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Abstract: The study of chlorophyll fluorescence parameters is very important for understanding
plant photosynthesis. Monitoring cotton chlorophyll fluorescence parameters via spectral technology
can aid in understanding the photosynthesis, growth, and stress of cotton fields in real time and
provide support for cotton growth regulation and planting management. In this study, cotton plot
experiments with different water treatments were set up to obtain the spectral reflectance of the cotton
canopy, the maximum photochemical quantum yield (Fv/Fm), and the photochemical quenching
coefficient (qP) of leaves at different growth stages. Support vector machine regression (SVR), random
forest regression (RFR), and artificial neural network regression (ANNR) were used to establish a
fluorescence parameter inversion model of the cotton canopy leaves. The results show that the
original spectrum was transformed by multivariate scattering correction (MSC), the standard normal
variable (SNV), and continuous wavelet transform (CWT), and the model constructed with Fv/Fm
passed accuracy verification. The SNV-SVR model at the budding stage, the MSC-SVR model at the
early flowering stage, the SNV-SVR model at the full flowering stage, the MSC-SVR model at the
flowering stage, and the CWT-SVR model at the full boll stage had the highest estimation accuracy.
The accuracies of the three spectral preprocessing and qP models were verified, and the MSC-SVR
model at the budding stage, SNV-SVR model at the early flowering stage, MSC-SVR model at the full
flowering stage, SNV-SVR model at the flowering stage, and CWT-SVR model at the full boll stage
presented the highest estimation accuracies.

Keywords: hyperspectral; chlorophyll fluorescence parameters; cotton

1. Introduction

China leads the world in cotton production, but it is mainly grown in dry areas, with
Xinjiang, the core producing region, being particularly affected by drought. Given the
shortage of water resources, it is necessary to explore the efficient use of water resources
to ensure the high yield and quality of agriculture. Water stress severely affects agricul-
tural production, especially cotton growth [1]. Chlorophyll fluorescence parameters can
reveal the internal mechanisms of plant photosynthesis and the physiological state of
plants, which is an indispensable indicator in the study of adverse stress. In addition,
as a link between plants and the environment, chlorophyll fluorescence parameters are
highly important for exploring the relationship between plant photosynthesis and the
environment [2]. Among them, Fv′/Fm′ is expressed as the PSII effective photochemical
quantum yield, which is highly important for the study of crop physiological changes
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and stress [3]. Through changes in physiological indices, the water stress and water de-
mand of cotton can be monitored and diagnosed in a timely and accurate manner, which
is highly important for improving cotton water management and guiding water-saving
agricultural production [4]. With the rapid development of modern information technology
and spectroscopic technology, remote sensing technology has been widely used to monitor
photosynthetic parameters and chlorophyll fluorescence indices [5,6]. Leaf chlorophyll
provides useful information for carbon, water, and energy exchange between plants and
the environment [7] and affects the photosynthetic potential and net primary productivity
of plants [8,9]. Chlorophyll content is an important indicator of nutrient stress and plant
diseases, which can theoretically guide the precise management of orchards. In addition, it
is a key parameter for predicting fruit ripeness and harvest time [10]. Leaf chlorophyll is
one of the main storage units of nitrogen in plants [11] and directly affects the nutritional
status of plants. Chlorophyll can absorb energy through three pathways, namely, photo-
synthetic electron transport, chlorophyll fluorescence, and heat dissipation [12], and the
chlorophyll fluorescence index of plant leaves can better reflect the changing characteristics
of photosynthesis. Pérez-Priego et al. [13] used a PAM-2100 fluorometer (Heinz Walz
GmbH, Nuremberg, DE) to determine the diurnal steady state of chlorophyll fluorescence
in field leaves and studied the effect of water stress on chlorophyll fluorescence. Ding
et al. [14] used a PAM-2100 chlorophyll fluorometer to measure the chlorophyll fluorescence
parameters Fv/Fo, Fv/Fm, Fo, and Fm of the top two leaves of cotton plants, and the
parameters gradually decreased with increasing cotton fertility, and reasonable nitrogen
application increased the potential activity of PSII and the photochemical efficiency of PSII
in cotton leaves. Hyperspectral remote sensing technology originated in 1970 and can be
used in precision agriculture technology to obtain farmland data, monitor crop habitat,
and achieve sustainable agricultural development [15,16]. Vegetation has unique spectral
characteristics that can reflect various physiological and morphological characteristics
of green plants; thus, the spectral characteristics of crops can be used to monitor their
water demand and physiological changes, which can be used as an important basis for
vegetation remote sensing monitoring [17]. Chlorophyll fluorescence parameters can reflect
the “intrinsic” characteristics of plants, which are called intrinsic probes of the relationship
between photosynthesis and the environment [18]. With the rapid development of modern
information technology and spectroscopic technology, remote sensing technology has been
widely used to monitor chlorophyll fluorescence indicators.

Owing to its advantages of being nondestructive, fast, and highly accurate, spec-
troscopy technology has been widely used in the monitoring of the physiological state of
various crops [19,20]. Previous studies have shown the potential of hyperspectral data
and chlorophyll fluorescence indicators in monitoring crop stress [21,22]. Zhang et al. [23]
studied the variation in chlorophyll fluorescence with a salinity gradient in Suaeda salaeda
leaves. To select the sensitive hyperspectral range of leaf chlorophyll fluorescence, the
correlation between leaf chlorophyll fluorescence and hyperspectral reflectance was re-
gressed, and they reported that wavelengths of 680 nm and 935 nm were the most sensitive
hyperspectral bands for estimating leaf chlorophyll fluorescence. Winkel et al. [24] signifi-
cantly correlated the PRI (photochemical reflectance index) of quinoa plants with predawn
leaf water potential, Fm′ and noon Fv/Fm, indicating that PRI and Chl fluorescence are
helpful in evaluating the physiological changes in quinoa plants at different developmental
stages and under different water conditions. Zarco et al. studied the diurnal variation in
leaf reflectance spectra, and in combination with the fluorescence measurements of the
PAM-2000 fluorometer, the diurnal variation in leaf reflectance spectra was consistent with
the observed diurnal variation in steady-state fluorescence. In this study, the effects of
spectral pretreatment technology and an inversion model on fluorescence parameters are
discussed. Three pretreatment technologies, MSC, SNV, and CWT, and three inversion
models, SVR, RFR, and ANNR, were selected. Two parameters, Fv/Fm and qP, were
studied. First, the spectral data were preprocessed, and then three inversion models were
applied to the modeling. The results showed that CWT pretreatment combined with the
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SVR model had the best ability to predict fluorescence parameters, and the combination of
CWT treatment and the SVR model had a stronger ability to predict fluorescence param-
eters. Moreover, different models gave different performances in different fluorescence
parameter analyses. The results show that the accuracy and reliability of fluorescence
parameter analysis can be significantly improved by selecting appropriate pretreatment
methods and inversion models, and future research can be extended to more fluorescence
parameters and practical applications.

2. Materials and Methods
2.1. Overview of the Study Area

This experiment was conducted in 2022 at the National Field Scientific Observation
and Research Station of the Aksu Farmland Ecosystem, Chinese Academy of Sciences
(80◦49′ E, 40◦37′ N). The site is in the Tarim Basin of China, which is a typical warm
temperate, extreme continental, arid desert climate region. Summers are hot, winters are
cold, sunshine hours are abundant, precipitation is scarce, and evaporation is strong. The
altitude of the site is 1030 m above sea level. The annual average temperature in this area
is 11.2 ◦C, the average annual precipitation is 45.2 mm, the frost-free period is 211 days,
and the annual sunshine duration is 2940 h. Cotton in this area depends on irrigation, and
the main water sources are the Aksu River and Tarim River. The climate and extensive
cultivation make the area prone to drought. Water stress affects the physiological and
fluorescence parameters of cotton. Drought causes chlorophyll decomposition, inhibits
photosynthesis, and decreases the fluorescence parameters. Some parameters can be
restored after rehydration, but most of them cannot be completely restored. Cotton drip
irrigation in Xinjiang requires 6000 cubic meters of water per hectare, which can be reduced
to 4200 cubic meters under specific conditions, such as the Bozhou reclamation area, to save
water resources. Therefore, five irrigation gradients were set in this experiment to simulate
water stress, and their gradients were 900 m3/hm2 (W1), 1800 m3/hm2 (W2), 2700 m3/hm2

(W3), 3600 m3/hm2 (W4), and 4500 m3/hm2 (W5). Experiments were carried out under the
conditions of 2400 m³/hm−2 winter irrigation water. A total of 6 periods of irrigation and
5 periods of sampling were assessed in this experiment. Each sampling date was about
10–12 days after the end of watering, and the final sampling dates were 25 June, 6 July,
19 July, 7 August, and 30 August, respectively. The last irrigation date was 5 September
and no samples were taken. The actual water depth of each irrigation was 6.67 mm (W1),
13.34 mm (W2), 20.01 mm (W3), 26.68 mm (W4), and 33.35 mm (W5). The cotton variety
was Tahe No. 2, which was sown on demand with film mulch and drip irrigation under
the film. The fluorescence parameters and hyperspectral reflectance of the cotton leaves
were measured at the bud stage (BS), early flowering stage (EF), full flowering stage (FB),
flowering boll stage (FBS), and boll stage (PBP).

2.2. Fluorescence Data Acquisition

This assay was performed via a PAM-2100 chlorophyll fluorometer. Water stress can
reduce the chlorophyll fluorescence parameters of cotton leaves, such as the Fv/Fm and qP,
reflecting their physiological status. The dark adaptation time is key for ensuring accurate
and reliable data, and 30 min is usually chosen because it balances the physiological needs
of the plant, the ease of experimental operation, and the reliability of the data. When
measuring, the inverted three or inverted four leaves on the top of the cotton plant, which
are active in photosynthesis and can represent the overall physiological state of the plant,
were selected. Therefore, when the chlorophyll fluorescence parameters of three or four
inverted leaves of labeled cotton plants are measured, dark adaptation should be performed
on the leaves for 30 min before different growth periods. The chlorophyll fluorescence
parameters of the inverted third or fourth leaves of the labeled cotton plants were measured,
the Fv/Fm and qP were measured at different growth stages, and each leaf was darkly
adapted for 30 min before the measurement. Fv/Fm was proposed by Demming et al. in
1996 to estimate the relative fraction of the light energy absorbed by the photosynthetic
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mechanism for photochemical reactions and heat dissipation of the antenna [25]; qP is
an indicator of the proportion of open reaction centers in PSII and the ability of captured
photon energy to be used for photochemical reactions [26].

2.3. Spectral Data Acquisition

In this study, a PSR-1100 portable object spectrometer (Spectral Evolution, Haverhill,
MA, USA) was used to measure the spectral reflectance of the blades. The experimental
conditions were windless and clear with the sky being less than 20% cloudy from 11:30
to 16:30. To improve accuracy, enhance reliability, improve repeatability, speed up the
discovery of rules, and reduce costs in this study, 15 cotton plants with similar growth
conditions and healthy plants or diseases were selected, 3–4 representative functional
leaves were selected from different parts of each cotton plant as samples, and three repeated
measurements were carried out. The measurement band range was 320–1100 nm, and the
spectral resolution was 1 nm. After the spectral reflectance of the blade was measured, the
outliers were eliminated, and the average value of the remaining data was taken as the
spectral reflectance value of the point. Twenty spectral reflectance curves were obtained
at each growing site. Before measurement, whiteboard calibration was required to solve
problems such as drift and sensitivity decline, which may occur after the instrument is
used for a long time, to ensure the accuracy and reliability of the measuring instrument.

2.4. Spectral Data Preprocessing

In spectral pretreatment, the MSC, SNV, and CWT are used to improve the quality of
the spectral data, which is conducive to accurate estimation of the fluorescence parameters.
MSC eliminates system variation by standardizing data, SNV removes scattering and
background interference, and CWT helps identify and remove noise by breaking down
signals. These methods work together to improve the stability and accuracy of spectral
data and are suitable for accurate fluorescence parameter estimation.

Competitive adaptive reweighted sampling (CARS) and the continuous projection
algorithm (SPA) are two methods for selecting variables in spectral data. CARS simplifies
the model by eliminating unimportant variables, whereas SPA selects key variables via
projection. When used alone, CARS may ignore important variables, and SPA may be
affected by multicollinearity. Combining CARS and SPA can improve model performance
by first reducing variables with CARS and then selecting key variables with SPA. In spectral
analysis, the combined use of CARS-SPA is more effective than the use of CARS-SPA alone,
improving predictive performance, simplifying models, ensuring stability, and overcoming
the limitations of each approach.

Therefore, the preprocessed spectral data, Fv/Fm, and qP, were screened via CARS-
SPA, and the optimal variable subset was selected to extract the feature bands.

2.5. Modeling Methods

The extracted feature bands were used as input variables, and support vector machine
regression (SVR), random forest regression (RFR), and artificial neural network regression
(ANNR) methods were used to establish an inversion model of the fluorescence parameters
of the cotton canopy leaves. SVR is a pattern recognition method based on statistical
learning theory. It is a machine learning algorithm developed by Vladimir Vapnik for
classification or regression, including linear and nonlinear regressions. In this study, a
support vector machine linear regression function was used [27]. The advantages of RFR
are high accuracy, stability, ability to handle high-dimensional data, and the efficiency of
parallel processing. RFR is an ensemble learning-based algorithm that performs regression
tasks by building multiple decision trees and integrating their predictions. In a random
forest, each decision tree is independent and trained on randomly selected subsamples,
which can effectively reduce the risk of overfitting [28]. ANNR is known for its powerful
nonlinear modeling capabilities, adaptive learning ability, and wide range of applications.
The choice of model should be based on specific application scenarios and requires a method
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based on gradient learning, which is a nonparametric nonlinear model that uses neural
networks to propagate between layers to simulate human brain receivers and information
processing [29]. Since weather changes in Xinjiang are not obvious and precipitation is low,
the influences of other variables, such as environmental factors, on the inversion model
were not considered.

2.6. Accuracy Evaluation

In this experiment, we used the coefficient of determination R2, root mean square
error (RMSE), and relative analysis error (RPD) to evaluate the accuracy of each model. In
general, larger R2 and RPD values correspond to smaller RMSEs, which indicates that the
simulation results have high accuracy. R2 is used to measure the closeness of the correlation,
whereas RMSE is used to measure the degree of deviation between the estimate and the
true value. If the RMSE value is small, the degree of deviation is low. In other words, the
closer R2 is to 1, the smaller the RMSE and the larger the RPD are, indicating that the model
built is more accurate. When the RPD value is between 1.6 and 2.0, the accuracy of the
model is acceptable. When the RPD value is greater than 2.0, the constructed model has
high reliability. By comparing the values of R2, RMSE, and RPD of the inversion model, we
can select the optimal inversion model.

The formulas for R2, RMSE, and RPD are expressed as follows [30]:

R2 =

(
1 − ∑n

i=1(yi − xi)
2

∑n
i=1(yi − y)2

)
(1)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(2)

SD =

√
∑n

i=1(yi − yi)
2

n − 1
(3)

RPD =
SD

RMSE
(4)

where xi and yi are the simulated and measured fluorescence feature parameter values,
respectively, y is the average value of the measured fluorescence feature parameters, and n
is the number of samples.

3. Results
3.1. Variation Characteristics of Chlorophyll Fluorescence

The chlorophyll fluorescence parameters of the cotton canopy leaves at different
key growth stages were studied under different irrigation treatments, and their chemical
characteristics are shown in Figure 1.

Figure 1a shows the Fv/Fm changes in cotton at different growth stages under different
water treatments. During the BS period, with increasing irrigation, the Fv/Fm ratio first
increased but then decreased, and that in the W4 treatment was the greatest. The trend
was similar to that of the EF, PBP, and BS periods. During the FB period, the Fv/Fm ratio
first decreased, then increased and then decreased, and W4 presented the greatest decrease.
During the FBS period, the Fv/Fm first increased, then decreased and then increased, and
the W2 treatment had the greatest effect. Drought reduced the Fv/Fm value, indicating
that water has an important effect on photosynthesis. Figure 1b shows changes in the qP of
cotton at different growth stages under different water treatments. During the BS period,
the qP first decreased but then increased with increasing irrigation amount, and that in the
W1 treatment was the highest. During the EF and FB periods, qP decreased with increasing
irrigation amount. During the FBS and PBP periods, the changes in qP were complex and
related to changes in leaf senescence and photosynthesis. In summary, cotton has different
water requirements at different growth stages, and an appropriate amount of water is
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conducive to photosynthesis. Too much or too little water may have adverse effects. Under
drought conditions, photosynthesis is impaired, and the values of chlorophyll fluorescence
parameters are restricted.
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Figure 1. Changes in the chlorophyll fluorescence parameters of cotton leaves at different growth
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contain the same letters, there is a significant difference).

The 5 treatments were performed in 15 replicates, with 20 replicates in the W1 and W2
treatments, 5 replicates in W3, 15 replicates in the W4 and W5 treatments, and 10 replicates
in each treatment during the EF period. The Fv/Fm content data of a total of 320 samples
were statistically analyzed according to different water treatments, and the results are
shown in Table 1.

Table 1 indicates that the cotton leaf Fv/Fm content varied widely across the treat-
ments, meeting the data requirements. The Fv/Fm content in cotton leaves under different
water treatments mostly varied slightly, with moderate variability at the EF and FB stages
and less variation in the W3 and W5 treatments. These findings suggest inhibited growth
under drought stress and vigorous growth at the FB and FBS stages. The highest Fv/Fm
content was detected in the W4 and W5 treatments, whereas the lowest value was detected
in W1 and W2, although the difference was not significant. The Fv/Fm content initially
increased but then decreased with increasing irrigation, peaking in the W4 treatment. It
reached a maximum during the FBS period and slightly decreased during the PBP period.
The results suggest that 3600 m3/hm2 irrigation is optimal for cotton growth. The chloro-
phyll content in the W1 treatment was significantly lower than that in the other treatments,
and that in W5 was slightly lower than that in W4, possibly because excess water reduces
the chlorophyll content, affects cell metabolism, and reduces the Fv/Fm content.

The 5 treatments were performed in 15 replicates, including 20 replicates for the W1
and W2 treatments and 12 replicates for the W3, W4, and W5 treatments during the BS
period. The qP content data of a total of 376 samples were statistically analyzed according
to different water treatments, and the results are shown in Table 2.

Table 2 shows that the maximum and minimum values of the qP content in cotton
leaves are widely distributed, which meets the data requirements. The variability of the qP
content in cotton leaves was minimal under the different water treatments but had high
variability at the BS stage. During the other growth stages, the variability of each treatment
decreased, and the qP content under each irrigation amount increased with the growth of
the plants. During the same growth stage, the qP content first increased but then decreased
with increasing irrigation amount, reaching a maximum under the W2 or W3 treatments.
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These findings indicate that the growth of cotton is limited under drought stress. This result
suggests that the maximum value under the W2 or W3 treatment was slightly greater than
that under the other treatments, which may be due to a decrease in chlorophyll content
due to insufficient or excessive water, which in turn affects the metabolic and functional
disorders of cells, hinders chlorophyll synthesis, and accelerates chlorophyll decomposition,
resulting in a decrease in the qP content.

Table 1. Statistical description of the Fv/Fm ratio in cotton leaves at different growth stages under
different water treatments.

Method Irrigation
Treatment

Number of
Samples

Fv/Fm Content

MIN MAX Mean Coefficient

BS

W1 8 0.44 0.632 0.556 10.3%
W2 10 0.544 0.638 0.594 3.9%
W3 10 0.551 0.65 0.612 5.4%
W4 8 0.577 0.687 0.624 7.4%
W5 9 0.457 0.735 0.615 12.7%

EF

W1 10 0.461 0.723 0.591 15.6%
W2 10 0.524 0.705 0.604 9.4%
W3 10 0.45 0.711 0.615 13.7%
W4 10 0.478 0.789 0.642 15.4%
W5 10 0.557 0.727 0.634 10.1%

FBS

W1 15 0.433 0.714 0.631 12.5%
W2 15 0.563 0.808 0.704 11.1%
W3 15 0.607 0.758 0.714 6.2%
W4 15 0.621 0.86 0.743 11.0%
W5 15 0.646 0.805 0.719 7.2%

FB

W1 15 0.513 0.686 0.612 8.3%
W2 15 0.523 0.73 0.637 9.9%
W3 15 0.538 0.689 0.645 6.8%
W4 15 0.472 0.811 0.684 15.5%
W5 15 0.614 0.773 0.687 7.6%

PBP

W1 15 0.412 0.657 0.549 11.1%
W2 15 0.507 0.688 0.602 8.6%
W3 15 0.561 0.674 0.616 5.5%
W4 15 0.517 0.77 0.636 11.3%
W5 15 0.553 0.723 0.639 9.2%

Table 2. Statistical description of the qP content in cotton leaves at different growth stages under
different water treatments.

Method Irrigation
Treatment

Number of
Samples

qP Content

MIN MAX Mean Coefficient

BS

W1 20 0.101 0.905 0.622 49.2%
W2 20 0.118 0.924 0.589 46.5%
W3 12 0.113 0.906 0.571 64.4%
W4 12 0.159 0.911 0.546 52.6%
W5 12 0.125 0.904 0.555 52.8%

EF

W1 15 0.524 0.615 0.555 5.2%
W2 15 0.46 0.627 0.563 7.3%
W3 15 0.405 0.764 0.579 17.6%
W4 15 0.407 0.697 0.566 18.0%
W5 15 0.382 0.661 0.562 17.4%
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Table 2. Cont.

Method Irrigation
Treatment

Number of
Samples

qP Content

MIN MAX Mean Coefficient

FBS

W1 15 0.533 0.668 0.584 5.5%
W2 15 0.491 0.624 0.557 6.1%
W3 15 0.448 0.705 0.553 11.8%
W4 15 0.435 0.782 0.547 15.9%
W5 15 0.399 0.603 0.532 9.8%

FB

W1 15 0.582 0.748 0.663 5.6%
W2 15 0.638 0.73 0.696 3.6%
W3 15 0.627 0.723 0.678 4.4%
W4 15 0.606 0.727 0.668 5.8%
W5 15 0.596 0.716 0.648 5.6%

PBP

W1 15 0.638 0.767 0.723 5.3%
W2 15 0.647 0.814 0.75 5.5%
W3 15 0.639 0.887 0.768 9.4%
W4 15 0.549 0.838 0.707 14.4%
W5 15 0.606 0.797 0.721 7.1%

The correlations between the Fv/Fm and qP values at different growth stages and
the corresponding irrigation amount were analyzed, and the correlation heatmap of each
growth period is shown in Figure 2.
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significant. Figure 2b shows that there is a positive correlation between Fv/Fm and qP, but 
the correlation is not significant. Figure 2c shows that Fv/Fm has a positive correlation 
with the moisture data and a very significant correlation, whereas qP has a negative 
correlation with the moisture data. Figure 2d shows that Fv/Fm is positively correlated 
with the moisture data, with a very significant correlation, and that qP is negatively 
correlated with the moisture data. Finally, Figure 2e shows that Fv/Fm has a positive 
correlation with the moisture data, with a very significant correlation, whereas qP has a 
nonsignificant, negative correlation with the moisture data. 

3.2. Filtering of Feature Bands 

Figure 2. Correlation heatmap of chlorophyll fluorescence parameters with moisture data. (a) Heat
map of correlation between BS growth period and water data, (b) Heat map of correlation between EF
growth period and water data, (c) Heat map of correlation between FB growth period and water data,
(d) Heat map of correlation between FBS growth period and water data, (e) Heat map of correlation
between PBP growth period and water data.
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Figure 2 shows the correlation heatmap for different growth periods. As shown in
Figure 2a–e, the reproductive periods are BS, EF, FB, FBS, and PBP. As shown in Figure 2a,
there was a significant correlation between the Fv/Fm and moisture data, whereas the qP
was negatively correlated with the moisture data, but the correlation was not significant.
Figure 2b shows that there is a positive correlation between Fv/Fm and qP, but the corre-
lation is not significant. Figure 2c shows that Fv/Fm has a positive correlation with the
moisture data and a very significant correlation, whereas qP has a negative correlation
with the moisture data. Figure 2d shows that Fv/Fm is positively correlated with the
moisture data, with a very significant correlation, and that qP is negatively correlated with
the moisture data. Finally, Figure 2e shows that Fv/Fm has a positive correlation with the
moisture data, with a very significant correlation, whereas qP has a nonsignificant, negative
correlation with the moisture data.

3.2. Filtering of Feature Bands

Spectra for the cotton canopy were 320–1100 nm. To eliminate redundant information
and improve modeling efficiency, the CARS and SPA algorithms were used to screen the
feature wavelengths, and then the optimal subset of variables was determined to extract
the feature bands. The CARS algorithm simulates the principle of “survival of the fittest”
in Darwin’s theory of evolution by retaining wavelength points with large regression coef-
ficients and eliminating points with small weights through adaptive reweighted sampling
technology. On this basis, the combination of variables with small root mean square errors
was selected through cross-validation [31]. SPA is a method used to find the group of vari-
ables with the lowest redundancy information in the spectral information, and the selection
of characteristic wavelengths is realized by comparing the projections of the variables. The
algorithm can effectively eliminate the collinearity problem and avoid repeated extraction
of overlapping information to achieve good performance in spectral data analysis [32,33].

According to two fluorescence parameters and three spectra, the CARS and SPA
algorithms were used to screen the spectral characteristic bands, and a subset of the optimal
variables was selected to extract the characteristic bands, among which the CARS algorithm
screened more characteristic bands. Then, the SPA algorithm could be used to fix the
number of characteristic bands, and 10 subsets of optimal variables were selected to extract
the characteristic bands. The characteristic bands of the optimal model after simulation for
different growth periods are shown in Table 3.

Table 3. Characteristic bands of the optimal model after simulation of the model at different
growth stages.

Reproductive Period Fluorescence Parameters Characteristic Bands

BS
Fv/Fm 323, 327, 330, 568, 686, 728, 976, 1047, 1069, 1089

qP 333, 416, 681, 724, 751, 859, 928, 934, 1078, 1090

EF
Fv/Fm 320, 330, 336, 428, 554, 737, 997, 1058, 1093, 1098

qP 325, 332, 345, 523, 725, 779, 949, 1063, 1069, 1097

FB
Fv/Fm 320, 337, 511, 585, 675, 931, 982, 1042, 1087, 1100

qP 323, 342, 586, 685, 738, 920, 1039, 1041, 1069, 1100

FBS
Fv/Fm 344, 397, 432, 508, 688, 700, 718, 958, 970, 1068

qP 702, 727, 922, 954, 974, 976, 987, 1057, 1066, 1079

PBP
Fv/Fm 377, 747, 782, 821, 853, 855, 959, 968, 1003, 1010

qP 400, 443, 517, 531, 632, 813, 890, 920, 987, 1100

The correlation analysis between the selected characteristic bands and the correspond-
ing fluorescence parameters at different growth stages is shown in Figure 3.
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BS growth period, (b) Heat map of correlation between qP and characteristic bands during BS growth
period, (c) Heat map of correlation between Fv/Fm and characteristic bands during EF growth period,
(d) Heat map of correlation between qP and characteristic bands during EF growth period, (e) Heat
map of correlation between Fv/Fm and characteristic bands during FB growth period, (f) Heat map of
correlation between qP and characteristic bands during FB growth period, (g) Heat map of correlation
between qP and characteristic bands during FBS growth period, (h) Heat map of correlation between
qP and characteristic bands during FBS growth period, (i) Heat map of correlation between Fv/Fm
and characteristic bands during PBP growth period, (j) Heat map of correlation between qP and
characteristic bands during PBP growth period.

Figure 3a–j shows the correlation heatmap of the optimal bands screened for different
growth stages (BS (a,b), EF (c,d), FB (e,f), FBS (g,h), PBP (i,j)) with Fv/Fm and qP. Each
stage contains two subplots showing correlations with Fv/Fm and qP. These heatmaps
emphasize the close connection between chlorophyll fluorescence parameters and specific
light bands in plants at different stages of growth. They verify the effectiveness and
reliability of the characteristic bands screened by the CARS-SPA method in a variety of
growth environments. These screened bands can accurately reflect the growth status of
plants, which provides important data for the study of plant physiology and ecology. In
addition, by analyzing these correlation data, we can gain a deeper understanding of how
plants adapt to different growth conditions, providing scientific guidance for optimizing
the plant growth environment and improving growth efficiency.

3.3. Model Construction and Accuracy Verification

The spectral performance of different transformations is different, and three methods,
SVR, RFR, and ANNR, are used to simulate the two fluorescence characteristic parameters,
and the accuracy. R2, RMSE, and RPD are comprehensively modeled and verified, and the
simulation results are shown in Tables 4–8. The simulation combinations with the highest
comprehensive accuracy of modeling and verification are selected from Tables 4–8 and
plotted in scatter plots (Figures 4–8).

Table 4. BS simulates fluorescence signature parameter results via SVR, RFR, and ANNR.

BS

Method Simulation Results
Fv/Fm qP

SVR RFR ANNR SVR RFR ANNR

MSC

Modeling R2 0.656 0.705 0.502 0.918 0.752 0.292
Modeling RMSE 0.002 0.031 0.032 0.006 0.186 0.245
Modeling RPD 1.434 0.643 0.993 3.307 0.753 0.849

Verify R2 0.610 0.291 0.396 0.653 0.155 0.165
Verify RMSE 0.002 0.053 0.045 0.013 0.283 0.305
Verify RPD 1.393 0.336 0.872 1.156 0.459 0.700

SNV

Modeling R2 0.974 0.708 0.844 0.730 0.824 0.426
Modeling RMSE 0.010 0.032 0.020 0.005 0.204 0.224
Modeling RPD 6.176 0.639 2.248 1.496 0.577 0.895

Verify R2 0.986 0.258 0.517 0.272 0.520 0.257
Verify RMSE 0.009 0.049 0.037 0.015 0.228 0.270
Verify RPD 8.438 0.382 1.338 0.704 0.376 0.813

CWT

Modeling R2 0.864 0.812 0.815 0.820 0.760 0.267
Modeling RMSE 0.001 0.029 0.020 0.011 0.203 0.258
Modeling RPD 2.307 0.901 2.171 1.935 0.601 0.699

Verify R2 0.789 0.656 0.603 0.491 0.211 0.398
Verify RMSE 0.002 0.035 0.039 0.018 0.264 0.229
Verify RPD 1.808 0.566 1.287 0.934 0.290 0.766
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Table 5. EF simulates the results of fluorescence signature parameters via SVR, RFR, and ANNR.

EF

Method Simulation Results
Fv/Fm qP

SVR RFR ANNR SVR RFR ANNR

MSC

Modeling R2 0.885 0.811 0.629 0.435 0.822 0.309
Modeling RMSE 0.004 0.043 0.052 0.005 0.056 0.065
Modeling RPD 2.775 0.882 1.577 0.792 0.530 0.660

Verify R2 0.816 0.256 0.625 0.001 0.353 0.321
Verify RMSE 0.005 0.074 0.056 0.012 0.066 0.067
Verify RPD 2.140 0.348 1.559 0.592 0.275 0.656

SNV

Modeling R2 0.650 0.823 0.776 0.875 0.838 0.181
Modeling RMSE 0.004 0.049 0.036 0.018 0.049 0.075
Modeling RPD 1.293 0.704 2.039 2.459 0.719 0.579

Verify R2 0.449 0.513 0.488 0.317 0.185 0.351
Verify RMSE 0.004 0.058 0.064 0.051 0.073 0.062
Verify RPD 0.967 0.477 1.161 1.107 0.256 1.024

CWT

Modeling R2 0.841 0.842 0.697 0.807 0.849 0.580
Modeling RMSE 0.003 0.045 0.041 0.004 0.056 0.047
Modeling RPD 1.997 1.068 1.723 1.672 0.561 1.206

Verify R2 0.871 0.654 0.641 0.186 0.229 0.153
Verify RMSE 0.003 0.040 0.057 0.012 0.061 0.086
Verify RPD 2.306 0.746 1.660 0.597 0.299 0.589

Table 6. FB simulates fluorescence feature parameter results via SVR, RFR, and ANNR.

FB

Method Simulation Results
Fv/Fm qP

SVR RFR ANNR SVR RFR ANNR

MSC

Modeling R2 0.889 0.781 0.541 0.992 0.743 0.391
Modeling RMSE 0.003 0.045 0.052 0.001 0.045 0.045
Modeling RPD 2.894 0.670 1.336 11.177 0.497 0.930

Verify R2 0.167 0.160 0.119 0.761 0.134 0.243
Verify RMSE 0.013 0.086 0.102 0.003 0.044 0.057
Verify RPD 0.513 0.232 0.854 1.937 0.264 0.841

SNV

Modeling R2 0.912 0.814 0.365 0.930 0.779 0.192
Modeling RMSE 0.003 0.050 0.054 0.006 0.045 0.051
Modeling RPD 3.277 0.617 0.765 3.499 0.473 0.568

Verify R2 0.514 0.281 0.251 0.638 0.111 0.107
Verify RMSE 0.009 0.071 0.081 0.016 0.046 0.064
Verify RPD 0.886 0.230 0.463 1.057 0.292 0.419

CWT

Modeling R2 0.868 0.779 0.468 0.752 0.771 0.602
Modeling RMSE 0.004 0.048 0.060 0.004 0.035 0.038
Modeling RPD 2.379 0.768 1.230 1.513 0.699 1.279

Verify R2 0.381 0.278 0.409 0.456 0.253 0.485
Verify RMSE 0.020 0.065 0.067 0.006 0.059 0.045
Verify RPD 0.541 0.599 1.171 0.740 0.373 0.926

In Table 4, during the BS growth period, the SVR model simulated Fv/Fm with
the spectral expression capability of SNV > CWT > MSC, the RFR model simulated the
spectral expression capability of CWT > SNV > MSC, and the ANNR model simulated the
spectral expression capability of CWT > SNV > MSC. For the qP simulation, the spectral
performance capability of the SVR model is MSC > CWT > SNV, the spectral performance
capability of the RFR model is SNV > CWT > MSC, and the spectral performance of the
ANNR model is SNV > CWT > MSC.
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Table 7. The FBS simulates the fluorescence signature parameter results via SVR, RFR, and ANNR.

FBS

Method Simulation Results
Fv/Fm qP

SVR RFR ANNR SVR RFR ANNR

MSC

Modeling R2 0.879 0.829 0.632 0.976 0.665 0.230
Modeling RMSE 0.005 0.046 0.042 0.002 0.026 0.029
Modeling RPD 2.774 0.619 1.175 6.165 0.655 0.815

Verify R2 0.876 0.145 0.385 0.914 0.134 0.108
Verify RMSE 0.008 0.069 0.066 0.005 0.030 0.044
Verify RPD 1.535 0.279 1.049 2.524 0.349 0.610

SNV

Modeling R2 0.946 0.793 0.375 0.977 0.702 0.268
Modeling RMSE 0.013 0.049 0.053 0.007 0.025 0.029
Modeling RPD 4.211 0.645 1.000 6.417 0.574 0.586

Verify R2 0.705 0.136 0.274 0.913 0.325 0.344
Verify RMSE 0.028 0.060 0.076 0.015 0.032 0.036
Verify RPD 1.488 0.275 0.824 2.997 0.351 0.486

CWT

Modeling R2 0.845 0.803 0.631 0.870 0.752 0.510
Modeling RMSE 0.001 0.047 0.043 0.033 0.023 0.028
Modeling RPD 2.262 0.750 0.109 2.584 0.848 1.287

Verify R2 0.397 0.387 0.180 0.828 0.029 0.536
Verify RMSE 0.001 0.050 0.070 0.060 0.333 0.030
Verify RPD 1.006 0.533 0.695 1.479 0.612 1.101

Table 8. PBP simulates fluorescence signature parameter results via SVR, RFR, and ANNR.

PBP

Method Simulation Results
Fv/Fm qP

SVR RFR ANNR SVR RFR ANNR

MSC

Modeling R2 0.804 0.829 0.274 0.746 0.756 0.437
Modeling RMSE 0.002 0.035 0.058 0.002 0.045 0.057
Modeling RPD 1.888 0.961 0.943 1.557 0.677 0.985

Verify R2 0.005 0.215 0.437 0.057 0.152 0.304
Verify RMSE 0.005 0.083 0.053 0.003 0.059 0.057
Verify RPD 0.464 0.274 1.086 0.433 0.407 1.059

SNV

Modeling R2 0.593 0.772 0.505 0.922 0.795 0.234
Modeling RMSE 0.023 0.046 0.041 0.011 0.046 0.063
Modeling RPD 1.031 0.569 1.052 3.469 0.620 0.754

Verify R2 0.033 0.227 0.431 0.446 0.330 0.500
Verify RMSE 0.068 0.055 0.060 0.026 0.056 0.053
Verify RPD 0.306 0.371 0.829 0.685 0.327 1.109

CWT

Modeling R2 0.855 0.827 0.567 0.766 0.818 0.559
Modeling RMSE 0.001 0.036 0.046 0.004 0.044 0.046
Modeling RPD 2.370 0.682 1.261 1.732 0.737 0.988

Verify R2 0.823 0.228 0.365 0.601 0.465 0.264
Verify RMSE 0.001 0.072 0.045 0.005 0.049 0.057
Verify RPD 2.233 0.216 1.000 1.027 0.405 0.800

As shown in Table 4, considering the accuracy and error of modeling and verification,
the optimal inversion model combinations of Fv/Fm and qP during the BS growth period
are the SVR model based on the CWT and the SVR model based on the MSC. The scatter
plot of the optimal model is shown in Figure 4.
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Figure 4. Scatter plots of the optimal simulated and measured values of Fv/Fm (a) and qP (b) during
the BS period.

In Figure 4, the modeling R2 values are 0.974 and 0.918, the verification R2 values are
0.986 and 0.653, the modeling RMSE values are 0.010 and 0.006, the verification RMSE
values are 0.009 and 0.013, the modeling RPD values are 6.176 and 3.307, and the verification
RPD values are 8.438 and 1.156.

In Table 5, during the growth period of the EF, the SVR model simulated Fv/Fm,
and the spectral performance ability was as follows: MSC > CWT > SNV. In the RFR
model simulation, the spectral performance ability was CWT > SNV > MSC. In the ANNR
model simulation, the spectral performance capability was CWT > MSC > SNV. For the qP
simulation, the spectral performance ability of the SVR model is as follows: SNV > CWT >
MSC. When the RFR model was simulated, the spectral performance ability was as follows:
SNV > CWT > MSC. When the ANNR model was simulated, the spectral performance
ability was CWT > MSC > SNV.

As shown in Table 5, considering the accuracy and error of modeling and verification,
the optimal inversion model combinations of Fv/Fm and qP during EF fertility were the
MSC-based SVR model and the SNV-based SVR model, respectively. The scatter plot of the
optimal model is shown in Figure 5.
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In Figure 5, the modeled R2 values are 0.885 and 0.875, the verified R2 values are 0.816
and 0.317, the modeled RMSE values are 0.004 and 0.018, the verified RMSE values are
0.005 and 0.051, the modeling RPD values are 2.775 and 2.459, and the verified RPD values
are 2.140 and 1.107.
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In Table 6, during the growth period of the FB, the SVR model simulated Fv/Fm,
and the spectral expression ability was as follows: SNV > CWT > MSC. In the RFR model
simulation, the spectral performance ability was SNV > CWT > MSC. In the ANNR model
simulation, the spectral performance capability was CWT > MSC > SNV. For the qP
simulation, the spectral performance ability of the SVR model was as follows: MSC >
SNV > CWT. When the RFR model was simulated, the spectral performance ability was
as follows: CWT > MSC > SNV. When the ANNR model was simulated, the spectral
performance ability was CWT > MSC > SNV.

As shown in Table 6, considering the accuracy and error of modeling and validation,
the optimal inversion model combinations of Fv/Fm and qP during FB fertility are the
SNV-based SVR model and the MSC-based SVR model, respectively. The scatter plot of the
optimal model is shown in Figure 6.
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the FB period linearly fitted to the measured values.

In Figure 6, the modeled R2 values are 0.912 and 0.992, the verification R2 values are
0.514 and 0.761, the modeling RMSE values are 0.003 and 0.001, the verification RMSE val-
ues are 0.009 and 0.003, the modeling RPD values are 3.277 and 11.177, and the verification
RPD values are 0.886 and 1.937.

In Table 7, during the FBS growth period, the SVR model simulated Fv/Fm, and
the spectral performance ability was as follows: MSC > SNV > CWT. In the RFR model
simulation, the spectral performance capability was CWT > MSC > SNV. In the ANNR
model simulation, the spectral performance ability was MSC > CWT > SNV. For the qP
simulation, the spectral performance ability of the SVR model simulation was as follows:
SNV > CWT > MSC. When the RFR model was simulated, the spectral performance ability
was as follows: SNV > MSC > CWT. When the ANNR model was simulated, the spectral
performance capability was as follows: CWT > SNV > MSC.

As shown in Table 7, considering the accuracy and error of modeling and verification,
the optimal inversion model combinations of Fv/Fm and qP during the growth period of
EF are the SVR model based on the MSC and the SVR model based on the SNV. The scatter
plot of the optimal model is shown in Figure 7.

In Figure 7, the modeling R2 values are 0.879 and 0.977, the verification R2 values are
0.876 and 0.913, the modeling RMSE values are 0.005 and 0.007, the verification RMSE
values are 0.008 and 0.015, the modeling RPD values are 2.774 and 6.417, and the verification
RPD values are 1.535 and 2.997.
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In Table 8, during the EF growth period, the SVR model simulated Fv/Fm, and the
spectral expression ability was CWT > SNV > MSC. In the RFR model simulation, the
spectral performance capability was CWT > MSC > SNV. In the ANNR model simulation,
the spectral performance capability was CWT > SNV > MSC. For the qP simulation, the
spectral performance ability of the SVR model was as follows: CWT > MSC > SNV. When
the RFR model was simulated, the spectral performance ability was as follows: CWT >
SNV > MSC. When the ANNR model was simulated, the spectral performance ability was
CWT > MSC > SNV.

As shown in Table 8, considering the accuracy and error of modeling and verification,
the optimal inversion model combinations of Fv/Fm and qP during EF fertility are the
CWT-based SVR model and the CWT-based SVR model, respectively. The scatter plot of
the optimal model is shown in Figure 8.
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In Figure 8, R2 is modeled at 0.855 and 0.766, the verified R2 values are 0.823 and 0.601,
the modeled RMSE values are 0.001 and 0.004, the verified RMSE values are 0.001 and
0.005, the modeled RPD values are 2.370 and 1.732, and the verified RPD values are 2.233
and 1.027.

The results of the Fv/Fm and qP simulations revealed that the performance ability
of the model was SVR > RF > ANN under the different irrigation amounts and different
growth periods. The results show that it is feasible to simulate Fv/Fm via hyperspectra, but
the effectiveness of simulated qP in the early flowering stage needs to be further verified.
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4. Discussion

In the field of crop remote sensing monitoring, the extraction of characteristic spectral
bands is always a key research topic, especially considering the problem of data redundancy.
Traditionally, regression analysis has been performed on each band in multispectral data
one by one to identify those characteristic bands that are sensitive to physiological and
biochemical components of crops [34]. However, for hyperspectral data, an efficient
algorithm is needed to accurately extract the feature information that is highly relevant to
the target. In this study, CARS-SPA method was used to screen the characteristic bands,
so as to realize the rapid extraction and analysis of spectral information. The fluorescence
parameter Fv/Fm was mainly used to evaluate the photosynthetic capacity of plants and
detect the stress status of plants, whereas qP was more focused on reflecting the efficiency of
photochemical reactions and the light adaptation ability of plants. Among the characteristic
bands selected via the CARS-SPA method, the blue and red bands had different effects on
the photosynthesis of cotton, and a change in light quality led to fluctuations in the qP value
and subsequently affected the growth and development of plants. These two parameters
can provide key data for an in-depth understanding of plant photosynthesis mechanisms
and their response to water stress. In this study, the two fluorescence parameters were
inverted through a variety of pretreatment techniques and models to determine the best
model. SVR, RFR, and ANNR have advantages and disadvantages: SVR has a strong ability
to address nonlinear problems, but the calculation is complicated; RFR is easy to implement
and can handle high-dimensional data but may overfit; and ANNR has strong modeling
ability but complex training and poor interpretability.

The value of Fv/Fm is affected by many factors, such as light intensity, temperature,
water conditions, chlorophyll content, PSII activity, and nutrients. qP is affected by light
intensity, the CO2 concentration, the composition of the photosynthetic pigment and protein
complex, the state of the electron transport chain, and photorespiration. In addition, the
stress conditions and developmental stages of plants also affect these parameters. Both
Fv/Fm and qP play important roles in the study of plant physiology. Through significance
level analysis, we found a correlation between Fv/Fm and qP and irrigation volume. With
increasing irrigation amount, the Fv/Fm ratio usually first increased but then decreased,
whereas the qP ratio first decreased but then increased in this experiment. In this study,
the change trend of Fv/Fm value with growth period is different from that of previous
studies [35], while the change trend of qP value showing first decrease and then increase
is the same as that of previous studies [36]. The reason may be that FV/FM is more
sensitive to moisture response and therefore has higher modeling accuracy. Under drought
stress, the value of FV/FM will also decrease as the moisture content of cotton fields
decreases gradually.

The results showed that SVR was superior to RFR and ANNR in simulating Fv/Fm and
qP, whereas RFR was slightly superior to ANNR. The three models had better performance
in terms of Fv/Fm inversion, indicating that hyperspectral data have a lower ability to
interpret qP. However, the chlorophyll fluorescence parameters of each growth period
can be retrieved on the optimal model. In application, the contents of Fv/Fm and qP
can be determined via hyperspectral measurements, and then, the current stage of water
stress can be analyzed to provide a basis for irrigation. To address this, future research
should consider the potential integration of hyperspectral data with other remote sensing
techniques (e.g., thermal imaging and LiDAR) as well as environmental factors (e.g., soil
type and climate conditions) to provide a more comprehensive understanding of plant
health and stress states. The current test results are limited because they do not consider
many influencing factors, and it is recommended that these results be used only in regions
with similar climatic conditions.

5. Conclusions

In this study, the Fv/Fm, qP, and hyperspectral reflectance of cotton canopy leaves
at different growth stages were obtained on the basis of fluorescence parameters and
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hyperspectral field experiments of cotton canopy leaves under different water treatments.
Through the comparative analysis of the hyperspectral inversion results of the fluorescence
parameters of the canopy leaves of the two cotton canopies, achieved by comparing and
analyzing the results of the three spectra and three simulation methods, it was found that
the Fv/Fm could be well simulated by hyperspectra, whereas the ability of hyperspectra to
interpret the qP was low, which needs to be further studied. Hyperspectral information
is strongly sensitive to the fluorescence parameters of cotton canopy leaves and can be
used to monitor the moisture status of cotton and provide a theoretical basis because of the
influence of spectral types and simulation methods.
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