before training, a manual annotation method was adopted, and the labeling tool
LabelImg was used to mark the position of each object on the image for each category, and
their category was labeled. After data augmentation, there were a total of 4000 images of
buckwheat data, divided into a training set, a validation set, and a test set in an 8:1:1 ratio.
The specific quantities in the dataset are shown in Table 1.

Table 1. Number of seeds in each category.

Agricultural Crops Seed Type
Number of Images

Pre-Enhancement After Enhancement

Seeds

WL 500 1000
WLBMX 500 1000

WWL 500 1000
PS 200 1000

Total 1700 4000

2.2. Methods

The YOLOv5 network model has a small volume and a fast training speed [20]. Based
on the differences in network depth and feature map width, it can be divided into YOLOv5s,
YOLOv5m, YOLOv5l, and YOLOv5x. In order to meet the requirements of lightweight
models, reduce storage space, and improve recognition speed, this study used the YOLOv5s
detection model with lower complexity. As the Hongshan buckwheat seeds are small and
have similar characteristics between broken and intact seeds, the redundant feature maps
may increase the difficulty of recognition. Therefore, improvements were made to the
backbone and neck parts of the YOLOv5s model.

2.2.1. YOLOv5s Network Structure

YOLOv5s is mainly composed of a backbone, neck, and head, and the network struc-
ture is shown in Figure 5.

The backbone is the main network of YOLOv5 [21], responsible for extracting features
from input images and converting an original input image into multiple feature maps
to complete subsequent object detection tasks. Its main structure includes the Focus
structure, Conv module, C3 module, and SPP module. The key to the Focus structure is
slicing the image into smaller feature maps, as shown in Figure 5a. The Conv module is
a basic module commonly used in convolutional neural networks, mainly composed of
convolutional layers, BN layers, and activation functions. The BN layer is added after the
convolutional layer for normalization, which accelerates the training process, improves the
model’s generalization ability, and reduces the model’s dependence on initialization. The
activation function is a type of nonlinear function that introduces nonlinear transformation
capability to neural networks and can adapt to different types of data distributions.
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maps. (c,d) The CSP1_x is used to represent the C3 layer in the backbone, while the CSP2_x is used to
represent the C3 layer in the neck.

The C3 layer, also known as the Cross-Stage Partial Layer (CSP), mainly increases the
depth and receptive field of the network, making it more attentive to global information
about objects and improving its feature extraction capability. CSP1_x is used to represent
the C3 layer in the backbone, while CSP2_x is used to represent the C3 layer in the neck.
Compared to CSP1_x, CSP2_x replaces Resunit with 2× CBL modules. The CBL module
divides the input into two branches, one passing through the CBL and several residual
structures to perform a convolution operation, while the other performs a direct convolution
operation. The two branches are then concatenated, passed through the BN, and finally
through another CBL, as shown in Figure 5c,d.

The SPP module [22] is a pooling module commonly used in convolutional neural
networks to achieve the spatial and positional invariance of input data, thus improving the
network’s recognition ability. Its main idea is to apply different sizes of receptive fields to
the same image to capture features of different scales. In the SPP module, the input feature
map is subjected to pooling of different sizes to obtain a set of feature maps of different
sizes. These feature maps are concatenated together, and their dimensionality is reduced
through a fully connected layer to obtain a fixed-size feature vector, as shown in Figure 5b.

The neck module is responsible for the multi-scale feature fusion of feature maps to
improve the accuracy of object detection. In YOLOv5, the FPN+PAN structure is used to
fuse feature maps from different levels through upsampling and downsampling operations
to generate a multi-scale feature pyramid. The top–down part mainly merges features
of different levels by upsampling and fusing them with coarser feature maps, while the
bottom–up part uses a convolutional layer to merge feature maps from different levels,
filling and reinforcing localization information, as shown in Figure 6.
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Figure 6. Figure (I) shows that FPN first generates feature maps of all levels by a bottom-up path,
and then generates feature pyramids by a top-down path. The FPN structure merges features from
P6 to P3 through a top–down path. Figure (II) shows that PANet adds a bottom–up merging method
from N3 to N6 on the basis of the FPN structure.

The head is responsible for the final regression prediction. In YOLOv5, the main
component of the head is three Detect detectors, which perform object detection on feature
maps of different scales using grid-based anchors, as shown in Figure 5.

2.2.2. Improved Model

A structure diagram of the improved YOLOv5 model is shown in Figure 7. The model
adopts the lightweight GhostNet algorithm and introduces the weighted bidirectional fea-
ture pyramid network module (BiFPN) to achieve the automatic recognition of Hongshan
buckwheat seeds.
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GhostNet

To reduce the size and parameter count of the model, improve running speed, and
effectively save computational resources, this study uses GhostNet, a lightweight neural
network, to replace the YOLOv5s’ backbone network and perform simple linear operations
on the features to generate more similar feature maps. This greatly reduces the model’s
parameters and computational complexity, avoiding the redundancy of Hongshan buck-
wheat seed feature maps and speeding up the automatic identification of damaged seeds.
GhostNet is constructed by stacking Ghost modules to obtain Ghost bottlenecks [23]. It
replaces traditional convolutions with ghost modules. First, a regular 1 × 1 convolution is
used to compress the number of channels in the input image, followed by a depthwise sep-
arable convolution to obtain more feature maps. Then, different feature maps are combined
into a new output by connecting them together, as shown in Figure 8.
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Figure 8. The Ghostnet module can be divided into three parts. The first part is a normal convolution
operation. The second part is a grouped convolution operation, which can generate a portion
of the feature maps below the output feature map. The third part is a recognition process that
adds the number of channels corresponding to the feature maps obtained from the first part of the
convolution and the channels obtained from the second part of the grouped convolution. Φn is a
linear transformation in the module.

In GhostNet, Φn is a linear transformation. The transformation method of Φn is not
fixed and can be a 3 × 3 linear kernel or a 5 × 5 linear kernel. Additionally, different sizes of
convolution kernels can be used for linear transformation operations. Usually, to consider
the inference situation of the CPU or GPU, all 3 × 3 or all 5 × 5 convolution kernels are used.
The size of the convolution kernel is determined based on the recognized object, and while
not changing the output feature map’s size, it can effectively reduce the computational
complexity and improve the running speed and accuracy, making it highly versatile.

The Ghost bottleneck is built based on the advantages of the Ghost module. The Ghost
bottleneck consists of two stacked Ghost modules. When the stride = 1, the first Ghost
module acts as an extension layer that increases the number of channels, while the second
Ghost module reduces the number of channels to match the residual connection. The
residual is connected between the inputs and outputs of the two Ghost modules, and batch
normalization and ReLU non-linearity are applied after each layer. When the stride = 2, the
main body consists of two Ghost modules and a deep convolutional layer. The first Ghost
module increases the number of channels and uses deep convolutional downsampling in
high-dimensional space to compress the width and height of the feature map. The second
Ghost module compresses the number of channels. In the residual edge part, the input
feature map is first compressed in width and height with deep convolution, and then the
channel is adjusted with a 1 × 1 convolution to make the size of the input and output
feature maps the same, as shown in Figure 9.

Agronomy 2024, 14, x FOR PEER REVIEW 9 of 17 
 

 

computational complexity and improve the running speed and accuracy, making it highly 
versatile. 

The Ghost bottleneck is built based on the advantages of the Ghost module. The 
Ghost bottleneck consists of two stacked Ghost modules. When the stride = 1, the first 
Ghost module acts as an extension layer that increases the number of channels, while the 
second Ghost module reduces the number of channels to match the residual connection. 
The residual is connected between the inputs and outputs of the two Ghost modules, and 
batch normalization and ReLU non-linearity are applied after each layer. When the stride 
= 2, the main body consists of two Ghost modules and a deep convolutional layer. The 
first Ghost module increases the number of channels and uses deep convolutional 
downsampling in high-dimensional space to compress the width and height of the feature 
map. The second Ghost module compresses the number of channels. In the residual edge 
part, the input feature map is first compressed in width and height with deep convolution, 
and then the channel is adjusted with a 1 × 1 convolution to make the size of the input and 
output feature maps the same, as shown in Figure 9. 

 
Figure 9. Structure of the Ghost bottleneck. ReLU is an activation function. 

The Weighted Bidirectional Feature Pyramid Module (BiFPN)  
Considering that Hongshan buckwheat seeds are small, similar in shape and dark in 

color, and it is difficult to recognize the stripe information, it is difficult to extract the tar-
get information, which may lead to the loss of target information, which is not conducive 
to the automatic recognition and detection of Hongshan buckwheat seeds, resulting in not 
meeting the breeding requirements for seed purity. Selecting the weighted bidirectional 
feature pyramid network module can efficiently implement bidirectional cross-scale con-
nections and weighted feature map fusion and improve the recognition accuracy of small 
and damaged seeds. In Yolov5s, the neck section adopts the FPN+PAN structure, which 
has relatively simple fusion and incomplete extraction for complex and small target fea-
tures, resulting in lower recognition accuracy for damaged Hongshan buckwheat seeds.  

Unlike the FPN structure, the BiFPN module mostly treats all input features equally 
compared to previous feature fusion methods [24]. However, different features have dif-
ferent resolutions, and their contributions to feature fusion are unequal. The BiFPN mod-
ule adds an additional weight to each input during feature fusion, letting the network 
learn the significant features of each input and achieve higher-level feature fusion. It helps 
to identify and distinguish targets with similar features, which is more in line with the 
requirements of this study, as shown in Figure 10. 

Figure 9. Structure of the Ghost bottleneck. ReLU is an activation function.



Agronomy 2024, 14, 37 9 of 16

The Weighted Bidirectional Feature Pyramid Module (BiFPN)

Considering that Hongshan buckwheat seeds are small, similar in shape and dark in
color, and it is difficult to recognize the stripe information, it is difficult to extract the target
information, which may lead to the loss of target information, which is not conducive to the
automatic recognition and detection of Hongshan buckwheat seeds, resulting in not meeting
the breeding requirements for seed purity. Selecting the weighted bidirectional feature
pyramid network module can efficiently implement bidirectional cross-scale connections
and weighted feature map fusion and improve the recognition accuracy of small and
damaged seeds. In Yolov5s, the neck section adopts the FPN+PAN structure, which has
relatively simple fusion and incomplete extraction for complex and small target features,
resulting in lower recognition accuracy for damaged Hongshan buckwheat seeds.

Unlike the FPN structure, the BiFPN module mostly treats all input features equally
compared to previous feature fusion methods [24]. However, different features have
different resolutions, and their contributions to feature fusion are unequal. The BiFPN
module adds an additional weight to each input during feature fusion, letting the network
learn the significant features of each input and achieve higher-level feature fusion. It helps
to identify and distinguish targets with similar features, which is more in line with the
requirements of this study, as shown in Figure 10.

Agronomy 2024, 14, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 10. BiFPN’s bidirectional cross-scale connections. 

2.3. Model Training and Result Analysis 
2.3.1. Model Training 

The environment for these experiments is a laptop computer with an AMD Ryzen R9 
5900HX CPU, 32 GB of memory, and an RTX3080 GPU. The operating system is Windows 
11, the CUDA version is 11.6, and the development language used is Python. 

2.3.2. Evaluation Metrics 
The value of the IoU can be understood as the degree of overlap between the pre-

dicted box generated by the system and the marked box in the original image. If the cal-
culated IoU is greater than the preset threshold, the target is considered correctly detected; 
otherwise, it is considered not correctly detected. The detection results can be classified 
into four categories: true positive (TP), false positive (FP), false negative (FN), and true 
negative (TN).  

To evaluate the impact of the improved YOLOv5s model on the experimental results, 
precision, recall, and the mean average precision (mAP) are introduced to assess the per-
formance of object detection. The superior performance in detection speed and model vol-
ume is reflected in the floating-point operations per second (FLOPs) and model size. Pre-
cision is the percentage of correctly predicted positive samples out of all predicted sam-
ples, while recall is the ratio of correctly identified objects to the total number of objects. 
The formulas are defined as follows: 

 Preicision ൌ ୘୔୘୔ା୊୔  (1)

 Recall ൌ ୘୔୘୔ା୊୒  (2)

The mean average precision (mAP) is the average of the average precision (AP) for 
each category. mAP@0.5 refers to the average precision (AP) value for all classes when the 
IoU threshold is set to 0.5. mAP@0.5:0.95 refers to the mAP value when the IoU threshold 
ranges from 0.5 to 0.95. The formulas are defined as follows: 

mAPሺ0.5ሻ ൌ ∑ ୅୔౟౟ిసభୡ   (3)

FLOPs represent the number of floating-point operations per second, used to meas-
ure the complexity of the model.  

Confidence indicates how accurate the model is in predicting the detected object. 

Figure 10. BiFPN’s bidirectional cross-scale connections.

2.3. Model Training and Result Analysis
2.3.1. Model Training

The environment for these experiments is a laptop computer with an AMD Ryzen R9
5900HX CPU, 32 GB of memory, and an RTX3080 GPU. The operating system is Windows
11, the CUDA version is 11.6, and the development language used is Python.

2.3.2. Evaluation Metrics

The value of the IoU can be understood as the degree of overlap between the predicted
box generated by the system and the marked box in the original image. If the calculated IoU
is greater than the preset threshold, the target is considered correctly detected; otherwise,
it is considered not correctly detected. The detection results can be classified into four
categories: true positive (TP), false positive (FP), false negative (FN), and true negative (TN).

To evaluate the impact of the improved YOLOv5s model on the experimental results,
precision, recall, and the mean average precision (mAP) are introduced to assess the
performance of object detection. The superior performance in detection speed and model
volume is reflected in the floating-point operations per second (FLOPs) and model size.
Precision is the percentage of correctly predicted positive samples out of all predicted
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samples, while recall is the ratio of correctly identified objects to the total number of objects.
The formulas are defined as follows:

Preicision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

The mean average precision (mAP) is the average of the average precision (AP) for
each category. mAP@0.5 refers to the average precision (AP) value for all classes when the
IoU threshold is set to 0.5. mAP@0.5:0.95 refers to the mAP value when the IoU threshold
ranges from 0.5 to 0.95. The formulas are defined as follows:

mAP(0.5) =
∑C

i=1 APi

c
(3)

FLOPs represent the number of floating-point operations per second, used to measure
the complexity of the model.

Confidence indicates how accurate the model is in predicting the detected object.
The model size is used to evaluate the storage space occupied by a trained model in a

system. The smaller the size of the algorithm model, the easier it is to deploy on mobile
platforms and apply in practical scenarios.

3. Result
3.1. Network Model Comparison

To validate the experimental results of the improved YOLOv5s model, ablation ex-
periments were conducted using metrics such as precision, recall, and mAP, and the
time-consuming aspect was compared. As shown in Table 2, “

√
” means using the cor-

responding method to improve the model, and “-” means not using the corresponding
method. Both the added GhostNet and BiFPN modules contribute to the performance of
the model. The original model exhibits relatively low precision in identifying broken and
blurry buckwheat seeds. Moreover, there is a significant disparity in recognition precision
between different categories, with a higher precision in identifying seeds without textures
but a lower recall rate.

Table 2. Experimental results of different networks.

YOLOv5s GhostNet BiFPN Precision/% Recall/% mAP@.5/% mAP@.5:.95/% Time-
Consuming

PS
√

- - 88.0 100.0 99.5 75.6

0.121 s
WL

√
- - 99.6 100.0 99.5 77.8

WLBMX
√

- - 80.9 100.0 98.5 78.3
WWL

√
- - 100.0 91.0 99.5 77.7

PS
√ √

- 98.4 99.5 99.5 75.2

0.124 s
WL

√ √
- 98.7 100.0 99.5 77.6

WLBMX
√ √

- 100.0 94.6 99.3 78.4
WWL

√ √
- 99.5 96.5 99.4 76.4

PS
√

-
√

99.0 100.0 99.5 75.0

0.136 s
WL

√
-

√
100.0 98.7 99.5 77.7

WLBMX
√

-
√

98.3 100.0 99.5 80.3
WWL

√
-

√
100.0 64.5 99.1 77.6

PS
√ √ √

99.7 100.0 99.5 75.7

0.114 s
WL

√ √ √
99.5 100.0 99.5 77.3

WLBMX
√ √ √

100.0 94.3 99.5 78.8
WWL

√ √ √
100.0 99.0 99.5 76.7
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For broken buckwheat seeds, the experimental data of the YOLOv5s+GhostNet+BiFPN
model outperform other models. It enhances the focus on broken seeds with the highest
detection precision of 99.7% and the fastest detection speed of 0.114 s per frame. Comparing
the fusion of the GhostNet and BiFPN models with the YOLOv5s model, there is an improve-
ment of 11.7% in precision. In comparison to YOLOv5s+GhostNet, there is a 1.3% increase
in precision and a 0.5% improvement in mAP@.5:.95. Compared to YOLOv5s+BiFPN, there
is a 0.7% increase in precision and a 0.7% improvement in mAP@.5:.95. These ablation
experiments demonstrate that the fusion of the GhostNet and BiFPN models enhances the
recognition ability of the model for broken Hongshan buckwheat seeds.

3.2. Lightweight Comparison

To validate the lightweightness of the models, the FLOPs and model sizes of different
models were compared, as shown in Figure 11. Compared to YOLOv5s, YOLOv5s+GhostNet
+BiFPN reduces the FLOPs by 6.8 G and decreases the model size by 5.2 MB. Compared to
YOLOv5s+BiFPN, it lowers the FLOPs by 8.1 G and decreases the model size by 7.3 MB.
As for YOLOv5s+GhostNet, the values slightly increase. The training results for all the
seed data from the three models are shown in Figure 12. The YOLOv5s+GhostNet+BiFPN
model demonstrates better precision, recall rate, and mAP compared to the other models,
meeting the requirements of lightweight models while ensuring higher detection precision
in seed detection.
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3.3. Confidence Comparison

To have a clearer view of the precision of detected objects across different classes, a
confidence relationship graph for four classes is shown in Figure 13. From the graph, it
can be observed that the YOLOv5s+GhostNet+BiFPN model has more concentrated and
denser confidence scores, performing the best among the four classes. Compared to the
original model, all three models show improvements in confidence scores. The fusion of the
Ghost module and the BiFPN module can improve the performance of identifying broken
Hongshan buckwheat seeds through mutual stacking and complementation. Therefore,
we conclude that there is interaction between the fused modules, which contributes to the
higher stability and reliability of the YOLOv5s+GhostNet+BiFPN model.
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4. Identification System

Based on the comparison and data analyses of multiple recognition models, combined
with the experimental results and theoretical knowledge of the previous sections, a broken
Hongshan buckwheat recognition system based on an improved YOLOv5s model was
designed and constructed using computer programming techniques. The system was
designed with a PyQT5 interface and required the model to be replaced with a trained
model by modifying the address of the used model before creating the interface. The
interface design includes two parts: image detection and video detection. Image detection
requires uploading photos of buckwheat seeds that have been taken and then clicking on
“Start Detection” to identify them. Video detection includes real-time camera detection
and uploaded video detection. Real-time camera detection can automatically recognize
the seeds by calling the computer’s camera, while uploaded video detection can detect
recorded seed videos. The composition and workflow of the system are shown in Figure 14.
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The interface of the recognition system is shown in Figure 15. To evaluate the detec-
tion performance of the YOLOv5s+GhostNet+BiFPN model on broken Hongshan buck-
wheat seeds, we compared the image and video detection results of the YOLOv5s and
YOLOv5s+GhostNet+BiFPN models using the validation set. The detection results are
shown in Figure 16, where Figure 16a,b represent the image and video detection results of
the YOLOv5s+GhostNet+BiFPN model, and Figure 16c,d represent the image and video
detection results of the YOLOv5s model. According to the results, it can be observed
that the YOLOv5s model has relatively lower precision and is prone to recognition errors.
On the other hand, the YOLOv5s+GhostNet+BiFPN model exhibits superior detection
capability and higher precision. Through experimental testing, we can conclude that the
core recognition algorithm model of this system, the optimized YOLOv5s model, has a
stronger advantage in identifying Hongshan buckwheat seeds.
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5. Discussion

Good seeds are crucial for crop breeding. Damaged seeds of Hongshan buckwheat
can affect the germination rate and cause uneven growth or even a seedling shortage,
thus impacting the quality of crop breeding. To address these issues, this paper proposes
the YOLOv5s+GhostNet+BiFPN model, which achieves the accurate identification of
broken Hongshan buckwheat seeds, laying a foundation for Hongshan buckwheat breeding
work. Liu et al. [25] improved the YOLOv3-tiny detection to detect broken corn on the
conveyor belt of a corn harvester, providing real-time detection for mechanized harvesting.
Xiang et al. [26] proposed the YOLOX-based YOLO POD model for the rapid and accurate
counting of soybean pods, enabling precise yield estimation. Therefore, the proposed
method in this paper can provide directions for further research:

1. The improved model can be deployed on mobile devices such as the Jetson plat-
form, enabling the automatic detection and screening of damaged seeds during Hongshan
buckwheat seed production and planting processes.

2. The YOLOv5s+GhostNet+BiFPN model can provide a research foundation for
predicting yield. By eliminating damaged seeds and analyzing the relationship between
seed quality and yield, yield prediction and analysis can be conducted.
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3. With the development trend of agricultural mechanization and automation, the
recognition system proposed in this paper can be applied to agricultural machinery such as
seeders, enabling automatic screening and automated planting.

6. Conclusions

This paper focuses on the recognition of broken Hongshan buckwheat seeds based
on an improved YOLOv5s algorithm. This algorithm effectively identifies different tex-
ture features and broken buckwheat, making it suitable for small object detection. The
YOLOv5s+Ghost+BiFPN model can quickly and accurately recognize broken Hongshan
buckwheat seeds while carrying out lightweight operations, with a precision of 99.7%, an
mAP@.5 of 99.5%, and an mAP@.5:.95 of 75.7%. The model size is 9.3 MB. Based on the
results obtained from this experiment, we can draw the following conclusions:

1. The YOLOv5s+Ghost+BiFPN model outperforms the YOLOv5s model, the
YOLOv5s+Ghost model, and the YOLOv5s+BiFPN model. This is evidenced by
the precision values, as it can better recognize broken seed features and improve the
robustness of the detection algorithm at multiple scales.

2. The YOLOv5s+BiFPN model and the YOLOv5s+Ghost model have higher detection
precision than the YOLOv5s model. Specifically, in the recognition of WLBMX, the
precision improvement of the YOLOv5s+BiFPN model and the YOLOv5s+Ghost
model is significant.

3. The YOLOv5s+BiFPN model and the YOLOv5s+Ghost model have similar recognition
precision, but the YOLOv5s+Ghost model has a smaller size, reduced by 7.7 MB, and
a decrease of 9G in FLOPs. Therefore, the YOLOv5s+Ghost model is more suitable for
lightweight requirements.

4. Through comparative verification, all three improvements contribute to the improve-
ment of the model’s performance. There is a certain degree of mutual compatibility
between the three models.

5. A Hongshan buckwheat seed recognition system was designed based on the improved
YOLOv5s model, and the results showed that the system can effectively recognize
seed features. We hope this system can provide technical support for improving the
quality and yield of Hongshan buckwheat.

The lightweight operations and high precision of the YOLOv5s+Ghost+BiFPN model
can effectively address the issue of broken seed recognition. It also provides a new
method for intelligent object recognition and promotes the modernization and intelligence
of agriculture.
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