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Abstract: The concentration of nitrogen fertilizer is matched with the nutrient requirements in
different growth stages of plants, which coordinates their vegetative and reproductive growth. In this
study, the influences of nitrogen concentration before and after initiation of flower bud differentiation
(first and second stage, respectively) on pepper seedling quality were studied. The chlorophyll
a content, sucrose synthase activity, and sucrose phosphate synthase activity of pepper seedlings
grown under moderate nitrogen (15 mmol L−1) in the first stage combined with high nitrogen
(25.61 mmol L−1) in the second stage were 15.7%, 39.3%, and 34.6% higher than those of the same
nitrogen concentration (15 mmol L−1) in the first and second stages treatment, respectively. The
regression model also showed that the values of flower bud diameter, shoot fresh weight, root fresh
weight, and glutamine synthetase activity of pepper were high under the condition of moderate
nitrogen in the first stage and higher nitrogen in the second stage. In addition, the results of
comprehensive evaluation showed that moderate nitrogen (15 mmol L−1) in the first stage and high
nitrogen (25.61 mmol L−1) in the second stage treatment ranked first, which improved carbon and
nitrogen metabolism, increased biomass accumulation, and promoted the flower bud differentiation
and flowering of pepper seedlings.

Keywords: chlorophyll content; comprehensive evaluation; flower bud; nitrogen concentration;
pepper seedling

1. Introduction

Pepper (Capsicum annuum L.) is one of the important economic and horticultural
vegetables in the world, as its fruits are abundant in nutrients such as vitamin C, dietary
fiber, and other compounds that are beneficial to human health [1–3]. Additionally, pepper
is one of the primary vegetables cultivated year-round in protected horticulture, and the
global annual production of pepper is estimated to be approximately 42.3 million tons,
with a cultivation area of 3.7 million hectares [4]. Therefore, cultivating high-quality pepper
seedlings is a vital way to increase crop yield and economic benefits [5,6].

In the growth of pepper plants, nitrogen is a crucial element involved in growth and
development, serving as a fundamental component of proteins, nucleic acids, chlorophyll,
and other essential organic molecules [7]. Insufficient nitrogen restricts plant growth and
ultimately reduces vegetable yield. For instance, Flores-Saavedra et al. [8] indicated that
tomato cultivated under a low nitrogen fertilization condition (0.5 mM) showed retarded
development and reduced carbohydrates accumulation compared with those under high
nitrogen treatment (5 mM); in addition, the photosynthesis and plant growth of tomato
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were enhanced with the increase in nitrogen content [9]. The application of appropriate
nitrogen fertilizer significantly enhanced the uptake of phosphorus and potassium of plants
and thereby regulated the growth and development of pepper and ultimately increased
pepper yield [10,11]. Optimal nitrogen management enhances plant yield and resource
use efficiency; conversely, excessive or insufficient nitrogen application can diminish plant
yield, as well as reduce water use efficiency and nitrogen use efficiency [12]. In addition,
excessive application of nitrogen also leads to environmental pollution [13]. Therefore,
suitable nitrogen fertilizer management is a necessary method for annual production of
pepper seedlings.

Flower bud differentiation is a key link during the growth and development of pep-
per, which is a sign of the transition from vegetative growth to reproductive growth [14].
Fertilization exerted a significant impact on flower bud differentiation, where the optimal
ratios and application amounts of nitrogen, phosphorus, and potassium fertilizers were
found to enhance nutrient absorption and promote flower bud differentiation in Chinese
prickly ash [15]. Nitrogen plays an important role in flower bud differentiation, and previ-
ous studies have shown that nitrogen deficiency in the early growth stage of strawberry
delayed flower bud differentiation, while optimal nitrogen concentration (0.1 g N per plug)
at the seedling stage promoted flower bud differentiation [16,17]. Similarly, low nitro-
gen application inhibited crop growth, delayed leaf development, and reduced flowering,
whereas the leaf growth and flowering of plants were promoted with increased nitrogen
concentration [18]. However, excessive nitrogen application inhibited the flower formation
of plants and reduced fruit yield [17]. Therefore, the optimization of a fertilization strategy
could change the nutrient levels and regulate the flower bud differentiation and flowering
of vegetable seedlings and ultimately affect crop yield and quality.

In the meantime, previous studies have shown that in the early stage of tomato fruit
growth, excessive nitrogen reduced the water use efficiency of the plant [9]. In the middle
or late stage of fruit growth, high nitrogen application increased the transpiration and
water use efficiency [9]. The application of a high nitrogen concentration after flower
budding increased the number of flower buds and flower fresh weight [19]. In addition, the
precise adjustment of nutrient delivery in the key stages of pepper growth can regulate the
growth and development of pepper [20,21]; flower bud differentiation and flowering were
affected with the changes in metabolite content of plants [22]. However, most studies on
the effects of nitrogen fertilizer on pepper growth have focused on nitrogen concentration
or nitrogen form, and few studies investigated the influences of phased fertilization at
different growth stages of pepper seedlings on flower bud differentiation and plant growth.
In production, large amounts of nitrogen fertilizer uniformly from the beginning to the
end of the seedling period were often applied due to the fact that farmers believe that
increasing nitrogen fertilizer can increase plant yield, which not only causes environmental
pollution but also increases production costs [23]. Therefore, the amount of fertilization
applied at different growth stages should be coordinated with the nutrient requirements of
plants at different growth stages, which can optimize biomass accumulation during both
vegetative and reproductive growth stages, thereby influencing overall plant growth and
development [24,25].

Therefore, our study aims to investigate the effects of nitrogen concentration at dif-
ferent growth stages on the biomass accumulation, photosynthetic pigment content, and
carbon and nitrogen metabolic enzyme activity of pepper seedlings. Additionally, the
effects of nitrogen concentration on flower bud differentiation and flowering of pepper
were further investigated for optimizing nitrogen application. In addition, a comprehensive
evaluation model and regression model were applied to determine the nitrogen fertilizer
supply strategy at different growth stages of pepper seedlings. Our study could provide a
feasible fertilization strategy to coordinate the growth and development of pepper seedlings
and cultivate high-quality seedlings through the precise application of nitrogen fertilizer at
different stages.
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2. Materials and Methods
2.1. Plant Materials

Pepper (Capsicum annuum L. cv. Malayu) seeds were sown in 72-cell plug trays, using
a substrate with a 3:1:1 volume ratio of peat, vermiculite, and perlite. The plug trays were
kept in a closed transplant production system of Qingdao Agricultural University, Qingdao,
Shandong Province, China. The light intensity and photoperiod were 250 µmol m−2 s−1

and 16 h d−1, respectively, provided by white LEDs. The air temperature inside the closed
transplant production system was 25 ± 2 ◦C for the light period and 18 ± 2 ◦C for the dark
period, with a relative humidity of 60–70%.

2.2. Experimental Design

The nitrogen application level of the pepper seedlings at different growth stages was
divided into the nitrogen concentration before initiation of flower bud differentiation (the
first stage) and the nitrogen concentration after initiation of flower bud differentiation
(the second stage). The initiation of flower bud differentiation was determined when the
growth cone of the pepper seedling widened and a round protrusion appeared, according
to the method reported by Liu et al. [26]. A central composite design of two factors and
five levels with the codes (−1.414, −1, 0, 1, 1.414) were adopted in the experiment [27],
and the corresponding nitrogen concentration was 4.39, 7.5, 15, 22.5, and 25.61 mmol L−1,
respectively (Table 1). This experiment was conducted based on the principle of quadratic
regression orthogonal design (Table 2), which can arrange more experimental gradients
with fewer treatments and is widely used in biological experiments [28]. Therefore, this
experiment consisted of nine treatments (T5 was considered as the control) with three
replicates per treatment and 72 pepper seedlings per replicate (Table 3).

Table 1. Experimental design of nitrogen concentration applied for pepper seedlings at different
growth stages.

Growth Stages
Nitrogen Concentration Code and Level

(mmol L−1)

−1.414 −1 0 1 1.414

Before initiation of flower bud differentiation 4.39 7.5 15 22.5 25.61
After initiation of flower bud differentiation 4.39 7.5 15 22.5 25.61

Codes (−1.414, −1, 0, 1, 1.414) represent the level at different treatment factors.

Table 2. Two-factor experiment design based on the principle of the quadratic regression orthogonal
design.

Nitrogen Concentration before Initiation of Flower Bud
Differentiation (mmol L−1)

Nitrogen Concentration after Initiation of Flower Bud
Differentiation (mmol L−1)

4.39 7.5 15 22.5 25.61

4.39 1
7.5 1 1
15 1 1 1

22.5 1 1
25.61 1

“1” represents the combination of experimental treatments performed.

Table 3. Treatments of nitrogen concentration at different growth stages of pepper seedlings.

Treatment
Nitrogen Concentration before Initiation of

Flower Bud
Differentiation (mmol L−1)

Nitrogen Concentration after Initiation of
Flower Bud

Differentiation (mmol L−1)

T1 4.39 15
T2 7.5 7.5
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Table 3. Cont.

Treatment
Nitrogen Concentration before Initiation of

Flower Bud
Differentiation (mmol L−1)

Nitrogen Concentration after Initiation of
Flower Bud

Differentiation (mmol L−1)

T3 7.5 22.5
T4 15 4.39
T5 15 15
T6 15 25.61
T7 22.5 7.5
T8 22.5 22.5
T9 25.61 15

Nitrogen concentration before and after initiation of flower bud differentiation were experimental variables. There
were 9 treatments in this experiment, and T5 was the control.

In this study, Hoagland solution with nitrogen concentration of 15 mmol L−1 was
used, which contained (mg L−1) Ca(NO3)2·4H2O (945), KNO3 (607), NH4H2PO4 (115), and
MgSO4·7H2O (493) and the micronutrients Na2Fe-EDTA (30), H3BO3 (2.86), MnSO4·4H2O
(2.13), ZnSO4·7H2O (0.22), CuSO4·5H2O (0.08), and (NH4)6Mo6O24·4H2O (0.02). The low
level of nitrogen concentrations (4.39 mmol L−1 and 7.5 mmol L−1) were prepared by
decreasing the contents of Ca(NO3)2 and KNO3 in the solution and increasing the con-
tents of CaCl2 and KCl in the above solution. The high level of nitrogen concentrations
(22.5 mmol L−1 and 25.61 mmol L−1) were prepared by adding NaNO3 to the solution. The
pH values were maintained between 6.0 and 6.5, and the pepper seedlings were irrigated
with 1/2 concentration nutrient solution at the cotyledon stage, and full concentration
nutrient solution was applied every 3 days after the first true leaf appeared. The destructive
measurements of the pepper seedlings were carried out at 40 days after sowing. Subse-
quently, the pepper seedlings were transplanted into plastic pots (diameter, 8.5 cm; depth,
7 cm) with mixed peat, vermiculite, and perlite (3:1:1, v/v/v), which were sampled for
flower observation at 60 days after sowing.

2.3. Growth Measurement
2.3.1. Plant Growth Parameters

Plant growth parameters of pepper seedlings were measured at 40 days after sowing.
Root surface area and root volume of pepper seedlings were measured using WinRHIZO
software (Version 2016a, Regent Instruments Inc., Quebec, QC, Canada). Shoot fresh
weight and root fresh weight of pepper seedlings were determined with an electronic
analytical balance (FA1204B; BioonGroup, Shanghai, China). Fresh shoots and roots of
pepper seedlings were dried in an oven at 105 ◦C for 3 h, and the dry weights of the shoots
and roots were determined after further drying at 80 ◦C for 72 h. The seedling quality index
was determined based on Yan et al. [29].

2.3.2. Photosynthetic Pigment Content

Photosynthetic pigment content of pepper leaves was measured at 40 days after
sowing. About 0.2 g of mature pepper leaves were cut into pieces and soaked in 10 mL
of 95% alcohol for 48 h. Absorbance of the extract at wavelength 665 nm, 649 nm and
470 nm was measured by a spectrophotometer (1810, Shanghai Yoke Instrument Co., Ltd.,
Shanghai, China) according to Xing et al. [30].

2.3.3. Enzyme Activity

Enzyme activity of pepper leaves was measured at 40 days after sowing. The nitrate
reductase (NR) activity and glutamine synthetase (GS) activity was determined by the
method of NR Kit (BC0080, Solarbio, Beijing, China) [31] and GS Kit (BC0910, Solarbio,
Beijing, China) [32], respectively. Sucrose synthase (SS) activity and sucrose phosphate
synthase (SPS) activity was determined using the SS Kit (BC0580, Solarbio, Beijing, China)
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and SPS Kit (BC0600, Solarbio, Beijing, China), respectively, following the instruction
manual [33].

2.3.4. Flower Buds of Pepper Seedlings

The flower bud diameter of the pepper seedlings was measured at 40 days after
sowing with a vernier caliper, dissected with anatomic needle, and photographed under a
microscope (SMZ-140, Motic, Wetzlar, Germany).

2.3.5. Flower Organs of Pepper Seedlings

Flower organs of pepper seedlings were measured at 60 days after sowing, pho-
tographed under a microscope (SMZ-140, Motic, Wetzlar, Germany), dissected with anatomic
needle, and flower transverse diameter, flower longitudinal diameter, anther length, anther
width, filament length, stigma width, and style length were measured with a vernier caliper.

2.3.6. Comprehensive Evaluation Methods

An entropy weighted technique for order preference by similarity to an ideal solution
(TOPSIS) method was used to determine the weight of each index, and the comprehensive
evaluation scores of treatments were ranked based on previous studies [34,35].

2.3.7. Regression Model

Multiple regression fitting of the data was performed through using Origin 2021 to
determine the model coefficients, and then the growth model was generated using the
equations. The relationship model was established through a binary quadratic equation, as
shown in Equation (1).

z = a + bx + cy + dx2 + ey2 + fxy (1)

where x and y indicate the input, z indicates the output. The six items on the right side of
the equation represent constant terms, linear terms, quadratic terms, and interaction terms.

2.4. Date Analysis

All data were analyzed for significance by one-way ANOVA using DPS 7.05 (Hangzhou
Ruifeng Information Technology Co., Ltd., Hangzhou, China), and the significance differ-
ences among treatments was conducted by the Least Significant Difference (LSD) method
at the p < 0.05 level. Origin 2021 (Origin Lab, Northampton, MA, USA) was used for
correlation analysis.

3. Results
3.1. Effects of Nitrogen Concentration at Different Growth Stages on Biomass and Seedling Quality
Index of Pepper Seedlings

Nitrogen concentration at different growth stages had significant influences on the
shoot and root weight of the pepper seedlings (Table 4). The shoot fresh weight, shoot dry
weight, and root fresh weight of pepper seedlings exposed to the T5 treatment increased by
41.9%, 33.3%, and 16.0% compared with those under the T1 treatment, respectively. The
shoot fresh weight, shoot dry weight, and root fresh weight of pepper seedlings exposed
to the T5 treatment increased by 20.1%, 23.1%, and 17.0% compared with those under the
T9 treatment, respectively. The seedling quality index of pepper seedlings exposed to the
T5 treatment was increased by 36.4% and 31.8% compared with those in the T1 and T9
treatments, respectively. The shoot fresh weight, shoot dry weight, and seedling quality
index of pepper seedlings grown under the T5 treatment were increased by 22.2%, 12.8%,
and 13.6% compared with those under T4 treatment, respectively. However, there were
no remarkable disparities in the biomass and seedling quality index of pepper seedlings
between the T5 and T6 treatments.
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Table 4. Effects of nitrogen concentration at different growth stages on biomass and seedling quality
index of pepper seedlings.

Treatment Shoot Fresh Weight
(g per Plant)

Root Fresh Weight
(g per Plant)

Shoot Dry Weight
(g per Plant)

Root Dry Weight
(g per Plant)

Seedling Quality
Index

T1 2.43 ± 0.06 c 0.79 ± 0.04 cd 0.26 ± 0.02 d 0.063 ± 0.002 abc 0.14 ± 0.01 c
T2 2.50 ± 0.02 c 0.83 ± 0.07 bcd 0.29 ± 0.02 d 0.065 ± 0.004 abc 0.14 ± 0.03 c
T3 3.19 ± 0.23 b 0.83 ± 0.03 bcd 0.35 ± 0.02 bc 0.063 ± 0.007 bc 0.15 ± 0.02 c
T4 3.25 ± 0.18 b 0.86 ± 0.07 abcd 0.34 ± 0.02 c 0.069 ± 0.007 abc 0.19 ± 0.02 b
T5 4.18 ± 0.17 a 0.94 ± 0.04 ab 0.39 ± 0.02 a 0.070 ± 0.006 abc 0.22 ± 0.01 a
T6 4.57 ± 0.52 a 0.98 ± 0.07 a 0.39 ± 0.04 ab 0.072 ± 0.005 ab 0.19 ± 0.01 ab
T7 3.32 ± 0.63 b 0.76 ± 0.19 d 0.36 ± 0.03 abc 0.062 ± 0.005 c 0.17 ± 0.02 bc
T8 4.44 ± 0.06 a 0.93 ± 0.1 abc 0.39 ± 0.01 a 0.072 ± 0.006 a 0.19 ± 0.02 ab
T9 3.34 ± 0.14 b 0.78 ± 0.06 cd 0.30 ± 0.03 d 0.064 ± 0.006 abc 0.15 ± 0.02 c

Data are mean ± standard deviation. Different lowercase letters indicated significant differences among treatments
at the p < 0.05 level by Least Significant Difference (LSD) test.

3.2. Effects of Nitrogen Concentration at Different Growth Stages on Root Growth of
Pepper Seedlings

The root surface area of pepper seedlings under the T6 treatment exhibited a maximum
value, and root volume of pepper seedlings under T5 treatment exhibited a maximum
value; however, there were no significant differences in the root surface area and root
volume of pepper seedlings among the T4, T5, and T6 treatments (Figure 1). The root
surface area and root volume of pepper seedlings exposed to the T5 treatment increased
by 28.1% and 24.3% compared with those under the T1 treatment, respectively. The root
surface area and root volume of pepper seedlings exposed to the T5 treatment improved by
30.5% and 25.0% contrasted with those in T9 treatment, respectively.

Figure 1. Effects of nitrogen concentration at different growth stages on root morphology of pepper
seedlings. (A) Root morphology. (B) Root surface area. (C) Root volume. Error bars indicate the
standard deviation. Different lowercase letters indicated significant differences among treatments at
the p < 0.05 level by Least Significant Difference (LSD) test.
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3.3. Effects of Nitrogen Concentration at Different Growth Stages on Photosynthetic Pigment
Content of Pepper Seedlings

The chlorophyll a content, chlorophyll b content, carotenoid content, and total chloro-
phyll content of pepper seedlings cultivated under the T5 treatment were significantly
increased by 19.3%, 35.2%, 20.0%, and 23.5% compared with those under the T4 treatment,
respectively (Table 5). The chlorophyll a content and total chlorophyll content of pepper
seedlings cultivated under the T6 treatment were significantly increased by 15.7% and
12.8% compared with those under the T5 treatment, respectively. However, there were
no remarkable disparities in the chlorophyll b content and carotenoid content of pepper
seedlings between the T5 and T6 treatments. The chlorophyll a content, chlorophyll b
content, carotenoid content, and total chlorophyll content of pepper seedlings cultivated
under the T5 treatment were significantly increased by 46.0%, 55.6%, 40.0%, and 48.5%
compared with those under T1 treatment, respectively.

Table 5. Effects of nitrogen concentration at different growth stages on photosynthetic pigment
content of pepper seedlings.

Treatment
Chlorophyll a Content Chlorophyll b Content Carotenoid Content Total Chlorophyll Content

(mg g−1) (mg g−1) (mg g−1) (mg g−1)

T1 0.81 ± 0.05 e 0.24 ± 0.03 e 0.21 ± 0.02 d 1.05 ± 0.08 e
T2 1.33 ± 0.01 cd 0.37 ± 0.01 d 0.31 ± 0.00 bc 1.70 ± 0.02 d
T3 1.54 ± 0.04 abc 0.45 ± 0.01 c 0.35 ± 0.01 ab 1.99 ± 0.04 c
T4 1.21 ± 0.24 d 0.35 ± 0.07 d 0.28 ± 0.06 c 1.56 ± 0.29 d
T5 1.50 ± 0.05 bc 0.54 ± 0.02 b 0.35 ± 0.01 ab 2.04 ± 0.07 bc
T6 1.78 ± 0.10 a 0.56 ± 0.04 b 0.38 ± 0.02 a 2.34 ± 0.13 a
T7 1.70 ± 0.07 ab 0.51 ± 0.01 b 0.37 ± 0.02 a 2.21 ± 0.09 abc
T8 1.75 ± 0.34 ab 0.64 ± 0.03 a 0.39 ± 0.07 a 2.39 ± 0.34 a
T9 1.74 ± 0.12 ab 0.56 ± 0.02 b 0.38 ± 0.03 a 2.31 ± 0.12 ab

Data are mean ± standard deviation. Different lowercase letters indicated significant differences among treatments
at the p < 0.05 level by Least Significant Difference (LSD) test.

3.4. Effects of Nitrogen Concentration at Different Growth Stages on Enzyme Activity of
Pepper Seedlings

The sucrose synthase activity of pepper seedlings in the T6 treatment was higher than
those under the T4 and T5 treatments, which were 47.9% and 39.3% higher than those
of the T4 and T5 treatments, respectively (Figure 2). Similarly, the sucrose phosphate
synthase activity of pepper seedlings cultivated under the T6 treatment was increased by
58.6% and 34.6% compared with that under the T4 and T5 treatments, respectively. The
sucrose phosphate synthase activity of pepper seedlings grown under the T5 treatment
was significantly increased compared with those under the T1 and T9 treatments. The
sucrose synthase activity, sucrose phosphate synthase activity, nitrate reductase activity,
and glutamine synthetase activity of pepper seedlings in the T5 treatment were remarkably
increased compared with those under the T1 treatment.

Figure 2. Cont.
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Figure 2. Effects of nitrogen concentration at different growth stages on enzyme activity of pepper
seedlings. (A) Sucrose synthase activity. (B) Sucrose phosphate synthase activity. (C) Nitrate reductase
activity. (D) Glutamine synthetase activity. Error bars indicate the standard deviation. Different
lowercase letters indicated significant differences among treatments at the p < 0.05 level by Least
Significant Difference (LSD) test.

3.5. Effects of Nitrogen Concentration at Different Growth Stages on Flower Bud Differentiation,
Flowering and Flower Organ Development of Pepper

The maximum flower bud diameter of pepper seedlings occurred in the T6 treatment,
which was increased by 20.4% compared with that in the T4 treatment (Figure 3 and Table 6).
However, there was no significance in the flower bud diameter of pepper seedlings between
the T5 and T6 treatments. The flower bud diameter of pepper seedlings exposed to the
T5 treatment was increased by 30.6% and 22.5% contrasted with those in the T1 and T9
treatments, respectively.

The flowers of pepper seedlings cultivated under the T6 treatment were larger com-
pared with those under the T4 and T5 treatments (Figure 3). The flowers of pepper seedlings
cultivated under the T5 treatment were significantly larger compared with those under the
T1 and T9 treatments. The flower transverse diameter and flower longitudinal diameter
were the highest for pepper seedlings cultivated under the T6 treatment, whereas no signif-
icant differences were observed in the flower transverse diameter and flower longitudinal
diameter of pepper seedlings cultivated between the T5 and T6 treatments (Table 6). The
flower transverse diameter and flower longitudinal diameter of pepper seedlings cultivated
under the T5 treatment increased by 67.0% and 66.3% compared with those under the T1
treatment. The anther length and anther width of pepper seedling flowers exposed to the
T1 treatments increased by 26.2% and 37.0% compared with those under the T5 treatment,
respectively.

Figure 3. Effects of nitrogen concentration at different growth stages on flower bud differentiation
and flowering of pepper seedlings. (A) Flower bud anatomy (40 days after sowing). (B) Flower
(60 days after sowing).
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Table 6. Effects of nitrogen concentration at different growth stages on flower bud diameter and flower organ development of pepper seedlings.

Treatment Flower Bud
Diameter/mm

Flower Transverse
Diameter /mm

Flower
Longitudinal
Diameter/mm

Anther
Length/mm

Anther
Width/mm

Filament
Length/mm

Stigma
Width/mm Style Length/mm

T1 1.45 ± 0.20 c 6.3 ± 0.2 d 6.0 ± 0.4 c 2.63 ± 0.09 a 1.81 ± 0.16 a 1.75 ± 0.07 c 0.64 ± 0.06 bc 4.51 ± 0.45 c
T2 1.45 ± 0.35 c 10.0 ± 1.4 d 9.8 ± 1.2 b 2.40 ± 0.55 ab 1.33 ± 0.45 bc 3.00 ± 0.22 a 0.54 ± 0.02 c 5.8 ± 0.28 b
T3 1.84 ± 0.15 abc 19.6 ± 3.3 a 12.3 ± 2.4 b 2.06 ± 0.06 ab 1.50 ± 0.07 ab 2.48 ± 0.34 ab 0.73 ± 0.02 ab 6.51 ± 0.43 ab
T4 1.79 ± 0.12 bc 15.2 ± 3.7 bc 10.5 ± 2.8 b 1.91 ± 0.38 b 1.23 ± 0.11 bc 2.76 ± 0.30 ab 0.72 ± 0.04 ab 6.33 ± 0.20 ab
T5 2.09 ± 0.02 ab 19.1 ± 2.0 a 17.8 ± 2.2 a 1.94 ± 0.26 b 1.14 ± 0.23 bc 2.59 ± 0.83 ab 0.71 ± 0.12 ab 7.17 ± 0.52 a
T6 2.25 ± 0.60 a 20.7 ± 1.1 a 18.2 ± 4.0 a 2.06 ± 0.07 ab 1.16 ± 0.31 bc 2.71 ± 0.36 ab 0.81 ± 0.05 a 7.09 ± 0.50 a
T7 1.83 ± 0.19 abc 14.9 ± 3.8 c 12.3 ± 1.2 b 1.82 ± 0.39 b 1.12 ± 0.09 c 2.42 ± 0.02 abc 0.81 ± 0.04 a 7.07 ± 0.48 a
T8 2.19 ± 0.04 ab 19.7 ± 1.4 a 17.7 ± 2.1 a 2.05 ± 0.16 ab 1.24 ± 0.11 bc 2.89 ± 0.53 ab 0.72 ± 0.17 ab 7.12 ± 0.14 a
T9 1.62 ± 0.12 c 6.2 ± 0.1 d 5.9 ± 0.5 c 2.42 ± 0.65 ab 1.70 ± 0.04 a 2.17 ± 0.50 bc 0.65 ± 0.03 bc 5.55 ± 1.31 b

Flower buds were sampled 40 days after sowing, and flower organs were sampled 60 days after sowing. Data are mean ± standard deviation. Different lowercase letters indicated
significant differences among treatments at the p < 0.05 level by Least Significant Difference (LSD) test.
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3.6. Correlation Analysis between Morphological and Physiological Indicators of Pepper Seedlings

The correlation coefficients between the flower bud diameter of pepper seedlings and
shoot fresh weight, root fresh weight, shoot dry weight, seedling quality index, sucrose
phosphate synthase activity, and glutamine synthetase activity were 0.97, 0.83, 0.96, 0.82,
0.84, and 0.95, respectively, reaching a highly significant positive correlation level (p < 0.01)
(Figure 4). The correlation coefficients between the flower bud diameter of pepper seedlings
and root dry weight, chlorophyll b content, total chlorophyll content, sucrose synthase
activity, and nitrate reductase activity were 0.77, 0.75, 0.68, 0.71, and 0.74, respectively,
showing a significant positive correlation (p < 0.05). The correlation coefficients between the
seedling quality index of pepper seedlings and shoot fresh weight, shoot dry weight, flower
bud diameter, and nitrate reductase activity were 0.81, 0.84, 0.82, and 0.85, respectively,
which reached a highly significant correlation level (p < 0.01).

Figure 4. Correlation analysis between morphological and physiological indicators of pepper
seedlings. * and ** indicated significance at p < 0.05 and 0.01, respectively.

3.7. Comprehensive Evaluation Based on Entropy Weight and TOPSIS

The comprehensive evaluation of nine treatments was evaluated by an entropy weight
TOPSIS method. Firstly, the entropy weight method was used to determine the weight
of each indicator; the shoot fresh weight, root fresh weight, root dry weight, seedling
quality index, root surface area, root volume, flower bud diameter, sucrose phosphate
synthase activity, and nitrate reduction activity parameters provided a greater weight for
comprehensive evaluation (Table 7). Secondly, the ranking of the comprehensive evaluation
of the nine treatments was determined by TOPSIS; the results showed that the T6 treatment
ranked first, followed by the T5 and T8 treatments. However, the T1 and T9 treatments
ranked ninth and eighth, respectively (Table 8).
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Table 7. The weights of all indicators of pepper seedlings grown under nitrogen concentrations at
different growth stages based on entropy.

Indicator Information
Entropy Value

Information
Utility Value

Weight
Coefficient

Shoot fresh weight 0.860 0.140 6.44%
Root fresh weight 0.835 0.165 7.60%
Shoot dry weight 0.903 0.097 4.47%
Root dry weight 0.824 0.176 8.12%

Seedling quality index 0.802 0.198 9.11%
Root surface area 0.863 0.137 6.32%

Root volume 0.841 0.159 7.31%
Flower bud diameter 0.840 0.160 7.37%
Chlorophyll a content 0.930 0.070 3.23%
Chlorophyll b content 0.912 0.088 4.06%

Carotenoid content 0.929 0.071 3.27%
Total chlorophyll content 0.927 0.073 3.37%
Sucrose synthase activity 0.900 0.100 4.62%

Sucrose phosphate synthase activity 0.831 0.169 7.76%
Nitrate reductase activity 0.740 0.260 11.97%

Glutamine synthetase activity 0.892 0.108 4.99%

Table 8. The comprehensive evaluation and sorting of pepper seedlings using TOPSIS for all the
treatments.

Treatment Di
+ Di

− Ci
Comprehensive Evaluation

Sorting

T1 0.244 0.050 0.170 9
T2 0.219 0.108 0.331 7
T3 0.194 0.099 0.338 6
T4 0.165 0.115 0.411 5
T5 0.108 0.213 0.663 2
T6 0.046 0.241 0.839 1
T7 0.186 0.133 0.417 4
T8 0.121 0.188 0.608 3
T9 0.225 0.082 0.267 8

Di
+ and Di

−, respectively, are the distance between the evaluation object and the positive and negative ideal
solutions. Ci is the degree of proximity between the evaluation object and the optimal scheme.

3.8. Regression Models of Nitrogen Concentration at Different Growth Stages on Shoot Fresh
Weight, Shoot Dry Weight, Flower Bud Diameter, and Glutamine Synthetase Activity of
Pepper Seedlings

Shoot fresh weight, root fresh weight, and flower bud diameter showed similar
changes under different nitrogen concentrations at different growth stages (Figure 5).
The linear coefficient of the regression equation showed that nitrogen concentration before
and after initiation of flower bud differentiation had positive effects on the shoot fresh
weight, root fresh weight, and flower bud diameter of pepper seedlings, while the quadratic
coefficient showed that excessive nitrogen concentration before and after initiation of flower
bud differentiation had negative effects (Table 9). Similarly, the linear coefficient showed
that nitrogen concentration before and after initiation of flower bud differentiation had a
positive influence on the glutamine synthetase activity of pepper seedlings; the secondary
coefficient showed that excessive nitrogen concentration before initiation of flower bud
differentiation had an inhibitory effect on glutamine synthetase activity, but higher nitro-
gen concentration after initiation of flower bud differentiation had a positive effect. The
three-dimensional model showed that moderate nitrogen concentration before initiation of
flower bud differentiation and higher after initiation of flower bud differentiation could
improve the shoot fresh weight, root fresh weight, flower bud diameter, and glutamine
synthetase activity of pepper seedlings.
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Figure 5. Regression models of nitrogen concentration at different growth stages on (A) shoot fresh
weight, (B) root fresh weight, (C) flower bud diameter, and (D) glutamine synthetase activity of
pepper seedlings. x and y axis indicated nitrogen concentration before initiation of flower bud
differentiation (mmol L−1) and nitrogen concentration after initiation of flower bud differentiation
(mmol L−1), respectively.

Table 9. Regression equation of nitrogen concentration at different growth stages on shoot fresh
weight, root fresh weight, flower bud diameter, and glutamine synthetase activity of pepper seedlings.

Parameters Equation R2 F-Value p-Value

Shoot fresh weight z = −0.3405 + 0.37686x + 0.10856y − 0.01166x2 − 0.00254y2 +
0.00193xy

0.96 37.43 0.007

Root fresh weight z = 0.62201 + 0.03349x + 0.0031y − 0.00147x2 − 2.86578E − 4y2 +
7.51111E − 4xy

0.96 42.43 0.006

Flower bud
diameter

z = 0.31752 + 0.15946x + 0.03737y − 0.00471x2 − 4.012E − 4y2 −
1.33333E − 4xy

0.86 11.14 0.037

Glutamine
synthetase activity

z = −2.89352 + 1.49733x + 0.23693y − 0.03472x2 + 0.00792y2 −
0.012xy

0.92 20.41 0.016

x, y in the formula indicated nitrogen concentration before initiation of flower bud differentiation (mmol L−1) and
nitrogen concentration after initiation of flower bud differentiation (mmol L−1), respectively.

4. Discussion
4.1. Effects of Nitrogen Concentration at Different Growth Stages on Growth of Pepper Seedlings

Plant growth and development can be affected by nitrogen fertilizer and other en-
vironmental conditions [10,36]. In this study, under the condition of the same nitrogen
concentration (15 mmol L−1) in the second stage, moderate nitrogen (15 mmol L−1) in the
first stage significantly promoted the shoot biomass, root fresh weight, seedling quality
index, root surface area, and root volume of pepper seedlings compared with low or high
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nitrogen (4.39 and 25.61 mmol L−1) (Table 4 and Figure 1). Concurring with our findings, a
previous study showed that the shoot dry weight and leaf area of pepper plants were sig-
nificantly reduced with the decrease in nitrogen fertilizer supply [10]. Similar results were
found in tomato and lettuce, where the plant growth was delayed and dry weight of plants
was lower under low nitrogen conditions compared with high nitrogen conditions [8,37].
However, excessive nitrogen application reduced the plants’ yield and nitrogen use effi-
ciency [12]. These results demonstrated that appropriate nitrogen concentration in the early
growth stage of pepper seedlings increased the leaf area, the photosynthesis of leaves and
thus promoted plant biomass and seedling quality, while insufficient or excessive nitrogen
could lead to metabolic disorders in plants and inhibit pepper growth. Furthermore, under
the condition of appropriate nitrogen concentration in the first stage, high nitrogen concen-
tration in the second stage significantly promoted the shoot growth of pepper compared
with low nitrogen treatments, while there were no significant differences in biomass and
seedling quality index between high nitrogen and medium nitrogen (Table 4). These results
indicated that higher nitrogen concentration after initiation of flower bud differentiation
promoted the carbohydrate accumulation, plant biomass accumulation, and plant growth
of pepper seedlings. In addition, plant roots are important organs for transporting water
and nutrients of plants, and robust roots can transport enough water and nutrients for
plant growth and development [38,39]. Proper nitrogen can lead to vigorous root growth
in plants, and a large root absorption area with high root activity promoted plant growth,
whereas low or high nitrogen concentration reduced the auxin concentration in roots and
inhibited the root growth of plants [40,41].

4.2. Influences of Nitrogen Concentration at Different Growth Stages on Photosynthetic Pigment of
Pepper Seedlings

Chlorophyll is closely related to photosynthesis of plants and participates in the
energy conversion and substance conversion processes of plants, and chlorophyll content is
related to plant nitrogen nutrition [42,43]. Previous studies have shown that low nitrogen
supply reduced the chlorophyll synthesis in plant leaves and inhibited plant growth, while
adequate nitrogen supply enhanced photosynthesis assimilation capacity and promoted
plant growth [42,44]. In this study, under the condition of suitable nitrogen concentration in
the second stage, the chlorophyll and carotenoid contents of pepper leaves under suitable
nitrogen concentration in the first stage were significantly increased compared with those
under low or high nitrogen concentration (Table 5). Our results indicated that the high
photosynthetic pigment content in plant leaves under the appropriate nitrogen supply at
the early growth stage may be due to the fact that the carbon and nitrogen metabolic balance
of plants under the appropriate nitrogen treatment increased the photosynthetic pigment
content. In addition, under the condition of suitable nitrogen concentration in the first
stage, the chlorophyll and carotenoid contents of plant leaves under low nitrogen supply
in the second stage were significantly reduced compared with those under higher nitrogen
supply (Table 5). Our result suggested that the insufficient nitrogen supply after initiation
of flower bud differentiation destroyed the chloroplast structure in the cell, inhibited
the conversion of sugars into nitrogen compounds such as chlorophyll and amino acids,
reduced the content of photosynthetic pigments, inhibited the photosynthesis of plants,
and had negative impacts on plant growth [42,45].

4.3. Impacts of Nitrogen Concentration at Different Growth Stages on Enzyme Activity Related to
Carbon and Nitrogen Metabolism of Pepper Seedlings

Carbon and nitrogen metabolism are the most important metabolic processes in the
plant life cycle and are crucial for plant growth and development [46]. The activity of
carbon and nitrogen metabolizing enzymes in plant leaves is significantly affected by
nitrogen levels. Studies have shown that nitrogen deficiency affected the activities of
enzymes related to nitrogen metabolism in plants, reduced the content of chlorophyll in
leaves, and inhibited plant carbon metabolism [10,46,47]. Similarly, our results showed
that the sucrose synthase, sucrose phosphate synthase, nitrate reductase, and glutamine
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synthetase activity in the leaves of pepper seedlings cultivated under appropriate nitro-
gen concentration in the first stage were significantly higher than those under low nitro-
gen concentration while the nitrogen concentration in the second stage was appropriate
(Figure 2). In addition, the sucrose synthase, sucrose phosphate synthase, and nitrate re-
ductase activity in the leaves of pepper seedlings grown under high nitrogen concentration
in the second stage were significantly higher than those under low nitrogen concentration
while the nitrogen concentration in the first stage was appropriate. Our results indicated
that, in the early growth stage of pepper seedlings, nitrogen deficiency may significantly
reduce the production of nitrate reductase mRNA and nitrate reductase activity in pepper
leaves, leading to metabolic disorders of pepper seedlings, reduced carbon and nitrogen
assimilation abilities, and decreased vegetative growth of plants [37]. However, appropriate
nitrogen enhanced the carbon sequestration capacity and carbon metabolism of pepper
leaves, which provided sufficient energy and carbon skeleton for the nitrogen metabolism
of pepper leaves [46]. Additionally, appropriate nitrogen increased carbohydrate, amino
acid, and protein concentrations, which provided necessary energy and material for plant
growth and development [10,48].

4.4. Effects of Nitrogen Concentration at Different Growth Stages on Flower Bud Differentiation
and Flowering of Pepper Seedlings

Flower bud differentiation is a key stage in the seedling growth process, which is
related to seedling quality and plant yield [49]. In addition, the flower is the plant repro-
ductive organ that determines plant fruit and yield, and early flowering is the key to early
fruit [50,51]. Fertilization causes changes in metabolism and transport of carbohydrates in
flower buds, which could affect flower bud differentiation and flowering [15,52]. Previous
studies have shown that low nitrogen inhibited plant growth and resulted in less flowering,
while the leaf growth and flowering of plants were promoted with a nitrogen concentration
increase [17,18]. Similarly, under the moderate nitrogen concentration of the first stage, the
flower buds and flowers of pepper seedlings were larger under the treatment of higher
nitrogen concentration compared with those under low nitrogen concentration in the sec-
ond stage (Figure 3). Under the moderate nitrogen concentration of the second stage, the
flower buds of pepper seedlings were significantly larger, and the flower buds and flowers
developed faster under the moderate nitrogen concentration compared with those under
low or excess nitrogen concentration in the first stage. In addition, flower bud diameter
was significantly positively correlated with shoot fresh weight, root fresh weight, shoot
dry weight, seedling quality index, sucrose phosphate synthase activity, and glutamine
synthetase activity (Figure 4). Our results showed that suitable nitrogen concentration at
the early growth stage and higher nitrogen concentration after initiation of flower bud
differentiation could promote leaf photosynthesis, promote the production, transport and
accumulation of assimilation products, and provide sufficient nutrient accumulation for
flower bud differentiation, thus promoting flower bud differentiation and flowering of
plants [22]. However, excessive nitrogen concentration in early growth stage inhibited
flower bud development, which may be due to the fact that excessive accumulation of
reactive oxygen species caused by excessive nitrogen fertilizer influenced the normal phys-
iological metabolism, led to C/N imbalance, and inhibited flower bud differentiation,
restricting the expression of flowering related genes and the flowering of plants [28,48,53].

4.5. The Optimal Nitrogen Application Strategy of Different Growth Stages

The TOPSIS method is a multi-objective decision-making analysis method, and the
traditional TOPSIS model has shortcomings in weight allocation. Therefore, an entropy
weight method was used in this study to determine the objective weight of each evaluation
index, which enhanced the scientific and rational evaluation results [12,54]. In this study,
an entropy weight TOPSIS method was used to comprehensively evaluate the nitrogen
concentration at different growth stages to determine the proper nitrogen management
strategy for cultivating high-quality pepper seedlings. Our results showed that the T6



Agronomy 2024, 14, 2270 15 of 18

treatment ranked first, while the T1 treatments ranked ninth (Table 8). The results showed
that the appropriate nitrogen concentration (15 mmol L−1) at the early growth stage
combined with higher nitrogen concentration (25.61 mmol L−1) after initiation of flower
bud differentiation had a positive impact and high feasibility for pepper seedling cultivation.
Similar results were also found in tomato [9,12] and strawberry [17], where low or excessive
nitrogen application reduced yield and water and nitrogen utilization rates; in addition,
excessive nitrogen enriched nutrient content in the matrix and inhibited nutrient uptake by
roots [12,17].

Regression models quantitatively describe statistical relationships, which are used
to study causal relationships between variables. Dai et al. [55] and Wang et al. [56] used
regression models to optimize water and nitrogen management of green pepper and
cucumber under drip irrigation, respectively. Hao et al. [28] used regression analysis
and response surface analysis to analyze the combination of light intensity and nitrogen
concentration to regulate the yield and quality of purple cabbage. However, few studies
establish a 3-D prediction model to investigate the influences of nitrogen concentration
at different growth stages on seedling growth and flower bud differentiation of pepper
seedlings. The regression model of our results indicated that the shoot fresh weight, root
fresh weight, flower bud diameter, and glutamine synthetase activity of pepper seedlings
grown under moderate nitrogen in the first stage combined with higher nitrogen in the
second stage was high, which was suitable for the growth and development of pepper
seedlings (Figure 5). The optical nitrogen fertilizer strategy suitable for pepper seedling
cultivation was further verified by the establishment of a regression model, which provided
guidance for pepper seedling cultivation.

5. Conclusions

Regulating nitrogen concentration at different plant growth stages coordinated the
vegetative growth and reproductive growth of pepper seedlings. Our results indicated
that moderate nitrogen concentration (15 mmol L−1) in the first stage combined with high
nitrogen concentration (25.61 mmol L−1) in the second stage improved the carbon and
nitrogen metabolism, increased the biomass accumulation, and promoted the vegetative
growth and reproductive growth of pepper seedlings. Additionally, a regression model
and a comprehensive evaluation model were established to determine the optimal nitrogen
fertilizer supply strategy for pepper seedlings. Our study is of great significance for nitrogen
fertilizer management at different growth stages and the cultivation of high-quality pepper
seedlings. In addition, the endogenous hormones and relative expression levels of genes
related to flower bud differentiation in pepper seedlings under nitrogen supply at different
growth stages need to be further studied.
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