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Abstract: Timely and accurate detection of diseases in vegetables is crucial for effective management
and mitigation strategies before they take a harmful turn. In recent years, convolutional neural
networks (CNNs) have emerged as powerful tools for automated disease detection in crops due
to their ability to learn intricate patterns from large-scale image datasets and make predictions of
samples that are given. The use of CNN algorithms for disease detection in important vegetable crops
like potatoes, tomatoes, peppers, cucumbers, bitter gourd, carrot, cabbage, and cauliflower is critically
examined in this review paper. This review examines the most recent state-of-the-art techniques,
datasets, and difficulties related to these crops’ CNN-based disease detection systems. Firstly, we
present a summary of CNN architecture and its applicability to classify tasks based on images.
Subsequently, we explore CNN applications in the identification of diseases in vegetable crops,
emphasizing relevant research, datasets, and performance measures. Also, the benefits and drawbacks
of CNN-based methods, covering problems with computational complexity, model generalization,
and dataset size, are discussed. This review concludes by highlighting the revolutionary potential of
CNN algorithms in transforming crop disease diagnosis and management strategies. Finally, this
study provides insights into the current limitations regarding the usage of computer algorithms in
the field of vegetable disease detection.

Keywords: deep learning; vegetables; disease detection; early identification

1. Introduction

The world’s population is expected to be 10 billion by 2050 [1]. To feed this large
number of people, we need a higher production rate with a lower yield loss. The most
important thing after planting seeds in the soil is to take care of the crop. If one plant is
affected by a contagious disease, then all the harvest will be lost. Vegetables are sensitive,
perishable, and vulnerable to various diseases, which cause a huge economic loss as
compared to other food crops. This is why early disease detection in plants and particularly
in vegetables is the most crucial part of a good harvest [2]. In the past, detection was
carried out using only a manual method where one had to compare and identify different
samples of affected and unaffected samples of a plant and describe the severity of the attack.
This process was not very accurate and took a lot of time. In this new era of technology,
computers have much more to offer in plant disease detection. However, the effectiveness
of this detection completely relies on the collection of data [3]. The present technologies
that work with computer vision are based on spots on leaves and fruits. These are the
primary keys for analyzing information about the disease in the plant [4]. It is quite clear
now to all agro-ecologists that a plant disease affects the photosynthesis ability of the plant,
therefore affecting growth and fruit production [5,6]. Most plant diseases, almost 85%, are
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caused by fungal or fungal-like organisms. In some other cases, it can be bacteria, viruses,
viroid species, and some specific Nematodes [7,8]. The main problem with these diseases is
that they are revealed in the last stage of infection or the middle stage when little can be
done to protect the crops [9]. The data collected from the U.S Environmental Protection
Agency, UNECE, and the website of the Government of Alberta has resulted in the below
chart (Figure 1), which indicates the loss of vegetables due to diseases every year [10].
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Figure 1. Percentage of vegetable wasted every year due to disease attacks (average data from 2009
to 2020).

In herbaceous plants, e.g., vegetables, the early detection of disease is of paramount
importance [11,12]. Crops like cabbages and strawberries as well as vegetables with a
thin layer of cellulose on their outer surface are prone to rot if any contagious diseases
are caught. These diseases affect their skin and reduce photosynthesis in their leaf, which
causes the deformation of crops. By the early detection process, the spreading of contagious
diseases can be controlled to some extent [13]. Images of different affected parts can be
analyzed using CNNs [14], and the severity of the attack can be inferred. Dechant et al.
tried to draw a map of maize disease using different CNN models in combination [15].
The most commonly used dataset is Plant Village [16]. In most research, VGG (Visual
Geometry Group)–CNN [17] models were used to determine blight in radish with k-mean
clusters to express disease markers [18]. The results indicated that this model can be used
in the detection of different crop diseases including those in tomato, tobacco, banana,
etc. [19]. Normally, the whole leaf is considered or analyzed to identify the disease. Figure 2
indicates all the steps involved in the process of disease detection. A different approach
was taken in other research, where individual lesions were taken into consideration and
the DL model was used to identify the disease [20]. The DL model was first introduced
in 1943 and went through three specific stages of development. The first generation of
neural networks was introduced in 1943 as a linear model that could only deal with limited
data [21]. The ReLU (Rectified Linear Unit) [22] model, introduced in 2011, could effectively
deal with the gradient disappearance problem; this was more effective when AlexNet was
introduced in 2012 [23]. From that moment on, CNNs have gained much more attention
among scientists [24,25]. There has been much more development since then in this field of
research. Some of the causes of plant diseases are shown in Figure 2. This hierarchy was
developed from the ideas generated by [26].
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The purpose of this review is to highlight and understand the latest research. If
the current problems are addressed effectively, then the field of CNNs can grow in the
identification of vegetable diseases more effectively [27]. This review analyzes some of the
recent research from 2015 to 2024 on vegetables: so, all the information here is the most
up to date compared to any other research in previous years. Some other articles from
the last decade of the 20th century have been used for basic data presentation. The focus
of the review is to provide insight based on the data that have been discussed in recent
detection algorithms to find patterns in different models’ accuracy. The review aims to
provide a clear idea about different models to help future researchers to decide which
models should be prioritized. This review focuses on answering questions about different
models’ efficiency on different vegetable crops. If further studies are conducted based on
this research, then more accuracy can be achieved, and researchers would not have to waste
time on models that have become obsolete. The review is structured in the following way:
Introduction to deep learning: this section provides a short overview of DL technology
and some frequently used models and algorithms such as EfficientNet, VGG16, ResNet50,
MobileNet, and InceptionV3. After that, the Methodology section describes the steps and
processes that have been used to collect and analyze the data for the review. Different
CNN models are important in disease detection in vegetable plants, including some of the
most popular vegetables that are being monitored for data collection. Data from different
studies have been used to make predictions and form patterns. Based on the analysis, the
Future Perspectives and Research Gaps section is produced, where most of the limitations
of recent research have been included so that the reader can identify them effortlessly. The
study, concludes with possible recommendations for future research. This is the first review
that highlights the use of CNN techniques for disease detection in particular perishable
vegetables and concludes with the most recent findings and limitations of CNN algorithms
in vegetable disease detection.
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2. Methodology

Like all the other reviews in different research fields, this review focuses on the recent
progress of CNN application in the field of agriculture and specifically on vegetables. After
carefully reviewing more than 300 papers on the matter, around 200 papers were selected
to represent the data. The primary concern of this research was to focus on the accuracy
percentage of different CNN models in the field of agriculture. Most importantly, this
review reports most of the recent work that was conducted in the context of vegetable
disease detection. The review comprises data collected from different prominent journals in
the field of digitalization of agriculture engineering. Computer and Electronics in Agriculture,
Journal of Plant Pathology, Agriculture, Frontier in Plant Science, and IEE are some of the major
journals that provided the data for this review. All the vegetable images are collected from
the PlantVillage database/platform.

At the initial stage, keywords were chosen to collect relevant research. CNN, CNN
in disease detection, the role of CNN in vegetable disease detection, etc., are some of the
keywords that were used for data collection. The search was made mostly through Google
Scholar, as well as IEEE and some other research databases. We tried our best to produce
the review according to recently provided data in this field. So, the search results were
filtered by 2015–2024, but some exceptional cases appeared as some explanations were
needed to provide a strong background for the research. That is why some data were taken
from articles published in the late 20th century.

Figure 3 represents the percentage value of every model used in vegetable disease
detection. A total of 258 occurrences were found in the almost 200 research articles that
were used in this review. All the papers were studied to find the uses of each model in
every article. The most frequently found model was VGG and the least was DenseNet.
The other models that we see in the chart are a combination of different models that had
too small contributions individually in the articles that were reviewed. Some of these
models are FCNN, ReLU, Global Pooling, Dilated CNN, YOLO (You Only Look Once),
ACNN (Active Control Neural Network), k-means clustering, Naïve Bayes, EFDet (Efficient
Detection Model), DCNN, RBFN (Radial Bias Function Network), and Pearson Correlation
Coefficient. These models were not exactly used on a primary basis but were combined
with GoogleNet, MobileNet, AlexNet, or VGG models.
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In Figure 4, we have summarized almost 200 papers to produce this chart according
to different models. The figure depicts more than 7 models used very frequently in the
detection of more than 9 vegetable diseases. The vegetables include bitter gourd, cabbages,
carrot, brinjal, and cauliflower, where the model showed 90.05% accuracy. It is known
that the availability of more data is more beneficial for accuracy detection. As can be seen
in Figure 4, tomato has more sources of data, and it has shown remarkably better testing
accuracy. This applies to all the other vegetables that are reviewed in this paper.
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CNNs have recently become very popular among researchers due to their versatility
in the field of science. The main purpose of choosing CNNs as the primary focus is to
provide a clearer insight into CNN architectures and the models that are closely related to
this field. Convolutional networks have more stability and reliability in image detection,
which is the main purpose of vegetable disease detection. The performance of these models
has become so remarkably efficient that they can reduce the loss of crops to some extent.
Other models such as VGG, Inception, Resnet, EfficientNet, MobileNet, etc., have been
prioritized due to their ability to detect diseases with almost 100% accuracy.

The performance of a model is dependent on the number of images that have been
fed through it. The more images it identifies successfully, the more accurate it becomes.
This review will focus more on the models that are used in this field. The detailed uses and
performance will be discussed in detail for the detection of different plant diseases.

We approached this research with 5 questions in mind:

• What is the role of CNNs in disease detection and their performance?
• Are enough data available to research vegetable diseases?
• What are the contributing models that can add value to the uses of machine learning

technology in the field of agriculture?
• What is the current status of efficiency in disease detection through machine learning?
• What are the problems and limitations faced by the researchers community?

We have discussed most of the points thoroughly in relation with the vegetables and
models. By the end of the review, the limitations of previous research are partially identified.
The availability of data sources is also discussed, and it was found that the most convenient
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database was Plant Village. Results produced from self-collected data might provide better
insights, but not all self-produced data are publicly accessible, so it is hard to assume based
on someone’s model just by seeing the results.

2.1. Introduction to DL

As one of the most reputable interdisciplinary fields within artificial intelligence,
specifically in DL, CNNs are considered advanced structures for various tasks in computer
vision. Compared to alternative networks, CNNs demonstrate superior performance in
this domain. One of the most distinguishing features of CNNs is their ability to achieve
invariance, enabling comprehensive image perception. Even when dealing with images
that contain diverse attributes, CNNs can still effectively recognize them [28]. CNNs utilize
convolution to extract features through a specific-sized kernel [29]. This kernel operates
with predetermined strides, dictating the intervals used in the architecture’s execution to
generate a feature map. Following this, a pooling process is employed to reduce the size
of the feature map. Eventually, the image undergoes flattening and conversion into either
a fully or partially connected layer. Then, a classification layer is utilized to classify the
image, determining its probability of belonging to predefined classes (Figure 5).
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The model draws ideas through statistics, information theory, philosophy, control
theory, and probability [30]. The model’s main purpose is to identify patterns. The most
fascinating feature of this model is that it can learn from the environment and the data
it has been given. In a nutshell, it is a technology that learns through trial and error
with or without a teacher [31]. The application of DL in agriculture was introduced very
recently [32]. DL models such as CNNs can learn very quickly and make an output
swiftly [33]. Previously, plant disease detection was conducted by humans, which was
accomplished by just seeing and comparing diseased leaves and healthy samples. The
precision of CNNs in image processing and pattern recognition is beyond comparison to
human decision-making skills [34,35]. This algorithm recognizes images through a process
that is considered a mimic of human action. Technology copies human nerves by linking
one neuron to another. The neurons have some parameters like weight, bias, and initiation
function for image recognition. The algorithm is structured in two layers: one for feature
extraction and another for making decisions, which comprises connected nodes [36].

Another CNN model is known as Deep Convolution Neural Network or DCNN. The
model extracts high-dimensional features with more precision [37]. The model comprises
two stages of networks such as Region CNN [38], fast RCNN [39], and Faster RCNN [40].
FSNet was introduced by Zhang et al. for fungal spore detection during the storage process
of grains [40].
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2.1.1. Efficient NET

EfficientNet comprises a series of CNNs highly regarded for their outstanding perfor-
mance in comparison to other models. The set includes eight distinct models, designated
from B0 to B7. As the model number increases, both the number of parameters and pre-
diction accuracy also increase [41]. One notable advantage of EfficientNet is its ability
to achieve exceptional results while conserving time and computational resources, out-
performing many existing models. This efficiency is achieved through a smart strategy
known as intelligent scaling, which involves adjustments in depth, width, and resolution.
An important aspect of EfficientNet is its support for EDGE-enabled devices and mobile
phones for DL tasks. A compound scaling technique is employed to uniformly scale the net-
works’ resolution, depth, and width using a compound coefficient (φ) in a well-established
manner. This method facilitates the efficient and effective deployment of DL models across
a diverse range of devices.

2.1.2. VGG19 (Visual Geometry)

This is an architecture that has gained a lot of interest among researchers. It is
renowned for its exceptional performance and image processing capability. The model con-
sists of 19 layers in total. The design is made with a very elaborate pattern. The architecture
is made up of 3 × 3 convolution layers on top of one another with a stride of 1. After that,
there is a max pooling layer with a window size of 2 × 2; in this structure, the stride is 2 [42].
The model is trained with a cross-entropy function and optimized by stochastic gradient
descent. The main strength of this model is its simplicity and uniformity. The model can
easily interpret data with a high requirement for resources and memory capacity [43].

2.1.3. ResNET50

This model is popular because of its residual learning ability [44]; the model was
developed by Microsoft Corporation. The algorithm of this architecture consists of 50
layers. Residual information is distributed in the layers of the network and thus, it solves
the issue of vanishing gradients, which facilitates training in much deeper networks. The
layers contain multiple convolutional sub-layers, which helps skip connections that bypass
one or multiple layers at a time. The architecture also includes some fully connected
layers, average pooling, and a SoftMax output layer for classification. It has gained such
exceptional features because of its ability to be trained in a deep network [45].

2.1.4. MobileNet

This is another CNN model capable of precise calculations, and it can be used in
mobile phones [46]. The model depends on much fewer resources due to its lightweight
algorithm and functionality. It is more accurate than most other CNN models but cannot
handle a large amount of data [47]. The depth-wise separable convolutional layers are the
most creative part of this model. The model is characterized by the application of a mono
filter to each input channel autonomously. Then, there is a point-wise convolution followed
by a 1 × 1 convolution to merge the depth-wise convolution results. MobileNet performs
better because of this architecture while maintaining a reasonable level of accuracy and
efficiency. As the version of the model is updated, the performance increases significantly.
The model MobileNet gained much popularity because of its efficiency in architecture [48].
This is not only limited to computers or mobile phones; it can be embedded in many other
devices. It can operate easily on any device because of the lightweight algorithm and
resource requirements [49].

2.1.5. Inception V3

The CNN model has been extensively used for image recognition tasks. The model has
been trained with the ImageNet dataset and achieved good accuracy in the training period.
The architecture of this model consists of multiple layers of convolutional, pooling, and
activation functions [50]. Inception modules are included, which facilitates the network
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to learn for feature application on a higher scale. The training efficiency is increased by
batch normalization and factorized 1 × 1 convolutions. The model is also designed to be
convertible to different tasks and datasets, making it more reliable and useful in transfer
learning [51].

3. Importance of Different CNN Models in Disease Detection of Vegetable Plants
3.1. Potato

Potato is the most consumed vegetable in the world and probably the highest pro-
duced crop in the world after rice and wheat. So, with a high amount of production and
consumption, potato holds many vulnerabilities towards disease and pests. A proposition
for utilizing DL in the detection of potato leaf diseases is suggested in [52,53]. Sofuoglu et al.
suggested a deep learning model to predict potato leaf disease from images. The model was
based on convolutional neural network architecture. The methodology applied filters to
the images provided and then extracted the notable features. It also reduced the dimension
of the images while preserving some important information about the sample. The prede-
termined resolution was 256 × 256 pixels. Then, the images were fed through a circle of
Conv2D, ReLU, and MaxPooling2D. The final step was performing classification using the
softmax activation function, and the highest probability and result were calculated through
dense_1 [26]. The accuracy found in this research was remarkably better (98.28%) than other
research (89.67%). In another study, the accuracy was found to be between 99 and 100% in
some classes. The classes were Healthy, Black, Scurf, Common Scab, Black Leg, and Pink
Rot. The research suggested a model similar to a pre-trained model such as VGG19 [53].
Another method employing DL was introduced for the classification of diseases affecting
potato leaves [54]. Potato leaf blight stands out as a highly destructive plant ailment on
a global scale [55], significantly impacting the yield and quality of potato crops and pos-
ing substantial challenges to individual farmers and the agricultural sector. The dataset
used for training encompasses three distinct categories of potato leaves: those deemed
healthy, those afflicted with early blight, and those with late blight. The proposed model
achieved an impressive mean testing accuracy of 98% [56]. DL finds application across
various domains such as image classification, object detection, semantic segmentation, and
image retrieval, with its adoption steadily on the rise [57]. Table 1 indicates the accuracy of
different studies that were conducted using various methods for disease detection.

Table 1. The accuracy percentage of different methods of disease detection in different parts of potato.

Detection Type Method Data Source Dataset Size Accuracy Ref.

Alteralia Solaris, Pytophora
infestans DL, transfer learning Plant Village 50,000 94.94% [58]

Overall yield prediction R-CNN Self-collected 12,000 90.8–93.0% [59]

Early blight SVM and PLS-DA Self-collected 32 92% [60]

Surface bump detection CNN Self-collected 296 86.6% [61]

Surface health detection ABC, BUZO, PSO, DT,
SVM Self-collected 200 88.83% [62]

Overall potato defects LS-SVM Self-collected 417 90.70% [63]

Common scab GA PLS Self-collected 140 99% [64]

Potato grading Fuzzy C-mean Self-collected 100 95% [65]



Agronomy 2024, 14, 2231 9 of 30

Table 1. Cont.

Detection Type Method Data Source Dataset Size Accuracy Ref.

Skin injury

LS-SVM (LeastSquare
Support Vector

Machine), BLR (Binary
Logistic Regression)

Self-collected 120 90% [66]

Defect detection Fuzzy logic, GA Ardabil, Iran 500 88.10% [67]

Overall potato grading MLP, SVM, RBF Ardabil, Iran 50 bags 95%, 96%, 86% [68]

Blight detection CNN, SoftMax Plant village 1000 99.53% [69]

Blight Mask R-CNN Self-collected 1423 98% [70]

Blight GoogleNet, VGGNet,
EfficientNet, PyTorch Self-collected 5199 94% [71]

Blight
AlexNet, VGGNet,
ResNet, LeNet and
Sequential model

Kaggle,
Dataquest and
Self-collected

images

3000 97% [72]

Early blight Random Forest Plant Village 450 97% [73]

Late blight ShuffleNetV2 Potato Leaf
Disease Dataset 7039 94% [74]

Overall leaf disease SVM, CNN, VGG16 Self-collected - CNN-98% [75]

Blight diseases PLDPNet Plant-Village 10 classes 98.66% [76]

Target spot, Lycopersicon,
Tuberosum, Capsicum

Annuum
Night-CNN Plant Village 50,000 95.23% [77]

Dry rot diseases Ann, SVM Self-collected 25 97% [78]

Late blight CropdocNet Self-collected 34 groups 95.75% [79]

Potato leaf diseases SVM, k-means cluster Plant Village 54,306 95.99% [80]

Potato blight YOLOv5 Plant Village 4062 99.75% [81]

Scab, Black Scurf CNN, MatLab Self-collected 400 Potatoes 95.85% [82]

Sadiq et al. have developed different approaches with a range of models to detect
potato leaf diseases. Four models were trained to perform disease tests on the potato plants.
VGG16, EfficientNet B4, Inception V3, and Inception resNetV2 all models were trained
using a comprehensive dataset consisting of both healthy and unhealthy potatoes. The
EfficientNet B4 model showed more efficiency than all the others in this case 100%. The
VGG16 showed 99%, Inception V3 98% and Inception ResNet V2 [83] at 94% [84]. Another
group of researchers devised the same models for their research on cotton leaves and found
the accuracy to be 98.53%. Which is almost as efficient as the previous one mentioned [85].

Verma et al. found the efficiency to be 97% when a combination of libraries/algorithms
such as Keras, ReLu, and finally SoftMax was used to achieve maximum likelihoods. The
training tool “Adam” was used to optimize the results. This increases the learning rate and
decreases the understanding time [86]. There are some common potato diseases which are
mentioned in Figure 6.
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3.2. Cucumber

Cucumbers are one of the most important crops for humans yet are not safe from
bacteria and diseases caused by other microorganisms. Some diseases are responsible for
making crop production to be reduced by 30–40%. Powdery Mildew (PM) predominantly
impacts cucumber during its later growth stages, leading to considerable yield loss [87].
Podosphaera xanthii (P. fusca) and Erysiphe cichoracearum are the primary culprits behind this
disease. They initially target lower parts of the plant due to their preference for shaded
areas, manifesting first on older leaves [88]. Abundant conidia are produced within the
powdery mycelium, facilitating rapid spread via wind to neighboring foliage or plants,
capable of traveling considerable distances and remaining viable for up to 7–8 days [89].
Symptoms manifest as circular white powdery patches on both the upper and lower
leaves [90,91]. Disease development occurs within a temperature range of 27–35 ◦C and
relative humidity exceeding 70%, with visible symptoms appearing 3–7 days after initial
infection [92,93].

A bit of difference can be seen between the detection of diseases in potato and cucum-
ber. The algorithms that are used in potatoes are not all suitable for cucumbers as the plants
are a bit different from each other. Researchers conducted a comparative examination of
six pre-trained DL architectures, VGG16, VGG19, ResNet50, ResNet101, InceptionV3, and
Xception, for identifying diseases in cucumber plants [94]. Figure 7 shows some examples
of leaves with different diseases [95].

The pre-trained models underwent fine-tuning via transfer learning and were assessed
based on various metrics including training accuracy, testing accuracy, and epoch count.
The findings revealed that VGG16, despite its relatively smaller layer count, outperformed
the other models across all evaluation criteria. Specifically, VGG16 achieved a testing accu-
racy of 98% and a training accuracy of 99.91% after eight epochs. Moreover, it was noted
that models with more layers, such as ResNet50 and ResNet101 [96], displayed fluctuations
in accuracy during training, likely due to their large size relative to the dataset [97]. Xu et al.
represented their research as a bit different from most others. They found strong positive
associations between greenness and spectrum in specific bands. Analysis of disease spot
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images and classification revealed a direct relationship between disease severity in leaves,
spectral reflectivity, and fluorescence intensity. Enhancement techniques such as MSC and
SPA improved the R2 of the NIR spectrum to 0.8742 in the quantitative prediction model,
although the fluorescence spectrum model yielded less satisfactory results. Qualitative dis-
criminant models employing KNN and ensemble subspace discriminant methods achieved
an identification accuracy of 97.5% after validation for both spectra types [98]. Table 2
shows some of the recent research in disease detection with the help of different models
and summarizes the accuracy and size of the sample, which means the number of images
analyzed and the source of the collected images.
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Table 2. Summary of recent research in cucumber disease detection.

Number of Diseases Analyzed DL Models Data Source Sample Size Accuracy (Max) Ref.

Fungal diseases Residual Next-50,
YOLO Net V5, KNN

Self-collection from
multiple farms 35,000 97.81% [99]

Downy and Powdery Mildew DA, SVM, KNN Collected from two
greenhouse 931

SVM—96%
KNN—95.8%
DA—92.8%

[100]

Leaf diseases (Angular Spot,
Powdery Mildew, Downy

Mildew, blight, Anthracnose)

ES-KNN
F-KNN
C-SVM
Q-SVM

ESD
MG-SVM
W-KNN
EB-Tree

Self-collected 339

ES-KNN—95.2%
F-KNN—94.6%
C-SVM—95.6%
Q-SVM—94.9%

ESD—64.2%
MG-SVM—93.3%
W-KNN—87.1%
EB-Tree—89.4%

[101]

Anthracnose, Powdery Mildew,
Downy Mildew, Angular Spot,

mosaic, and blight

VGG16, ResNet50,
ResNet101, and

DenseNet201

The Cucumber Leaf
Diseases Scan

Dataset
2000 in every class

VGG16—93.8%
ResNet50—94.6%
ResNet101—97.7%

DenseNet201—98.50%

[102]
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Table 2. Cont.

Number of Diseases Analyzed DL Models Data Source Sample Size Accuracy (Max) Ref.

Mildew diseases MATLAB

Tokat
Gaziosmanpaşa

University
Agricultural

Applications and
Research Center

200

Determination
coefficient (R2 = 0.995,

p < 0.01)
Pearson’s correlation
coefficient (r = 0.997,

p < 0.01)

[103]

Powdery Mildew and Downy
Mildew YOLO v4

Vietnam National
University of

Agriculture (VNUA).
7640 80.76% [104]

Downy Mildew, anthrax, and
Powdery Mildew. MTC-YOLOv5n Self-collected 374 84.9% [105]

Downy Mildew, Bacterial
Angular Spot

YOLO V3-V5
EfficientDetD1

YOLO V3-
ASFF

Xiaotangshan
National Precision

Agriculture Research
Demonstration Base

in Beijing

7488 85.52% [106]

Umbilical rot, gray mold,
spotted fly, Anthracnose, target

spot

YOLOv5s
CSP
FPN
NMS

Self-collected 1000 93.1% [107]

Pests and diseases PD R-CNN Self-Collected 10,000 in every class 91.51% [108]

Leaf diseases KNN Self-collected 1262
Ex1-94.30%
Ex2-94.50%
Ex3-94.2%

[109]

Downy Mildew DeepLabV3+
U-Net

Xiaotangshan
National Precision

Agriculture Research
Demonstration Base

1000 93.27% [110]

Angular leaf spot
Blight

Powdery Mildew
Downey Mildew

Anthracnose
Cornrespora

SVM
Complex Tree

KNN
Public database 1010 93.50% [111]

Anthracnose, Angular Spot
Black spot, brown spot

Downy Mildew
Gray mold

Powdery Mildew
Target spot virus

Alexnet and VGG16
Northwest A&F

University, China
[112]

849 93.75% [22]

Small samples were never used before in the detection of cucumber diseases. One of
the first approaches was to use small samples with an image–text label-based multi-modal
model. Cao et al. introduced a model where they used all the models together: image–text
multi-modal contrastive learning, image self-supervised contrastive learning, and label
information were all combined to measure the distance between common image–text label
spaces. The model achieved an outstanding 94.84% accuracy in disease detection [95].
Banerjee and his team used a model which was pre-trained by citrus images. Here, they
used three convolution layers with two pooling layers and two fully connected layers,
and later, they used a support vector classifier machine (SVM). The model’s performance
was evaluated using different scores of precision, recall, F1 score, support, accuracy, and
average metrics. The overall accuracy was 86.03%, and it had a weighted F1 score of 86.10%.
The model previously showed a precision score of 86.96% for Citrus Nematode and 84%
for the Dothiorella blight class. It predicted seven classes of bacterial diseases: angular
leaf spot, bacterial rind necrosis, bacterial soft rot, Bacterial Wilt, bacterial fruit blotch, and
brown spot [113].
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3.3. Pepper

Significant research efforts have concentrated on recognizing and categorizing diseases
in bell pepper crops, employing sophisticated DL methodologies like convolutional neural
networks (CNNs) and transfer learning [114]. Dedicated researchers have introduced a
range of creative frameworks and techniques, such as feature fusion, ensemble models, and
hybrid approaches, to improve the accuracy of disease detection [115]. The adoption of
DL methods has yielded highly promising results, revolutionizing the field of bell pepper
disease classification [116]. The authors suggested a model that can indicate diseases
with the help of the Canny edge detection algorithm. They also used data augmentation
techniques such as image flipping and rotation. For the classification, the authors used
Mobilenet_v2, Inception_v3, and Resnet_v2. By analyzing 1250 images, the model obtained
98.88% accuracy, which is a remarkable achievement [117]. Bhagat et al. used SVM and
grid search-based SVM algorithms to classify peppers as healthy and unhealthy [118]. The
accuracy was found to be extended by 4% from 80% to 84% by transforming it from SVM
to grid search-based SVM [119]. Figure 8 shows some of the most dangerous diseases in
peppers, modified from [120].
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In another study, Zeng et al. analyzed 2478 images to detect diseases, of which 1478
were healthy and 1000 were infected. The model identified the diseased and healthy plants
with 99.55% accuracy [121]. Das used two CNN architectures in his research: VGG16 and
VGG19. He used a total of 2475 images, where 1478 were healthy and 997 were unhealthy.
The VGG19 model was more efficient than the other one. The VGG16 model showed 97%
accuracy with a precision of 99%, where the recall percentage was 93% and the F1 score
96%. On the other hand, the VGG19 model showed 96% accuracy with 99% precision
and 91% recall, where the F1 score was 95% [122]. Dai et al. introduced a new improved
model which showed promising progress. The model accuracy was recorded to be 97.87%,
which is 6% higher than that of GoogleNet based on Inception-V1 and Inception-V3. The
memory used by the model was recorded to be 10.3 MB, which was a reduction to 52.31%
from 86.69%. The proposed model was compared with different models such as AlexNet,
ResNet-50, and MobileNet-V2. The output of this comparison showed that the inference
time decreased by 61.49%, 41.78%, and 23.81%, respectively [120].
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As we know, increasing the number of model layers increases its efficiency and accuracy
to some extent. In their research, Mustafa et al. found out that to be true: they used a five-layer
model for automatic detection using leaf images. They used 20,000 images to train their CNN
model. This model showed an astonishing result of 99.99% accuracy in disease detection [28].
In another study, two methods were compared and combined to identify 26 diseases by using
14 plant leaves, and the results found were quite accurate [123]. There was another study
conducted with the same technique, which was used to identify 13 diseases [124]. The same
research was conducted by another author, and the results were compared with traditional
computer models; this resulted in the fact that CNN is better than most other computer
models for disease detection [125]. Bezabih et al. proposed a model where they used noise
removal and segmentation as well as feature extraction and classification. This was a unique
approach in recent research. The model resulted in a 100% classification accuracy and 97.29%
validation accuracy, as well as 95.82% testing accuracy [27].

Table 3 makes a comparison between different models used in pepper disease detection.
The efficiency found in this research is remarkably good for both early and late detection.

Table 3. Comparison between different CNN models in pepper disease detection.

Number of Diseases
Analyzed

DL
Model Data Source Sample Size Accuracy (Max) Ref.

34 VGG16, VGG19, Resnet50
National Institute of

Horticultural and
Herbal Science

28,011 85.6% for diseases and
98.42% for pests [126]

1 (PLBD) R-CNN Self-collection 10,000 99.39% [127]

Overall leaf diseases
Inception V3, Mobilenet,

VGG19, ResNet,
EfficientNetB4

Kaggle 20,000 84.25%, 79.69%, 79.99%,
77.34%, 82.65% [49]

2 CNN Plant Village 4627 91.28% [128]

Bacterial and fungal
diseases

VGG19, Xception, NasNet
Mobile, MobileNet-V2,

Resnet-152-V2 and
Inception-ResNet-V2

Self-collected 386 96.26% [129]

Bacterial diseases
ANN, Recurrent Neural

Network, ResNet50 VGG16,
Inception V3

Plant Village 2442
VGG16—99.72%

ResNet50—99.31%
InceptionV3—95.77%

[130]

Leaf diseases MobileNet Self-collected 2478 99.55% [121]

14 diseases Multilayer Perception
Neural Network Self-collected 33 98.91% [131]

19 diseases VGG and ResNet50

National Institute of
Horticulture and

Herbal Science, South
Korea

23,868 96.02% [132]

Bacterial infection SVM, KNN, DarkNet-19 Kaggle 2475 98.8% [133]

Black pepper diseases,
nutrient deficiency VGG16 and Inception V3 Sarawak Farms 947 converted

into 9532 98.47% [134]

Fusarium, mycorrizhal
fungus ANN, Naïve Bayes, KNN GAP Agriculture

Institute, Turkey 80
KNN—100%
ANN—97.5%

Naïve Bayes—90%
[135]

Bacterial and viral diseases

VGG16,
VGG19,

ResNet50,
ResNet101,
ResNet152,

InceptionResNetV2,
DenseNet121

Plant Village 1596 97.49% [136]

Pepperbell Bacterial Spot Faster R-CNN Plant Village 460 98.06% [137]

Bacterial disease VGG16, AlexNet Self-collected 3139 95.82% [27]
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3.4. Tomato

Tomatoes are one of the most consumed vegetables on earth. They are filled with
nutrients and vitamins and are almost as popular as potatoes in every corner of the earth.
But every year, there is a huge loss in the production of tomatoes because of bacterial
attacks on the plant [138]. There have been several reports of tomato diseases. Nine dis-
eases have been reported so far by different researchers such as target spot, two-spotted
spider mite, Bacterial Spot, early blight, Septoria Leaf Spot, target spot, mosaic virus, and
late blight [139,140]. Timely recognition of these diseases can add a benefit to the tomato
production procedure and can reduce economic losses and supply losses [141]. There has
been a lot of research going on in the detection of tomato diseases [142]. DL models have
been found to be more useful than most other models that have been used in machine
learning algorithms [143,144]. Mohanty et al. used AlexNet and GoogleNet to identify a
huge number of diseases (26), where they took 14 crop samples for identification [145]. An-
other researcher used the same models to identify nine plant diseases with 14,828 pictures
taken from different plants. A Deep Convolution Neural Network-based project combined
AlexNet, GoogleNet, and Visual Geometry Group models for identification of diseases
from 58 distinct classes of 25 plants. Here, it was clear that the VGG [146] model achieved
a higher identification rate compared to AlexNet and GoogleNet [147]. Aishwarya et al.
used the Plant Village dataset to train their model. The dataset comprised 54,303 images
of plant leaves that were in 38 categories classified by species and diseases. The healthy
portion of the dataset contained 16,012 images and the diseased part was classified into
10 categories for convenience [148]. Figure 9 shows some of the most dangerous bacterial
and viral diseases of tomatoes.
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Table 4 indicates testing accuracy between different models, and once again, it proves
the superiority of CNN in the disease detection process. Compared to every other testing
model, CNN shows the highest accuracy in most of the cases.

Table 4. Comparison between different CNN models in tomato disease detection.

Number of Diseases Models Dataset Source Dataset Size Accuracy Ref.

8 distinct diseases CNN, GoogleColab Public dataset 3000 98.49% [149]

12 diseases CNN Self-collected 1981 93.37% [150]

10 diseases CNN, MobileNet Public dataset 7176 89.2% [151]

10 disease classes DenseNet Kaggle 10,000 95.7% [152]
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Table 4. Cont.

Number of Diseases Models Dataset Source Dataset Size Accuracy Ref.

8 distinct diseases Deep CNN, ResNet50,
DesnseNet121, RRDN AI Challenger 13,185 95% [153]

5 diseases C-GAN, DenseNet121 PlantVillage 16,012 DenseNe121—98.65% [154]

5 diseases YOLOX-S, PLPNet Self-collected 203 PLPNet—94.5% [155]

Overall leaf diseases GoogleNet, VGG16 PlantVillage 10,735 GoogleNet—99.23% [156]

Early blight, late blight,
and Leaf Mold

Attention-based Residual
CNN PlantVillage 95,999 98% [157]

9 different diseases T-LeafNet, AlexNet,
MobileNetV2 and VGG16 Plant Village 10,000 VGG16—99.21% [158]

Early and late blight ResNet9 PlantVillage 1331 99.25% [159]

5 distinct diseases VGG16 [160], VGG-19,
ResNet and Inception V3

Laboratory-based data,
available in (https://github.
com/PrajwalaTM/tomato-

leaf-disease-detection
accessed on 21 January 2024

2364 99% [161]

Virus-based diseases YOLOv5, R-CNN Self-collected 150 91.07% [162]

9 types
ResNet50, Xception,

MobileNet, ShuffleNet,
Dense121_Xception

PlantVillage 13,112 97.10% [163]

Overall leaf diseases VGG16, VGG19 Tomato diseases multiple
data source 32,535 94.88% [164]

Leaf diseases CNN PlantVillage 14,903 99.25% [165]

Leaf spot MobileNet, YOLOv5 Collected by a web crawler 2385 94.13% [166]

10 different classes PCA DeepNet, Adversarial
Network PlantVillage 18,128 99.60% [1]

Fungi, bacteria, mold,
virus, and mite diseases EfficientNet PlantVillage 18,161 99.95% [160]

Phoma rot, Leaf Miner,
target spot OpenCV, AlexNet, ANN Public database - 98.12% [167]

Target spot, Bacterial
Spot, Septoria Spot

VGG16, ResNet152,
EfficientNet-B4 PlantVillage 5524 98% [168]

Bacterial Spot, early
blight,

late blight, Leaf Mold,
mosaic virus, Septoria

Leaf Spot,
two-spotted spider mite,
target spot, and Yellow

Leaf Curl Virus

MobileNetV2,
NasNetMobile,

Xception,
MobileNetV3, AlexNet,

GoogLeNet and ResNet1

PlantVillage 18,160 99% [169]

Bacterial spot, early
blight,

late blight, Leaf Mold,
Septoria Leaf Spot,

two-spotted spider mite,
target spot, tomato
mosaic virus, and

tomato yellow leaf curl

MobileNetV3Small,
EfficientNetV2L,
InceptionV3 and

MobileNetV2

PlantVillage 18,160 99.60% [170]

Tomato leaf diseases

ResNet50, InceptionV3,
AlexNet, MobileNetV1,

MobileNetV2 and
MobileNetV3

PlantVillage 16,004 99.81% [171]

9 distinct diseases VGG16, InceptionV3,
MobileNet Plant Village 10,000 CNN—91.2% [172]

https://github.com/PrajwalaTM/tomato-leaf-disease-detection
https://github.com/PrajwalaTM/tomato-leaf-disease-detection
https://github.com/PrajwalaTM/tomato-leaf-disease-detection
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Table 4. Cont.

Number of Diseases Models Dataset Source Dataset Size Accuracy Ref.
Early blight,

Yellow Leaf Curl Virus
Inception V3 and

Inception ResNet V2 Plant Village 5225 Inception V3—99.22% [173]

Bacterial Spot, early
blight, late blight, Leaf

Mold, Septoria Leaf Spot,
two-spotted spider mite,
target spot, mosaic virus,

Yellow Curl Virus

LightMixer Plant Village 18,835 99.3% [174]

Six diseases CNN, K-NN, SVM Plant Village 600 CNN—99.6% [175]

Chug et al. introduced a revolutionary model to identify disease; the team used a
hybrid model to identify crop diseases. A framework of 40 different hybrid deep learning
models was proposed. Eight different pre-trained architectures were used, such as Efficient-
Net (B0–B7) as a feature extractor. Five machine learning methods were used, including
k-Nearest Neighbors, AdaBoost, Random Forest, logistic regression, and stochastic gra-
dient boosting as a classifier. The model’s accuracy ranged between 87.55% and 100% in
disease detection. The PlantVillage-TomEBD and PlantVillageBBLS datasets were used to
evaluate the model’s accuracy. For early blight detection, IARI-TomEBD was used. The
novel optuna framework increased the model’s performance remarkably according to [176].
A lot of researchers have used CNN architectures to deal with maize disease: Darwish
et al. used VGG16 and VGG19 to distinguish between healthy and unhealthy maize leaves
and achieved 98.2% accuracy [177]. Another researcher used grid and random search to
identify maize disease and achieved 96.25% accuracy [178]. Yulita et al. used a public
dataset from Kaggle to identify diseases in tomato plants on the DenseNet training model.
A total of 1000 images were collected to identify 10 diseases in the plant leaves. The model’s
accuracy was reported to be 85.32% without the picture being augmented, and later after
augmentation, the accuracy increased to 92.53% [152]. Recently, more research has been
conducted on MobileNet to achieve greater efficiency [179].

3.5. Bitter Gourd

Bitter gourd, also known as Momordica charantia, is prone to diseases because of
its physical structure. The outer layer of its body holds a very thin layer of tissue that
can be penetrated by any microorganisms like bacteria and viruses. The most common
diseases that can be seen in bitter gourd are Powdery Mildew, Downy Mildew, Anthracnose,
Bacterial Wilt, and some mosaic viruses. Figure 10 represents the yellow mosaic virus
of bitter gourd. Liu et al. worked on predicting the Powdery Mildew disease using a
small-sized leaf. They increased the original R-CNN model-recommended size of the area
during training. The result indicated that the DL network model VGG-16 [180] has the
best performance. The accuracy of detection was mentioned as 89.9%, 83.0%, 81.9%, and
79.5% for healthy leaves, Powdery Mildew, gray spot, and vine blight, respectively. After
increasing the size of candidate value, the efficiency increased by 7% and the result was
recorded at 99.9% [181]. In another study, 55 bitter gourd samples were used to identify
diseases. The Feed-Forward Neural Network algorithm, Learning Vector Quantization,
and Radial Function Network were used for the experiment. The average accuracy that
was reported was 94.67% [182]. Hasan et al. used a more complicated technique. They
created three different models by modifying their algorithm layers by number and value
to identify diseases more efficiently. The prepared model showed 99.70% accuracy. The
project also used Tensorflow, Scikit-Learn, Pandas, and Keres. The structure programming
language was Python [183]. Figure 10 demonstrates the yellow mosaic virus mentioned by
Mondal et al. in their research and other common bitter gourd diseases [184].
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3.6. Brinjal

Brinjals are very much affected by some of the most harmful diseases, mainly wilt
diseases such as Verticillium Wilt, Fusarium Wilt, and Bacterial Wilt. There are some more
diseases like Phomopsis Blight, Powdery Mildew, Bacterial Leaf Spot, and root rot. Abisha
et al. worked on the brinjal plant, which was affected by Alternaria melongenea and Tobacco
Mosaic. Initially, they filtered the images with a Gaussian filter to reduce the noise. Later,
they used DCNN and RBFNN to classify the leaves as having a disease. The mean accuracy
found was 93.30% with fusion and 76.70% without fusion [185]. In another study, the group
used SLIC clustering to detect diseases more efficiently and classify the diseased leaves
according to their respective attacking microorganisms. The model identified 300 diseased
leaves with 98.38% accuracy [186]. Jain et al. used three pre-trained models to identify
the diseases in eggplant leaves. The models were AlexNet, GoogleNet, and ResNet. Five
diseases were identified successfully with 77.08% accuracy by the ResNet model [187]. A
different approach was taken by Venkataramana et al., who used a novel DL integration
supported by Support Vector Machine [188]. Some of the most dangerous leaf diseases of
brinjals (Figure 11) were also listed by [189].
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3.7. Carrot

Carrots are a very important vegetable with rich nutrients, but they are often attacked
by root nematode, Sclerotinia Rot, black root rot, alternaria leaf spot and cavity spot, as
some of the diseases shown in Figure 12. All these diseases are very harmful to carrot
production. Contagious and diverse diseases are highly dangerous for a vegetable that
grows underground [190]. Methun et al. worked on the disease detection of carrots and
found a rather good efficiency with CNN. They used the FCNN model to classify the data
and Inception V3 for result analysis. The accuracy was found to be 97.4% [191]. In another
study, the researcher tried to identify carrot cavities with CNN models as well as predict
diseases by analyzing the leaf of the plant. The group developed an application called
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Carrot Cure to identify diseases and report them with efficiency. The CNN model showed
a 99.8% accuracy [192].
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common than the other one.

3.8. Cabbages and Cauliflower

Cabbages and cauliflower are attacked by several bacteria and viruses over their
lifetime. Some mentionable diseases are Black Leg, Clubroot, Downy Mildew, Powdery
Mildew, Fusarium Wilt, Alternaria leaf spot, bacterial soft rot, and Xanthomas leaf spot,
as some of them shown in Figure 13. Some of the diseases can be detected efficiently with
the help of AI or machine learning models. Reya et al. used four models, VGG16, VGG19,
MobileNet V2, and Inception V3, to identify diseases in cabbages. The VGG16 showed
promising results, with an accuracy of 95.55% [193]. The main purpose of DL is not just to
identify the disease but also to separate and dictate whether the plant is healthy or not. So,
the researcher’s purpose is not limited to only detecting diseases but identifying healthy
leaves too [194]. The most common diseases that can be found in Bangladesh, one of the
biggest cabbage producers, some of them alike including cauliflower are presented below
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In a different approach in India, a group of researchers used Adaptive Threshold
Algorithms to compare different samples and identify fungal diseases. The adaptive
thresholding algorithms showed more promising results than only the threshold algorithm.
The accuracy of the prior one was found to be 80.5% at 93.5% sensitivity. And the latter
one was found to be 62.7% at 43.1% sensitivity [195]. Song et al. used nondestructive
classification to detect soft rot in napa cabbages by processing hyperspectral imaging in
near-infrared imaging. The group determined the microbiological and physiochemical
qualitative properties. To predict the cabbage condition, the Support Vector Machine, the
second-derivative Savitzky–Golay method, and wavelength selection were used. Among
these models, the SVM model showed 99% success in finding diseases, 96% sensitivity,
and 88% specificity. The effective wavelengths were 970, 978, 1180, and 1070 [196]. Kanna
et al. used multiple models to predict Bacterial Spot rot, Black Rot, and Downy Mildew in
cauliflower. Ten deep transfer learning models were used in this experiment: efficient netB0,
Xception, Efficient NetB1, MobileNetV2, DenseNet201, EfficientNetB3, InceptionResnetV2,
EficientNetB4, RestNet152V2, and Efficient NetB4. EfficientNetB1 achieved a remarkable
accuracy of 99.90% [197]. Shakil et al. used k-means clustering for segmentation; the
statistical matrix was named gray-level co-occurrence. At this level, the synthetic minority
oversampling method was used, followed by a machine learning approach to evaluate the
detection performance. The logistic regression turned out to be the most accurate in this
case: the accuracy was 90.77% [198].

Table 5 summarizes the other vegetables that have been affected by the most common
diseases. The accuracy of the models shown in the table is promising in the field of disease
detection using DL.

Table 5. Summary of bitter gourd, brinjal, cabbages, carrot, and cauliflower diseases recognition
accuracy and models used in different studies.

Name of the Crops Model Used Dataset Size Accuracy Ref

Bitter gourd CNN, DL 4965 99.31% [183]
Bitter gourd Naïve Bayes Classifier 75 95% [184]

Brinjal AlexNet, ResNet, GoogleNet 5 datasets
68.75%
77.08%

75%
[187]

Brinjal VGG16 2815 94.3% [199]

Brinjal DCNN, RBFNN 1100 93.30%
87% [185]

Brinjal DenseNet, Xception, RestNet152V2 2766 99.06% [200]
Brinjal CNN, SVM - 99.4% [188]

Cabbages VGG16, VGG19, MobileNet V2, Inception
V3 1500 95.55% [193]

Cabbages MATLAB 544 80.5% [195]

Carrot VGG16, VGG19,
MobilNet 10,655 97.4% [191]

Carrot FCNN 1063 98.40% [192]
Cauliflower GLCM, SMOTE, LR 708 90.77% [198]

4. Future Perspectives and Research Gaps

Numerous factors contribute to the efficacy of a particular CNN in detecting vegetable
diseases, encompassing the availability and quality of annotations, the characteristics of
the available images, the environmental conditions during image acquisition, and the
variability of disease symptoms across instances. While numerous methodologies have
been proposed for leaf disease identification, significant challenges persist.

4.1. Limitations

• Adequate sample sizes are crucial for ensuring robust generalization of features within
DL networks.

• Despite advancements, a limited number of diseases have been addressed thus far, un-
derscoring the need for expanded research encompassing a broader array of diseases.
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• Current machine learning models rely solely on manual feature extraction for perfor-
mance evaluation, highlighting the imperative for automated feature extraction to
facilitate optimal classification. Total automation requires more accuracy in detection
and the ability of the model to identify the features by itself.

• Discriminating between crucial features in plant leaves using conventional image
processing techniques poses considerable difficulty due to the substantial variability
in disease characteristics. Automated analysis of disease patterns necessitates the
utilization of diverse datasets.

• The available datasets are sometimes outdated and can no longer match the current
mutated viruses or diseases. Some diseases have similar symptoms, but the cures
are different, or some can even be highly contagious and treated as mild because of
misinterpretation of results.

• Disease-level prediction is another limitation that we have that is hindering the use of
AI in the field.

• Real-time monitoring is not available in all farms, which is why the subject on which
this research is being conducted cannot be monitored for progress or decline.

• Most of the data that are being used now are being used by many researchers at the
same time. Due to this, we are losing so much time on data that have already been
analyzed by another group elsewhere in the world.

• The contour of the images can be confusing to the AI model sometimes, so proper
identification is hindered because of changes in contour.

• Some algorithms require more space and take more time for execution, which should
be modified to obtain robust responses.

4.2. Recommendations

• Detection of the stage of the disease is of paramount importance. The model should
indicate the stage of disease such as curable, non-curable, or rotten. That way, farmers
can take proper action without wasting any time.

• Feature extraction must be improved to identify and monitor the data properly.
• Real-time farm monitoring should be enabled to take care of crops properly. That way,

the farmers will know when to use medicine when the plant is being affected, and
how long it takes to recover or fully lose the harvest.

• Similar symptoms of diseases are very confusing. Some highly contagious diseases can
be treated with a little caution; the model should be able to make proper identification
with precision.

• Farmers should know how much time they have left to save the crop or how much
time they have to cure all the crops; that is why it will be of great help if proper
identification of the disease stage is made.

• Pesticides and other chemicals that are used are dependent on the severity of the
attack; the model should identify what concentration of pesticides should be used to
properly save the crops. Otherwise, the expenses can increase, which will not be good
if there is a loss in production.

• IoT can be of much help in this section; by integrating the output algorithms that
are being used with the farm management system and IoT, the data can be shared
seamlessly and properly used in different parts of the world at the same time. This
will provide proper real-time monitoring and proper decision-making in different
changes in conditions. Proper communication through different channels will increase
efficiency in detection as well as decision-making for proper treatment.

• Multidimensional concatenation will be a great contribution because of its recognized
knowledge of plant insects.



Agronomy 2024, 14, 2231 22 of 30

5. Conclusions

This study presents a review of the emergence of smart agricultural solutions that
incorporate computer vision; vision transformers (ViTs) are a relatively new and intriguing
breakthrough. It is concluded in this review that convolutional neural networks (CNNs)
and DL have made encouraging progress in the field of vegetable disease detection, pro-
viding a potent instrument for precise and effective diagnosis. The literature assessment
indicates that these systems can overcome conventional limitations related to manual
feature extraction and categorization. The main problem is the data source and testing
environment. Most of the research is conducted based on public datasets, while they should
be conducted on self-collected data directly from fields. As the weather and geological
locations have a great impact on the characteristics of a disease, data from one part of
the world may not be useful for another part. So, when researchers are training a model
based on data found in the US and using that model to identify disease in India, then
the accuracy can show major dissimilarity. The wide diversity of vegetable diseases and
changes in symptoms between cases require the creation of more resilient and flexible
models. This calls for improving feature extraction methods, reorganization of model
topologies, and incorporating cutting-edge approaches like ensemble learning and transfer
learning. Furthermore, boosting the performance and real-world applicability of DL models
across various environmental conditions and vegetable species requires expanding and
diversifying their datasets to strengthen their generalization capabilities. In addition, it
is critical to tackle issues with computing complexity and real-time implementation to
promote broad adoption in agricultural contexts. This review identifies the similarities
and dissimilarities among different models’ accuracy in disease detection in vegetables, as
vegetables are very perishable, delicate, and vulnerable to various diseases, which cause
huge economic losses as compared to other food crops. The use of CNN techniques helps
minimize these economic losses through disease detection at early stages. This review also
identified the necessity of data sharing by different communities all over the world. In
general, to fully utilize CNNs and DL for revolutionary breakthroughs in plant disease
detection and agricultural sustainability, interdisciplinary cooperation between computer
scientists, plant pathologists, and agronomists will be essential, as well as ongoing research
and innovation in model development. The issues that have been found through this study
should properly be explored as much as possible in future works. In particular, IoT can
contribute a lot more than one might think, as researchers have not thought about it yet or
have not found a proper channel to implement it; this can have the most valuable impact
on properly detecting diseases and being able to take proper action at the proper time.
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