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Abstract: With the development of multispectral imaging technology, retrieving soil heavy metal
content using multispectral remote sensing images has become possible. However, factors such as
soil pH and spectral resolution affect the accuracy of model inversion, leading to low precision. In
this study, 242 soil samples were collected from a typical area of the Pearl River Delta, and the Cu
content in the soil was detected in the laboratory. Simultaneously, Sentinel-2 remote sensing image
data were collected, and two-dimensional and three-dimensional spectral indices were established.
Constructing independent decision trees based on pH values, using the Successive Projections
Algorithm (SPA) combined with the Boruta algorithm to select the characteristic bands for soil Cu
content, and this was combined with Optuna automatic hyperparameter optimization for ensemble
learning models to establish a model for estimating Cu content in soil. The research results indicated
that in the SPA combined with the Boruta feature selection algorithm, the characteristic spectral
indices were mainly concentrated in the spectral transformation forms of TBI2 and TBI4. Full-sample
modeling lacked predictive ability, but after classifying the samples based on soil pH value, the
R2 of the RF and XGBoost models constructed with the samples with pH values between 5.85 and
7.75 was 0.54 and 0.76, respectively, with corresponding RMSE values of 22.48 and 16.12 and RPD
values of 1.51 and 2.11. This study shows that the inversion of soil Cu content under different pH
conditions exhibits significant differences, and determining the optimal pH range can effectively
improve inversion accuracy. This research provides a reference for further achieving the efficient and
accurate remote sensing of heavy metal pollution in agricultural soil.

Keywords: Sentinel-2; spectral indices; decision tree; Optuna; ensemble learning

1. Introduction

With the acceleration of industrialization, urbanization, and agricultural intensifica-
tion, the problem of soil heavy metals is becoming increasingly prominent [1]. Heavy
metal pollution mainly refers to soil contamination by heavy metals and their compounds
resulting from processes such as fertilizer use, electronic waste, pesticides, herbicides,
and industrial waste treatment. According to the nationwide soil pollution status survey
conducted by the Ministry of Ecology and Environment of the People’s Republic of China,
the excessive rate of pollution points in arable land soil in China has reached 19.4%, with
heavy metals being the main pollutants. Among them, the excessive rate of Cu pollution
points has reached 2.1%. Copper (Cu) is an essential trace element for all living organisms,
but it can become toxic if threshold concentrations maintained by evolutionarily conserved
homeostatic mechanisms are exceeded [2]. Traditional monitoring methods for soil com-
position in agricultural land are often hindered by limitations in manpower, time, and
geographical coverage, leading to inefficiency and high costs, and it is difficult to achieve
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precise monitoring on a large scale. Remote sensing technology, with its high efficiency, can
rapidly retrieve information on crops and soil composition in agricultural land, effectively
addressing the shortcomings of traditional methods and providing strong support for soil
protection efforts. Based on remote sensing images, the rapid monitoring of agricultural
land can be achieved, thereby determining the areas and levels of soil heavy metal pollution
that need remediation.

Numerous studies have applied multispectral satellite imagery to accurately retrieve
key components in various crops and soils [3], such as crop chlorophyll content [4],
biomass [5], soil salinity [6,7], organic carbon [8,9], nitrogen, phosphorus, potassium [3,10],
and other important indicators [10,11]. Soil heavy metals are trace elements with weak
spectral responses at medium to low concentrations and are readily adsorbed by organic
matter, clay minerals, and other substances [12,13]. Consequently, the characteristic signals
in the raw spectral data are often obscured, making the identification and extraction of
representative feature variables from multispectral data complex and challenging. Previous
studies have constructed spectral indices to explore more spectral information in multispec-
tral data, which can provide sensitive spectral differentiation information for the inversion
of soil heavy metals [14]. Yu [15] utilized the reflectance data of nine original bands from
Sentinel-2A to estimate the content of Pb and Cd in soil. By employing the inverse (1/Bi),
logarithmic (lnBi), and band ratio (Bi/Bj) transformation methods, along with the terrain
features and spatial characteristics of pollution sources, the accuracy of the inversion model
was significantly improved. Song [14] used principal component analysis (PCA) on the
original bands of Landsat 7 ETM+ and Landsat 8 OLI images, as well as their respective
band transformations and vegetation indices, to model and improve the spatial estimation
accuracy of soil heavy metal content. Yang [16] utilized hyperspectral-simulated Landsat 8
OLI multispectral data to calculate key indices such as the normalized difference vegetation
index (NDVI), the modified normalized difference water index (MNDWI), the difference
vegetation index (DVI), the enhanced vegetation index (EVI), and the clay mineral ratio
(CMR). Additionally, characteristic components such as greenness, brightness, and wet-
ness were considered. By combining these factors with partial least squares regression
(PLSR) modeling, the multispectral remote sensing mapping of Hg was accomplished.
Despite a significant amount of work performed on constructing spectral indices using
multispectral images for soil heavy metal inversion, the accuracy of inversion still needs
improvement [17]. Furthermore, the currently used spectral indices are mostly common
band variations or vegetation indices, and we have not comprehensively explored all
possible two-dimensional and three-dimensional spectral indices.

Soil composition is complex and significantly influenced by external conditions, mak-
ing spectral measurements prone to errors. Specifically, factors such as pH value, moisture
content, and organic matter can all significantly affect spectral reflectance [18]. Due to
the difference in soil pH value, Cu will present different physical and chemical states in
the soil [19]. In acidic soil, Cu may exist as soluble ions. In neutral or alkaline soils, Cu
is often combined with organic matter or oxide to form a more stable complex or pre-
cipitation. Soil pH indirectly affects the spectral reflectance by affecting the shape and
color of Cu-containing compounds, and thus affects the inversion results of soil heavy
metals [20–22]. In addition, soil pH strongly correlates with soil compaction, soil moisture,
vegetation growth status, etc. Soil pH indirectly affects spectral reflectance, influencing
soil heavy metal inversion results. As the alkalinity of the soil increases, the intensity of
soil compaction increases, the soil surface becomes smoother, the brightness of the color
also increases, and the reflectance of the soil changes accordingly [20]. Meanwhile, there
is a significant negative correlation between soil moisture and pH value [23]. When the
pH value decreases, the net charge of the soil increases, weakening the cohesion strength
between soil particles, leading to soil structure loosening, and causing changes in soil
reflectance. Furthermore, the nutritional growth and yield of most crops decrease signifi-
cantly under lower pH conditions, while they tend to increase as the pH approaches the
optimal level. Many crops exhibit optimal growth over a near-neutral pH range, while a
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few crops thrive better in either acidic or alkaline soils [24]. Factors such as soil pH can
obscure or alter the absorption characteristics of soil heavy metals in the spectra, thereby
reducing the predictive accuracy of models. Previous studies typically focused only on
the impact of soil moisture, employing linear methods such as Direct Standardization
(DS), Piecewise Direct Standardization (PDS), and External Parameter Orthogonalization
(EPO) to calibrate original soil samples using dried soil samples. This approach aims to
eliminate or mitigate the effects of soil moisture on spectral reflectance [25,26]. However,
when inverting large-scale soil heavy metal content, there are significant differences in
the physicochemical properties of soil samples. Linear correction algorithms alone are
insufficient to completely eliminate the impacts of physicochemical properties on spectral
reflectance, leading to distortions in the inversion models. Even without considering the
possibility of complete correction, it remains very difficult to correct the spectral reflectance
of samples from one pH range to another specific pH range. This is due to the inability to
determine the exact range where the spectral reflectance is least affected by pH, and the
process of calibrating the samples’ pH to a specific range is complex and cumbersome.

The aim of this study was to explore the feasibility of using multispectral data to
invert the Cu content in soil. Focusing on the typical regions of the Pearl River Delta,
Sentinel-2 multispectral data were used to construct common two-dimensional and three-
dimensional spectral indices to extract more spectral information from the multispectral
data and to investigate the optimal spectral transformation forms. A decision tree based
on pH value was constructed to divide the samples and determine the optimal pH range
for soil Cu content inversion, thereby enhancing the sensitivity of spectral indices to
soil heavy metal Cu content. Meanwhile, Optuna was used to evaluate the impact of
various hyperparameters on the RMSE loss function, and combined with ensemble learning
algorithms, a high-precision inversion model for soil Cu content was established.

2. Materials and Methods

In this study, we developed a model based on Sentinel-2A imagery for the high-
precision inversion of Cu content in soil. The workflow is shown in Figure 1. The study
consisted of four main steps. (1) Data acquisition and pre-processing: In the laboratory, the
heavy metal content of collected soil samples was measured, and the spectral reflectance
of each soil sample in each band was extracted from the multispectral images. To amplify
the effect of heavy metals on soil spectral reflectance characteristics, two-dimensional and
three-dimensional spectral indices were constructed from the original bands. (2) Soil sample
classification and feature selection: Using pH value as the branching criterion, a decision
tree was constructed to classify the samples. Then, the Successive Projections Algorithm
(SPA) combined with the Boruta algorithm was used to extract the characteristic variables of
Cu from each sample set. (3) Cu content estimation model building: The bagging-strategy-
based Random Forest (RF) and the boosting-strategy-based Extreme Gradient Boosting
(XGBoost) models were constructed to estimate Cu content. (4) Comparison of inversion
accuracy: The model’s inversion accuracy was evaluated using three precision indicators:
R2, RMSE, and RPD.

2.1. Study Area

The study area, encompassing 3330 square kilometers, is located in the western wing
of the Pearl River Delta Greater Bay Area, with geographical coordinates ranging from
113◦ 6′ 10′′ to 114◦ 19′ 9′′ E and 21◦ 50′ 13.3′′ to 22◦ 46′ 34.26′′ N, as shown in Figure 2. The
terrain of this area is flat, with a dense river network, and an average elevation of 19 m. The
area has a subtropical monsoon climate, with a mild climate and abundant rainfall, and a
maritime climate moderates it [27]. The annual average temperature is about 23 ◦C, the
annual average precipitation reaches 122 mm, and the average wind speed is 16 km/h. Red
soil is the main soil type in this area, typically acidic, which results in some heavy metals
existing in ionic form [28]. At the same concentration, heavy metals in acidic soils pose a
higher potential risk of environmental pollution than in alkaline soils.



Agronomy 2024, 14, 2182 4 of 19
Agronomy 2024, 14, x FOR PEER REVIEW 4 of 20 
 

 

 

 

Figure 1. The flowchart of study. 

2.1. Study Area 
The study area, encompassing 3330 square kilometers, is located in the western wing 

of the Pearl River Delta Greater Bay Area, with geographical coordinates ranging from 
113° 6′ 10″ to 114° 19′ 9″ E and 21° 50′ 13.3″ to 22° 46′ 34.26″ N, as shown in Figure 2. The 
terrain of this area is flat, with a dense river network, and an average elevation of 19 m. 
The area has a subtropical monsoon climate, with a mild climate and abundant rainfall, 
and a maritime climate moderates it [27]. The annual average temperature is about 23 °C, 
the annual average precipitation reaches 122 mm, and the average wind speed is 16 km/h. 
Red soil is the main soil type in this area, typically acidic, which results in some heavy 
metals existing in ionic form [28]. At the same concentration, heavy metals in acidic soils 
pose a higher potential risk of environmental pollution than in alkaline soils. 

 

Figure 1. The flowchart of study.

Agronomy 2024, 14, x FOR PEER REVIEW 4 of 20 
 

 

 

 

Figure 1. The flowchart of study. 

2.1. Study Area 
The study area, encompassing 3330 square kilometers, is located in the western wing 

of the Pearl River Delta Greater Bay Area, with geographical coordinates ranging from 
113° 6′ 10″ to 114° 19′ 9″ E and 21° 50′ 13.3″ to 22° 46′ 34.26″ N, as shown in Figure 2. The 
terrain of this area is flat, with a dense river network, and an average elevation of 19 m. 
The area has a subtropical monsoon climate, with a mild climate and abundant rainfall, 
and a maritime climate moderates it [27]. The annual average temperature is about 23 °C, 
the annual average precipitation reaches 122 mm, and the average wind speed is 16 km/h. 
Red soil is the main soil type in this area, typically acidic, which results in some heavy 
metals existing in ionic form [28]. At the same concentration, heavy metals in acidic soils 
pose a higher potential risk of environmental pollution than in alkaline soils. 

 
Figure 2. General situation of the research region and distribution of sampling points.

2.2. Soil Sample Collection and Laboratory Analysis

To ensure the scientific rigor and effectiveness of the investigation, we adopted a series
of strict screening criteria when selecting the survey subjects:

• The enterprise’s land area should generally not be less than 7000 square meters;
• The main production facilities and the three-waste treatment facilities should generally

not be located on the second floor or above;
• No soil-pollution-related enterprises should exist within a 500 m radius of the enterprise;
• Agricultural land should be present within a 3 km radius of the enterprise;
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• The enterprise must have been in operation at its current location for at least five years;
• There should be no history of other soil-polluting enterprises at the enterprise’s location;
• The number of other enterprises around the location should be relatively small.

Based on these criteria, we ultimately selected 20 typical soil pollution enterprises
and collected soil samples from the farmland surrounding these enterprises. Additionally,
considering factors such as farmland layout, topography, and road accessibility, a total of
242 sampling points were comprehensively selected, as shown in Figure 2. The study area’s
surface soil samples were collected from 15 June 2022 to 20 July 2022. This study employed a
five-point sampling method, wherein five independent surface soil samples (0–20 cm) were
collected at each sampling point and then mixed for preparation. Additionally, we utilized
real-time kinematic (RTK) technology to record the latitude and longitude coordinates of
the sampling center point.

After removing impurities such as plant residues and stones from the soil samples, they
were placed in a thermostatic, electric-heating hot-air-drying oven for drying. Subsequently,
the soil samples were ground using an agate mortar and sieved through a 200-mesh soil
sieve. In the laboratory, we utilized the flame atomic absorption spectrophotometry method
specified in Standard of the Ministry of Ecology and Environment of the People’s Republic
of China to determine the content of Cu in the soil samples [29]. Additionally, we employed
the potentiometry method stipulated in another standard of the same department to
measure the pH value of the soil [30].

2.3. Multispectral Data Acquisition and Pre-Processing

Although most existing studies primarily use images from the bare soil period as the
ideal window for effectively predicting soil properties at a regional scale [31–33], obtaining
images during the optimal bare soil window can be challenging, particularly in regions
like southern China, where the bare soil period is short and the environment is cloudy and
rainy [34]. Given these limitations, an increasing number of researchers have begun directly
using remote sensing images to generate vegetation variables for soil mapping [35]. The
close relationship between pollutant concentrations and plant growth variables, along with
their spectral responses, allows for the detection and quantification of plant stress induced
by heavy metals [13,36]. Therefore, this enhances the effectiveness of using satellite images
for digital soil mapping in areas with minimal environmental gradients.

This study utilized Sentinel-2 Level-2A remote sensing imagery, downloaded through
the Google Earth Engine (GEE) cloud platform. By defining a cloud and cirrus masking
function within the Sentinel-2 images and using the QA60 band, which contains image
quality assessment information, we selected an image collection between 1 April 2022
and 30 July 2022, with cloud cover below 5%. After filtering and masking, the image
collection was averaged. This period corresponds to the growth stage of early rice from
sowing to harvesting in the Zhuhai and Zhongshan regions. Although there may be some
phenological differences in vegetation across different sampling points, the rice crops
were generally at similar growth stages. Table 1 shows the spatial resolution and spectral
range characteristics of the Sentinel-2 satellite’s Multispectral Instrument (MSI). In this
study, we used Sen2Cor-processed Level-2A products, which underwent atmospheric
and orthorectification corrections to obtain surface reflectance data. To meet the research
requirements, we used cubic convolution interpolation on the GEE platform to resample
the Level-2A data’s B1 and B5 to B12 bands at a 10 m resolution. This process helped ensure
data consistency and accuracy, providing a more precise basis for exploring soil heavy
metal characteristics in subsequent analyses.
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Table 1. Sentinel-2 Level-2A MSI sensor parameters.

Band ID Description Spatial Resolution (m) Wavelength (µm)

B1 Coastal Aerosol 60 0.433–0.453
B2 Blue 10 0.457–0.522
B3 Green 10 0.542–0.577
B4 Red 10 0.650–0.680
B5 Red edge 1 20 0.697–0.712
B6 Red edge 2 20 0.732–0.747
B7 Red edge 3 20 0.733–0.793
B8 NIR 1 10 0.784–0.899

B8A NIR 2 20 0.855–0.875
B9 Water vapor 60 0.935–0.955

B11 SWIR 1 20 1.565–1.655
B12 SWIR 2 20 2.100–2.280

NIR: near-infrared; SWIR: shortwave infrared.

2.4. Construction of Spectral Indices in Two Dimensions (2D) and Three Dimensions (3D)

To mitigate the limitations of fewer multispectral bands and larger spectral intervals,
spectral indices are constructed to extract more spectral information from multispectral
data. According to previous studies, using spectral indices to invert farmland soil heavy
metal content can yield better results [37]. Among these, 2D spectral indices utilize two
spectral dimensions, focusing on the relationship between two specific bands, while three-
dimensional (3D) spectral indices incorporate information from three spectral bands or
wavelengths, providing a more complex and potentially more informative representation
of spectral characteristics.

The selection of spectral indices is crucial for accurately reflecting soil heavy metal
content, given that each spectral index is based on specific local environmental condi-
tions [38]. Therefore, in this study, commonly used two-dimensional spectral index forms
were selected, including difference indices (DIs), ratio indices (RIs), and normalized differ-
ence indices (NDIs). Reference was also made to the common three-dimensional spectral
index forms proposed by Wang [17] and Cao [39] in the literature. By iterating through
all possible spectral indices, the aim was to find the most suitable spectral index form for
the study area. Table 2 details all the spectral index forms iterated in this study and their
calculation formulas.

Table 2. Spectral index formulas in 2D and 3D.

Spectral indices Description Formula

Spectral indices in two
dimensions (2D)

Difference Indices DI(Ri, Rj) = Ri − Rj (1)
Ratio Indices RI(Ri, Rj) = Ri

Rj (2)

Normalized Differential Indices NDI(Ri, Rj) = Ri−Rj
Ri+Rj (3)

Spectral indices in three
dimensions (3D)

TBI1 TBI1 =
Ri−Rj
Rj+Rk

(4)

TBI2 TBI2 =
Ri−Rj

Rk
(5)

TBI3 TBI3 = (Ri − Rj)− (Rj − Rk) (6)
TBI4 TBI4 = Ri

Rj∗Rk (7)

TBI5 TBI5 =
Ri−Rj

[(Ri−Rj)−(Rj−Rk)]
(8)

TBIZ represents the spectral Indices of the Z-th transformation form, where Z = 1, 2, . . ., 5. Ri, Rj, and Rk are the
reflectances of any three bands selected from all bands of the Sentinel-2 satellite.

2.5. Optimal Inversion Ranges for pH and Soil Sample Classification

Previous studies have shown that soil pH indirectly affects spectral reflectance, thereby
affecting the accuracy of estimating heavy metal concentrations in the soil. In practical
situations, there is no direct relationship between soil pH and heavy metal concentrations
in the soil. Therefore, it is difficult to use it as a covariate to construct an inversion model
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for Cu content in soil. In this regard, this study achieved the classification of soil samples by
constructing a decision tree with the pH value as the branching criterion and determining
the optimal pH range for the inversion of soil Cu content, thereby improving the accuracy
of the inversion model.

In this study, soil samples were divided into different intervals based on pH values.
All soil samples were divided into three datasets, with samples classified into the pH
intervals of [pHmin, pH1), [pH1, pH2), and [pH2, pHmax]. Here, pHmin represents the
minimum pH value observed in the soil samples, while pHmax represents the maximum
pH value observed. Based on the above division, a decision tree was constructed, and the
samples were assigned to different branches according to the division of each node. This
process was repeated step by step until the number of samples in each branch was not less
than 70. The threshold combinations for the pH value decision tree are shown in Table 3,
according to the actual division of soil samples.

Table 3. Threshold combination of pH decision tree.

pH1 pH2 pH1 pH2

5.85 7.75~8.05 6.35 7.90~8.05
5.95 7.80~8.05 6.45 7.90~8.05
6.05 7.85~8.05 6.55 7.95~8.05
6.15 7.90~8.05 6.65 8.00~8.05
6.25 7.90~8.05 6.75 8.05

When selecting the optimal pH value decision tree for the inversion of Cu content,
this study used the correlation coefficient of the pH decision tree (Rph) as a key evaluation
index to accurately measure the effectiveness of decision tree construction [40]. When this
evaluation index reached its maximum value, the corresponding pH value decision tree
was recognized as the best decision tree. The specific calculation method for Rph is detailed
in Equation (9).

Rph =
3

∑
n=1

max
∣∣Rn

(
Bi, Sph

)∣∣ (9)

In this equation, Bi represents the spectral reflectance of the i-th band of the Sentinel-2
satellite; Sph represents the soil Cu content (mg/kg) at the specified pH value; and Rn
represents the correlation coefficient between the spectral reflectance of the i-th band of the
Sentinel-2 satellite within the nth branch and the soil Cu content at the specified pH value.

2.6. Spectral Feature Selection

Utilizing the raw bands of Sentinel-2, a substantial amount of two-dimensional and
three-dimensional spectral index data have been generated, characterized by considerable
redundancy and complex combinations. In the model construction process, redundant
and interfering variables can impact the accuracy and precision of Cu content inversion,
thereby necessitating variable selection. In this investigation, the Successive Projections
Algorithm (SPA) combined with the Boruta algorithm was employed for feature selection.

2.6.1. Successive Projections Algorithm (SPA)

The SPA is an algorithm used for feature selection. It achieves dimensionality reduction
by gradually selecting the most relevant spectral bands to construct a subset [41]. The
specific algorithm steps are as follows: The spectral reflectance matrix is X, with m columns,
and the initial iteration vector is Xk(0). The number of selected spectral bands is N.

1. A column in matrix X is arbitrarily selected, denoted as the i-th column, and assigned
to Xi, denoted as Xk(0).

2. The set of positions of the remaining column vectors is denoted as S, where i represents
the indices of all potential features, and k is the indices of the already selected features.
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S = {i, 1 ≤ i ≤ m, i /∈ (k(0 ), . . . , k(N − 1)} (10)

3. The projection of the currently selected variable Xk(N−1) onto the column vectors Xi of
the remaining original spectral data is calculated:

PXi = Xi −
(

XT
i Xk(N−1)

)
Xk(N−1)

(
XT

k(N−1)Xk(N−1)

)−1
, i ∈ S (11)

4. The maximum projection is determined.

k(n) = arg(max(∥PXi∥)), i ∈ S (12)

5. The maximum projection vector is used as the projection vector for the next iteration.

Xi = PXi, i ∈ S (13)

6. For n = n + 1, if n < N, then step (2) is repeated. Finally, the extracted variables are{
Xk(n); n = 0, . . . , N − 1

}
2.6.2. Boruta

The Boruta algorithm is a feature selection method based on Random Forest (RF). Its
core principle involves identifying truly important features from a given set and eliminating
redundant ones [42,43]. The specific algorithm steps are as follows:

1. Perform multiple bootstrap resampling iterations on the original dataset, where the
original data are randomly replaced by a series of shadow features, creating a Random
Forest model for each resampled dataset.

2. The Boruta algorithm introduces shadow features, which are generated by shuffling
the order of the original features, adding noise, and randomizing them. These shadow
features are used to simulate randomly selected features and are compared with the
original features.

3. The importance scores of each original feature and its corresponding shadow features
are computed and compared. A feature is considered important if its importance
score is significantly higher than that of its shadow feature; otherwise, it is marked
as unimportant.

4. The Boruta algorithm iteratively repeats the steps of calculating feature importance and
comparison until all features are definitively classified as important or unimportant.

5. After several iterations, the original features that consistently show significantly higher
importance than their corresponding shadow features are selected as important. These
features are retained, while those deemed unimportant are removed.

2.7. Ensemble Learning

The core idea of ensemble learning is to improve overall prediction performance by
combining the predictions of multiple base learners. Numerous previous studies have
shown that ensemble models typically have higher accuracy than single models [44].
Among them, bagging and boosting are two common ensemble strategies. Bagging con-
structs multiple base regression models through bootstrap sampling and averages or votes
on their predictions to reduce model variance and improve prediction stability. This
method helps to reduce the risk of overfitting that a single model may produce. Boosting
is a method that reduces bias in supervised learning. It trains a series of weak regression
models and combines them into a strong regression model based on the prediction errors
of each model. Boosting gradually focuses on the samples that the previous models failed
to predict correctly, thus continuously improving prediction performance.

This study employed ensemble learning algorithms to construct a remote sensing
inversion model for Cu content and selects the optimal prediction model. Two typical
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decision-tree-based ensemble learning algorithms were chosen, including Random Forest
(RF) using the bagging strategy and Extreme Gradient Boosting (XGBoost) using the
boosting strategy.

2.7.1. Random Forest (RF)

RF is an ensemble learning method based on decision trees, which improves prediction
accuracy and stability by constructing multiple decision trees and summarizing their
prediction results. The core idea of RF [45] is to use the bagging ensemble strategy, which
constructs multiple different decision trees by bootstrapping the training data and randomly
selects a subset of features to consider during the node splitting process of each decision
tree, thereby increasing the diversity and generalization ability of the model.

2.7.2. Extreme Gradient Boosting (XGBoost)

XGBoost is a machine learning algorithm based on the gradient boosting decision tree
(GBDT), characterized by its efficiency, flexibility, and portability. Based on the boosting
integration strategy [46], XGBoost introduces a series of optimization measures to improve
the performance and efficiency of the model. The core idea of XGBoost is to construct a
series of weak learners and gradually correct previous prediction errors to approximate the
true objective function. In each iteration, XGBoost calculates the residuals of the current
model and trains a new decision tree based on these residuals. The new decision tree
focuses on optimizing the samples that the previous model failed to predict correctly, thus
gradually reducing prediction errors.

2.8. Optuna-Based Parameter Tuning Framework

Optuna (v3.5) [47] is an automatic hyperparameter optimization software framework,
particularly designed for machine learning. It automates the search for optimal hyper-
parameters, making it easier to fine-tune models. Optuna can accurately identify which
hyperparameters have the most significant impact on the objective function, so it can
serve as a guide for focusing on which hyperparameters should be analyzed further to
achieve further optimization. Compared with a grid search, this algorithm adopts sampling
and pruning strategies to select optimal hyperparameters, achieving an efficient search.
Although the runtime of a grid search may be shorter than that of Optuna, manually
constructing hundreds of grid search experiments is time-consuming. Meanwhile, Optuna
automatically selects the next set of hyperparameters for testing, eliminating the need for
manual intervention. More details about the aforementioned parameters as well as other
parameters in the “Optuna” package are described in the official documentation for Optuna
(https://optuna.readthedocs.io/en/latest/index.html, accessed on 15 June 2024).

This study combined the Optuna framework with the XGBoost and RF algorithms,
aiming to invert the concentration of Cu content in the soil through the following steps:
(1) An objective function was defined to evaluate the performance of the model and return
the corresponding evaluation metrics. In this function, we explicitly defined the search
space for hyperparameters. (2) When conducting individual experiments, we trained a
regression model (including XGBoost and RF) using a calibration dataset, and then we made
predictions using a validation dataset and calculated the root mean square error (RMSE) to
assess prediction accuracy. (3) By conducting multiple experiments, the optimal parameter
configuration of the model was determined based on the value of the loss function. In this
study, the XGBoost algorithm required the adjustment of nine key parameters, as shown in
Table 4. Meanwhile, the RF algorithm adjusted only one parameter, which was the number
of trees (n_estimators). Due to the relatively small number of samples and features used in
this study, the other parameters were set to default values.

https://optuna.readthedocs.io/en/latest/index.html
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Table 4. The range of values for XGBoost hyperparameters.

Parameter Recommended Range Data Type

num_boost_round [500, 2000] int
eta [0.01, 0.3] float

max_depth [3, 10] int
subsample [0.5, 1] float

colsample_bytree [0.5, 1] float
gamma [0, 1] float

min_child_weight [1, 10] float
rel_lambda [0, 1] float

alpha [0, 1] float

2.9. Evaluation Indicators

Three accuracy indicators were utilized to evaluate the accuracy of the regression
models for soil Cu content: R2, RMSE, and RPD. Generally, a proficient model demonstrates
high values for R2 and RPD and low scores for RMSE [48]. Each indicator is computed
as follows:

R2 = 1 − ∑n
i=1

(
yi − ŷi)

2

∑n
i=1(yi − yi)

2 (14)

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (15)

RPD =
SD

RMSE
=

√
∑n

i=1(yi − yi)
2

∑n
i=1(yi − ŷi)

2 (16)

In these equations, n represents the number of soil samples; yi and ŷi denote the
measured value and estimated heavy metal concentration of the i-th soil sample in the
validation dataset, respectively; and yi represents the average heavy metal concentration.

3. Results
3.1. Descriptive Statistics of the Heavy Metal Content

The basic statistical characteristics of Cu content in 242 collected soil samples are
shown in Table 5. The minimum Cu content in the soil is 3 mg/kg, the maximum is
271 mg/kg, the standard deviation is 29.7 mg/kg, and the coefficient of variation is 87.6%.
The high coefficient of variation indicates a large degree of dispersion in soil Cu content in
the samples. Meanwhile, the average Cu content in the soil in the study area is 33.9 mg/kg,
significantly higher than the background values of surface soil in Guangdong Province
and China, and three times that of the surface soil background value in Guangdong
Province [49].

Table 5. Statistical description of Cu concentration for soil samples collected.

Metal Number Minimum Maximum Mean Standard
Deviation

Coefficient of
Variation (%)

Guangdong Soil
Background

Value

Chinese Soil
Background

Value

Cu 242 3 271 33.9 29.7 87.6 11.2 20

3.2. Analysis of the Impact of Environmental Variables on the Spectrum

The overall samples of the study area were divided into four intervals based on the
pH value, and the mean spectral reflectance of each type of soil was calculated to obtain
the average spectral reflectance of the soil under different pH conditions, as shown in
Figure 3. Although the spectral reflectance curves of soil under different pH conditions are
different, the transformation trends are relatively similar. A distinct absorption valley can
be observed in the red band range of the visible light spectrum. The spectral reflectance
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gradually increases with wavelength in the range from B1 to B8A, but gradually decreases
after B8A. It is noteworthy that the reflectance significantly increases with the rise in soil pH
in the B1 to B6 and B11 to B12 bands. However, there is a clear negative correlation between
reflectance and soil pH in the B6 to B9 bands. Soils with different alkalinity levels exhibit
high distinguishability in the spectrum, demonstrating that alkaline soils have unique and
distinct spectral response characteristics in each band of the Sentinel-2 satellite.
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3.3. Determining the Optimal Decision Tree

By constructing a soil pH decision tree to determine the category of each soil sample,
the sensitivity of spectral reflectance to soil Cu content is enhanced. The construction
results, shown in Figure 4, indicate that when pH1 and pH2 are 5.85 and 7.75, respectively,
the Rph values of all bands reach their maximum, identifying the optimal pH decision tree.
Furthermore, according to the classification results, the pH ranges for the soil samples in
the three different categories are [3.63, 5.85), [5.85, 7.75), and [7.75, 9.25], respectively.

3.4. Spectral Feature Extraction

The experiment utilized Sentinel-2 original bands and their varying spectral indices in
two and three dimensions, obtaining 7008 feature variables. During the variable selection
process, we initially used the SPA to select the top 100 most important bands, thereby
reducing the number of features and lowering collinearity among them. Subsequently,
we applied the Boruta algorithm to further refine these 100 bands. The Boruta algorithm
generates a set of shadow features by shuffling the values of the original features, rendering
them irrelevant. These original and shadow features are then combined to train the RF
model, allowing for the calculation of importance for each feature. This method not only
comprehensively considers all features that significantly impact the prediction target but
also effectively identifies important features in the variable selection process, rather than
merely finding an optimal subset.
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Table 6 shows the results of the feature band selection conducted both with and
without considering the decision tree. It is noteworthy that, in all cases, no variations in the
two-dimensional spectral indices are selected. This may be because the predictive ability of
the two-dimensional spectral indices is inferior to that of the three-dimensional spectral
indices. Additionally, the selected feature bands mainly focus on the TBI2 and TBI4 of the
three-dimensional spectral indices, indicating that variations in these indices have a high
correlation with and provide more information for the inversion of soil heavy metal Cu.



Agronomy 2024, 14, 2182 13 of 19

Table 6. Comparison of feature band selection results under different branching conditions.

Branch Criteria / pH

Content range Full [3.63, 5.85) [5.85, 7.75) [7.75, 9.25]

Feature Bands

B1 B1 TBI2_B2_B8_B7 TBI2_B8_B2_B1
TBI4_B8_B7_B6 TBI4_B2_B12_B10 TBI2_B4_B8_B7 TBI4_B9_B11_B2
TBI2_B9_B2_B1 TBI2_B9_B3_B4 TBI2_B12_B7_B8 TBI4_B1_B11_B8

TBI2_B2_B10_B11 TBI4_B5_B11_B9 TBI4_B4_B6_B10 TBI4_B12_B6_B11
TBI2_B11_B8_B7 TBI4_B4_B12_B6 TBI4_B7_B11_B2 TBI4_B6_B7_B8
TBI4_B9_B11_B2 TBI4_B10_B12_B2 TBI4_B4_B12_B6 TBI2_B10_B1_B4
TBI4_B4_B12_B6 TBI4_B6_B12_B2 TBI4_B10_B6_B11 TBI2_B10_B2_B1
TBI4_B4_B6_B10 TBI4_B5_B11_B8 TBI2_B10_B1_B2
TBI2_B3_B8_B7 TBI4_B11_B12_B4

TBI4_B12_B11_B8 TBI2_B10_B7_B8
TBI4_B2_B11_B9 TBI2_B10_B8_B7

3.5. Importance Analysis of Hyperparameters

In this study, various scenarios were experimented with using the Optuna automatic
hyperparameter optimization algorithm, and the corresponding optimization results were
recorded, as shown in Table 7. The Optuna algorithm evaluates the influence of each hyper-
parameter on the RMSE loss function. In Figure 5, the influence of each hyperparameter
in the XGBoost model on the RMSE loss function is demonstrated without constructing a
decision tree and over different pH ranges. The results show that, under any condition, the
three hyperparameters “min_child_weight”, “eta”, and “subsample” are always the most
important. Therefore, adjusting these three hyperparameters is crucial for improving the
predictive performance of Cu content in soil.

Table 7. Optimization results of hyperparameters under different conditions.

Branch
Criteria

Content
Range

RF XGBoost

A B C D E F G H I J

/ Full 74 0.015683 9 0.715672 0.680002 5.450774 0.017943 1900 0.165201 0.119072

pH
pH < 5.85 290 0.149107 6 0.953130 0.884508 7.275414 0.010593 988 0.416995 0.268549

5.85 ≤ pH < 7.75 805 0.978662 8 0.568985 0.984669 9.918633 0.260176 1585 0.190610 0.131338
pH ≥ 7.75 983 0.042852 3 0.813619 0.742660 7.182743 0.231286 1376 0.054283 0.796611

A: n_estimators; B: gamma; C: max_depth; D: subsample; E: colsample_bytree; F: min_child_weight; G: eta; H:
num_boost_round; I: alpha; J: rel_lambda.

In the XGBoost model, adjusting the “min_child_weight” parameter is a key factor
in balancing model complexity and generalization ability. This parameter specifies the
minimum sum of sample weights in a leaf node, controlling the growth of the tree. The “eta”
parameter adjusts the learning rate for each tree during each iteration, thereby influencing
the convergence speed and robustness of the model. The “subsample” parameter is used to
control the sampling ratio of training samples for each tree. By setting the “subsample” pa-
rameter, the model can randomly select a portion of the training data in each training round,
which helps the model to avoid relying too heavily on specific samples, thereby improving
the robustness and performance of the model. Through the Optuna automatic hyperparam-
eter optimization algorithm, we can gain insight into which hyperparameters have a more
significant impact on the model’s performance, and thus achieve further optimization.
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3.6. Comparison of Inversion Accuracy

In order to compare the accuracy of the RF model based on the bagging strategy
and the XGBoost model based on the boosting strategy in the inversion of heavy metal
Cu content, the performance of the models was comprehensively evaluated using the
R2, RMSE, and RPD indicators. Table 8 presents the evaluation results of soil Cu content
inversion without constructing decision trees and under different soil pH conditions. When
a decision tree was not constructed, the inversion of Cu content in the soil basically lacked
predictive ability. When considering a decision tree, as shown in Figure 6, when the soil pH
value is between 5.85 and 7.75, the R2 of the RF model in the validation set is 0.54, and that
of the XGBoost model is 0.76, the corresponding RMSEs are 22.48 and 16.12, and the RPDs
are 1.51 and 2.11, respectively. In contrast, the XGBoost model performed better under
the same conditions. The R2 and RPD of the XGBoost model increased by 0.22 and 0.6,
respectively, while the RMSE value decreased by 6.36. This result indicates that when the
soil pH value is between 5.85 and 7.75, the XGBoost model can exhibit higher prediction
accuracy compared to the RF model. The XGBoost model exhibited excellent performance
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in this range, indicating that decision trees can effectively enhance the sensitivity of spectral
indices to soil Cu content, thereby significantly improving inversion accuracy. Additionally,
when the pH is below 5.85, the R2 values for the RF and XGBoost models are -0.44 and 0.2,
respectively. When the pH is above 7.75, the R2 values are 0.43 and 0.5, respectively. This
indicates that within these pH ranges, the relationship between spectral reflectance and
soil Cu content is weak or even misleading, which in turn affects the accuracy of predicting
soil Cu content.

Table 8. Evaluation of inversion results of soil Cu content at different soil pH values.

Regression
Methods

Soil pH
Calibration Dataset Validation Dataset

R2 RMSE RPD R2 RMSE RPD

RF

Full 0.63 20.17 1.65 0.17 15.65 1.10
pH < 5.85 0.89 7.38 3.03 −0.44 18.45 0.85

5.85 ≤ pH < 7.75 0.87 12.95 2.75 0.54 22.48 1.51
pH ≥ 7.75 0.61 21.36 1.61 0.43 13.84 1.35

XGBoost

Full 0.40 25.72 1.30 0.33 14.04 1.23
pH < 5.85 0.17 20.18 1.11 0.20 13.71 1.15

5.85 ≤ pH < 7.75 0.70 19.38 1.84 0.76 16.12 2.11
pH ≥ 7.75 0.58 22.05 1.56 0.50 12.92 1.44
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Overall, the accurate evaluation of decision trees constructed based on pH as a branch-
ing criterion revealed that the feasibility and reliability of using Sentinel-2 satellite multi-
spectral images to retrieve soil Cu concentrations are acceptable.

To validate the effectiveness of the model, white noise data were randomly generated
and combined with actual Cu content to train and evaluate the model. Specifically, white
noise data with the same dimensions as the original data (7008 features, 242 samples) were
generated as independent variables. Feature variables were selected using a combined
method of the SPA and the Boruta algorithm. The optimal RMSE loss function was de-
termined through Optuna automatic hyperparameter optimization, and the same RF and
XGBoost regression models were used for training. As shown in Table 9, the performance of
the model on white noise data is significantly lower than its performance on real data, with
all R2 values being negative. This indicates that the model can identify and utilize valid
information in real data, rather than relying on random noise. The features selected by the
SPA and the Boruta algorithm did not improve the model performance on white noise data,
further validating the importance and effectiveness of these features in real data.
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Table 9. Evaluation of Soil Cu Content Inversion Results on White Noise Data and Real Data.

Data Type Soil pH Regression Methods
Calibration Dataset Validation Dataset

R2 RMSE RPD R2 RMSE RPD

Real data Optimal
branch

RF 0.87 12.95 2.75 0.54 22.48 1.51
XGBoost 0.70 19.38 1.84 0.76 16.12 2.11

White noise data /
RF 0.84 13.54 2.47 −0.25 19.39 0.90

XGBoost 0.40 25.88 1.29 −0.15 18.61 0.94

4. Discussion
4.1. Exploring the Potential of Sentinel-2 MSI in Soil Heavy Metal Retrieval

The limitations of multispectral data may result in the inversion accuracy of heavy
metals based on Sentinel-2 being lower than that of hyperspectral data. However, by com-
bining two-dimensional and three-dimensional spectral indices, it is possible to partially
compensate for the limitations of the multispectral data’s band range. This enhances the
accuracy of heavy metal inversion by integrating multiple bands and effectively addressing
the nonlinear relationships between spectral characteristics and soil heavy metal content. In
this study, a decision tree with pH values as the branching criterion was constructed, signifi-
cantly improving the inversion capacity for Cu content in the soil. Without the decision tree
model, the predictive ability for Cu content in soil was weak; however, after introducing
the decision tree, the inversion accuracy was greatly enhanced when pH values ranged
between 5.85 and 7.75. Outside of this range, the relationship between spectral reflectance
and soil Cu content became weak or even misleading, further affecting the accuracy of
Cu content prediction. Additionally, while many studies incorporate geographical factors
when using multispectral data for soil heavy metal inversion [15,17], this study achieved
good inversion results solely by utilizing multispectral data and constructing a decision
tree. Therefore, the use of Sentinel-2 and even other multispectral data holds great potential
for estimating heavy metal content in regional soil surfaces.

4.2. Research Limitations and Future Work

This study determined the optimal pH range for the inversion of soil Cu content by
constructing a decision tree based on pH as the branching criterion, thereby enhancing
the sensitivity of spectral indices to the Cu content of soil within this range. However,
only 242 sampling points were collected in this study, so the obtained optimal pH range
may lack representativeness. In future research, it is recommended to increase the number
of sampling points to improve the universality of the experimental results. Furthermore,
future research could not only classify based on pH values but also explore constructing
decision trees using moisture content or soil depth as classification criteria to further
optimize the inversion model for estimating heavy metal content. To address inconsistencies
between moisture content in remote sensing images and ground truth measurements, the
tasseled cap transformation can be used to extract the wetness component, which can
then serve as a branching criterion. The relationship between soil Cu content and spectral
reflectance varies significantly across different soil depths, and this variation is associated
with the Normalized Difference Vegetation Index (NDVI). By constructing decision trees
with the NDVI as the branching criterion, the optimal depth for Cu content inversion can
be determined. Additionally, future research could consider multispectral data fusion
methods, such as combining data from Landsat 8 OLI and Sentinel-2 MSI for soil heavy
metal inversion studies. This approach is expected to improve the accuracy and reliability
of inversion models.

5. Conclusions

In response to the issue of low accuracy in the multispectral inversion of soil heavy
metals, this study employed Sentinel-2 multispectral data to construct two-dimensional
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and three-dimensional spectral indices. Using soil pH values as a branching criterion,
decision trees were built to classify sample categories, enhancing the sensitivity of spectral
indices to soil heavy metal Cu content. Based on this, this study utilized the SPA combined
with the Boruta algorithm to select the characteristic bands of each branch and combined it
with Optuna automatic hyperparameter optimization to use ensemble learning models to
invert the Cu content in the soil. The main conclusions of this study are as follows:

1. Constructing a soil pH decision tree significantly enhances the sensitivity of spectral
indices to soil heavy metal Cu, thereby effectively improving the inversion accuracy.
According to the results of the inversion accuracy study, soil over-acidity and over-
alkalinity significantly impact the experimental results. In this study, when the pH is
between 5.85 and 7.75, the influence of soil pH on spectral indices is minimal, thereby
achieving the highest inversion accuracy.

2. Based on Optuna combined with ensemble learning models, it was found that under
any conditions for predicting the concentration of Cu in soil, the three hyperparame-
ters ‘min_child_weight’, ‘eta’, and ‘subsample’ have a significant impact on the RMSE
loss function of the XGBoost model. Therefore, optimizing these parameters should
be a priority when using multispectral data to predict Cu concentration in soil.

3. By constructing two-dimensional and three-dimensional spectral indices and applying
the SPA combined with the Boruta algorithm for feature spectral index selection, it
was found that the characteristic spectral indices used to invert soil heavy metal Cu
content are mainly concentrated in the spectral transformation forms of TBI2 and
TBI4. Additionally, through the construction of white noise, it was found that the
model performance on white noise data is significantly lower than its performance on
real data, further validating the importance and effectiveness of these characteristic
spectral indices in real data.
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