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Soil, as a vital foundation of the Earth’s biosphere, supports plant growth, carbon
storage, water cycling, and nutrient supply, making it a crucial resource for ensuring
global food production and ecosystem health [1–3]. Healthy soils can maintain efficient
nutrient cycling, support biodiversity, and provide sustained agricultural productivity for
human societies [4–6]. However, under the combined impact of population growth, land
overuse, industrialization, and climate change, soils worldwide are facing unprecedented
degradation and pollution challenges [7,8]. These issues not only lead to a decline in soil
productivity and reduced crop yields but also trigger biodiversity loss, the depletion of
soil carbon stocks, and the deterioration of water resources, thereby threatening global
ecological security and sustainable development goals [9–11].

In this context, soil amelioration has become a critical research area to combat soil degra-
dation, restore soil function, and promote sustainable agricultural development [12–14]. Soil
amelioration techniques aim to improve soil structure, enhance fertility, increase water re-
tention capacity, and stimulate microbial activity through physical, chemical, and biological
means, thereby restoring soil health [15,16]. Whether through traditional practices such as
organic matter addition and liming or emerging technologies like biochar application, cover
crops, and microbial inoculants, soil amelioration measures have been widely applied and
extensively studied worldwide [17–19]. These measures provide effective pathways for
restoring soil health and lay the foundation for sustainable agriculture and environmental
management. Indeed, soil amelioration remains a cornerstone in the quest for sustainable
agricultural practices and environmental management [20,21].

As the challenges of soil degradation continue to threaten food security and ecosystem
resilience, the importance of innovative soil amelioration techniques is becoming increas-
ingly evident [22]. Consequently, globally, scientists and practitioners are dedicated to
exploring more efficient and sustainable soil amelioration methods to address evolving
environmental pressures and enhance soil adaptability and resilience. This Special Issue
has been developed within this context, gathering cutting-edge research to explore the
effects of various soil amelioration methods on soil properties, microbial communities,
and plant growth. Through these studies, we aim to deepen our understanding of the
mechanisms and impacts of soil amelioration and provide valuable scientific insights and
practical guidance for future soil management and agricultural sustainability.

The role of biochar in soil improvement is a key focus of this issue. For example,
Sun et al. (2023) have demonstrated that exogenous organic matter, such as straw and
straw biochar, significantly impacts soil carbon and nitrogen dynamics, with important
implications for soil carbon sequestration and nitrogen availability. The interaction between
straw and biochar reveals a nuanced understanding of carbon and nitrogen priming
effects, shedding light on the temporal changes in microbial activity and nutrient cycling.
Additionally, Song et al. (2023a) have explored the role of biochar derived from various
agricultural residues in enhancing soil health. Their study found that biochars produced
from tropical crop wastes at different pyrolysis temperatures significantly influence soil pH,
nutrient availability, and microbial diversity. These findings underscore the importance

Agronomy 2024, 14, 2351. https://doi.org/10.3390/agronomy14102351 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14102351
https://doi.org/10.3390/agronomy14102351
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://doi.org/10.3390/agronomy14102351
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14102351?type=check_update&version=2


Agronomy 2024, 14, 2351 2 of 3

of feedstock selection and pyrolysis conditions in determining the efficacy of biochar as
a soil amendment. Moreover, He et al. (2023) have evaluated the effects of successive
seasonal applications of rice straw-derived biochar on the acidity and fertility of soil.
They demonstrated that the application of rice straw-derived biochar to soil at 22.5 t ha−1

was found to be highly consistent in decreasing soil acidity and reducing soluble and
exchangeable Al3+, indicating its higher ameliorating capacity in the south of China in the
long run.

Furthermore, the impact of soil amelioration on heavy metal dynamics in contaminated
soils, such as cadmium immobilization through biochar application, represents an area
with significant implications for environmental safety and crop production. To this end,
Yuan et al. (2023) investigated the mechanism of fixation of cadmium in submerged paddy
soil at different pyrolysis temperatures in a study, revealing that the application of rapeseed
straw biochar enhances cadmium immobilization by promoting the formation of sulfide
and poorly crystallized Fe oxide in paddy soil. This work highlights the importance of
biochar’s redox capacity in cadmium immobilization under conditions affecting flooding,
thereby providing new insights into the potential of biochar for cadmium remediation in
rice cultivation.

Long-term field experiments are indispensable for understanding the sustained impact
of soil amelioration practices, particularly in relation to nutrient cycling and microbial
dynamics. Song et al. (2023b) explored the relationship between soil phosphorus (P)
forms and microbial communities under long-term fertilization through an extensive
field experiment involving 26 years of continuous maize cropping in Northeastern China.
Moreover, Liu et al. (2023) have documented the long-term use of organic fertilizers and
encouraged Fe immobilization in organo–inorganic compounds. However, the application
of a nitrogen fertilizer alleviated the Fe retention induced by the organic fertilizer.

This Special Issue presents a comprehensive examination of the soil amelioration
strategies and their effects on soil properties, microbial dynamics, and environmental
outcomes. The collective findings advance our knowledge of soil management practices,
emphasizing the importance of organic amendments, biochar, and long-term field studies
in achieving resilient and productive soils. We hope that these contributions will inspire
further research and practical applications, paving the way for more sustainable and
effective soil management solutions.
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