
Citation: Jia, Z.; Zhang, M.; Yuan, C.;

Liu, Q.; Liu, H.; Qiu, X.; Zhao, W.; Shi,

J. ADL-YOLOv8: A Field Crop Weed

Detection Model Based on Improved

YOLOv8. Agronomy 2024, 14, 2355.

https://doi.org/10.3390/

agronomy14102355

Academic Editors: Marco Fontanelli

and Lorenzo Gagliardi

Received: 14 September 2024

Revised: 7 October 2024

Accepted: 10 October 2024

Published: 12 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

ADL-YOLOv8: A Field Crop Weed Detection Model Based on
Improved YOLOv8
Zhiyu Jia 1, Ming Zhang 2, Chang Yuan 1, Qinghua Liu 2,* , Hongrui Liu 1, Xiulin Qiu 2, Weiguo Zhao 3,4

and Jinlong Shi 1

1 College of Computer, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
221710701108@stu.just.edu.cn (Z.J.); yuanc@stu.just.edu.cn (C.Y.); 231210703115@stu.just.edu.cn (H.L.);
shi_jinlong@163.com (J.S.)

2 College of Automation, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
221210301129@stu.just.edu.cn (M.Z.); qiuxiulin@njust.edu.cn (X.Q.)

3 College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
wgzsri@126.com

4 Institute of Sericulture, Chinese Academy of Agricultural Sciences, Zhenjiang 212003, China
* Correspondence: liuqh@just.edu.cn; Tel.: +86-139-1455-7059

Abstract: This study presents an improved weed detection model, ADL-YOLOv8, designed to
enhance detection accuracy for small targets while achieving model lightweighting. It addresses
the challenge of attaining both high accuracy and low memory usage in current intelligent weeding
equipment. By overcoming this issue, the research not only reduces the hardware costs of automated
impurity removal equipment but also enhances software recognition accuracy, contributing to reduced
pesticide use and the promotion of sustainable agriculture. The ADL-YOLOv8 model incorporates a
lighter AKConv network for better processing of specific features, an ultra-lightweight DySample
upsampling module to improve accuracy and efficiency, and the LSKA-Attention mechanism for
enhanced detection, particularly of small targets. On the same dataset, ADL-YOLOv8 demonstrated a
2.2% increase in precision, a 2.45% rise in recall, a 3.07% boost in mAP@0.5, and a 1.9% enhancement
in mAP@0.95. The model’s size was cut by 15.77%, and its computational complexity was reduced by
10.98%. These findings indicate that ADL-YOLOv8 not only exceeds the original YOLOv8n model but
also surpasses the newer YOLOv9t and YOLOv10n in overall performance. The improved algorithm
model makes the hardware cost required for embedded terminals lower.

Keywords: weed detection; ADL-YOLOv8; lightweight model; precision agriculture; attention
mechanism

1. Introduction

Weed detection is a critical aspect of agricultural production, involving the identi-
fication and management of non-crop plants in farmlands. Weeds compete with crops
for nutrients, water, and sunlight, thereby affecting the growth rate and yield of crops [1].
Traditionally, chemical pesticides such as herbicides and insecticides have been the primary
methods for weed control. However, these chemicals pose potential hazards to the envi-
ronment and human health while killing weeds. Chemical pesticides can contaminate soil
and water sources, affect crop growth and development, and even lead to a decline in crop
quality. Moreover, the long-term use of chemical pesticides may enhance weed resistance,
gradually reducing the effectiveness of weed control.

Faced with these issues, many countries and regions have embraced more environmen-
tally friendly and sustainable weed control methods. For example, the European Union has
banned the use of 20 high-residue pesticides and is gradually phasing out other pesticides.
Since 2022, artificial intelligence has begun to shine, and the agricultural field has also
tried to apply artificial intelligence technology to identify weeds in the field. For instance,
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weed identification technology based on digital image processing can collect farmland
images and use image processing techniques to analyze these images to identify weeds [2].
Additionally, weed detection technology based on low-altitude drone imagery and visual
algorithms can quickly and accurately detect weeds over a large area.

Several companies provide smart agricultural solutions. Rowbot Systems, for example,
has developed a product called “Weedbot”, an agricultural robot capable of autonomously
identifying and removing weeds. The cost of this product varies depending on scale
and functionality, typically ranging from tens of thousands to hundreds of thousands of
dollars. Blue River Technology, a company dedicated to developing smart agricultural
solutions, offers the “WeedSeeker” product. This product uses advanced weed inspection
algorithms and can be integrated with tractors or spraying equipment to achieve precise
weed control. The product’s price depends on its configuration and scale, usually ranging
from several thousand to tens of thousands of dollars. John Deere, a well-known agricul-
tural machinery manufacturer, has integrated weed inspection algorithms into some of its
products. For instance, their smart tractors are equipped with advanced vision systems
that can identify and handle weeds in the field. The product price varies by model and
function, ranging from tens of thousands to hundreds of thousands of dollars. Due to the
high cost of these devices, they are not currently suitable for widespread popularization.
Therefore, there is a significant need to research and apply fast, efficient, and accurate weed
detection technologies.

After collecting images in ornamental lawns and sports lawns, Parra et al. (2020) [3]
tested 12 edge detection filters. They applied aggregation techniques to the results of
three effective filters and determined the thresholds, thus proposing an edge-detection-
based method for lawn weed identification. This method has contributed a unique technical
approach to lawn weed identification in the development of weed detection. Gée and
Denimal (2020) [4] constructed relevant indicators by using RGB images to achieve a
spatial assessment of the impact of broadleaf weeds on wheat biomass. This result has
provided new ideas for the research on evaluating the impact of weeds on crops based on
remote-sensing images in the development of weed detection.

With the continuous enhancement of hardware computing power, deep learning has
begun to play an important role in the field of weed detection.

At present, object detection has two detection methods: single-stage and two-stage.
Single-stage methods such as YOLO and SSD [5] directly predict the category of the
target [6]. The detection speed is fast and can process images and videos in real time, but
the accuracy is relatively low, and the detection effect on small and dense targets is poor;
two-stage methods such as Faster R-CNN [7] and Mask R-CNN [8] first generate candidate
boxes and then classify and regress them. The detection accuracy is high and the effect
on small and dense targets is better, but the speed is relatively slow, and the computing
resource requirements are large [9].

Currently, more and more researchers are using deep-learning models such as YOLO
and Transformer networks to detect and classify field weeds. For example, in 2020, Zhang
et al. [10] used YOLOv3-tiny for agricultural weed detection. Eventually, the model
obtained an average mean prediction value (mAP) of 72.5% and an intersection-over-
union value (IoU) of 80.12%. Hu et al. (2021) [11] proposed a new method for weed
detection in precision agricultural cultivation using YOLOv4. This method achieved a
detection accuracy of 97%, a recall rate of 81%, and an F1 value of 89%. Wang et al.
(2022) [12] proposed a weed detection algorithm named TIA-YOLOv5. This algorithm
adopted techniques such as pixel-level synthetic data augmentation, adding Transformer
encoder blocks, involution-based channel-feature fusion, and adaptive spatial-feature
fusion. On the beet dataset, the algorithm achieved results where the F1 value of weeds
reached 70.0%, the average precision (AP) reached 80.8%, and the average precision at an
intersection over union of 0.5 (map@0.5) reached 90.0%. This has provided a new method
for precision agricultural weed management in the development of weed detection. Gallo
et al. (2023) [13] proposed an improved YOLOv7 weed detection algorithm. This algorithm
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generated numerical indicators of 56.6%, 62.1%, and 61.3% in terms of the average precision
at an intersection over union of 0.5 (mAP@0.5), recall rate, and accuracy, respectively. Ding
et al. (2024) [14] proposed the RVDR-YOLOv8 model. This model improves the average
precision at an intersection over union of 0.5 (mAP50) by 1.7% and the average precision
at an intersection over union between 0.5 and 0.95 (mAP50–95) by 1.1%. Its performance
is superior to models such as Faster R-CNN, which helps to solve the problem of weed
detection under resource-constrained conditions, thereby promoting the development of
weed detection and providing support for farmland weed control.

Despite significant advancements in weed detection from previous studies, there
remains substantial potential for enhancing both accuracy and speed [15]. The YOLO
algorithm, now advanced to YOLOv10, has demonstrated notable improvements in these
aspects. This study specifically concentrates on optimizing the YOLOv8n framework to
achieve further enhancements in detection accuracy.

2. Materials and Methods
2.1. Experimental Data
2.1.1. Data Collection and Annotation

Firstly, we used a customized weed dataset, which includes public datasets down-
loaded from the Internet. For details, see the “corn weed datasets” directory in the following
link: https://gitee.com/Monster7/weed-datase/tree/master (accessed on 23 March 2024).
In the dataset, there is significant overlap among bluegrass images. Because of this overlap,
the model may be misled into focusing on the wrong target contours, so the image data of
bluegrass species need to be screened. In addition, we expanded the dataset and introduced
a new weed target, Portulaca oleracea. The target data were sourced from the Nanzhuang
Corn Planting Base in Qiaodong District, Zhangjiakou City, Hebei Province. They were
collected using the camera of a Redmi K50 mobile phone, which has an image resolution
of 3000 × 4000 pixels and is produced by Redmi Technology Co., Ltd. based in Beijing,
China. To meet the input requirements of the algorithm, we processed the image pixels
and adjusted the size to 480 × 640. Due to objective reasons such as time and environment,
the number of collected target images is relatively small. Although the number of samples
for this target is relatively small, due to its highly distinguishable features, we still fully
committed to in-depth research and analysis of the existing samples to ensure reliable and
effective research results. Eventually, a total of 4398 images of crops and weeds were col-
lected. Our model focuses on detecting five types of weeds and corn seedlings: bluegrass,
chenopodium album, cirsium setosum, corn, portulaca oleracea, and sedge. To annotate the
weed images, rectangular regions were manually labeled using the LabelImg (The version
number is 1.8.1) image annotation software [16]. The type of destination images are shown
in Figure 1.
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divided into a training set, a validation set, and a testing set according to the ratio of 7:2:1. 
This expansion was undertaken with the specific aim of enhancing the model’s 
generalization performance, ensuring it can adapt effectively to a broader range of 
scenarios. By increasing the dataset’s diversity, the robustness of the model is improved, 
making it more resilient to variations in the input data. Consequently, this strategy also 
helps to mitigate the risks associated with over-fitting, where the model might otherwise 
become too narrowly focused on the training data and perform poorly on new, unseen 
data. Since each image contains multiple targets or various types of targets, we counted 

Figure 1. The type of destination in the dataset: (a) bluegrass; (b) chenopodium album; (c) cirsium
setosum; (d) corn; (e) sedge; (f) portulaca oleracea.

2.1.2. Data Enhancement

Due to the limited dataset. The network might overly focus on irrelevant information
within the images. There is a possibility of overfitting. To mitigate this, data enhancement
techniques including random brightness modification, adding blur noise, cropping, and
flipping were applied to the dataset. The augmented images are shown in Figure 2.
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Figure 2. Original and after data augmentation image: (a) original image; (b) charge light;
(c) Gaussian noise; (d) crop image; (e) flipping; (f) flipping + crop + Gaussian noise.

The dataset was ultimately expanded to include a total of 7966 images, and it is divided
into a training set, a validation set, and a testing set according to the ratio of 7:2:1. This
expansion was undertaken with the specific aim of enhancing the model’s generalization
performance, ensuring it can adapt effectively to a broader range of scenarios. By increasing
the dataset’s diversity, the robustness of the model is improved, making it more resilient
to variations in the input data. Consequently, this strategy also helps to mitigate the
risks associated with over-fitting, where the model might otherwise become too narrowly
focused on the training data and perform poorly on new, unseen data. Since each image
contains multiple targets or various types of targets, we counted the number of anchor
boxes for all categories in the dataset. Table 1 shows the detailed categories of the enhanced
dataset and the number of anchor boxes for each category, highlighting the diversity and
scope of the expanded dataset.
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Table 1. The type of weed and corresponding number of anchor boxes after data augmentation.

Category Code Weed Category Quantity

0 Bluegrass 2763
1 chenopodium album 1460
2 cirsium setosum 1498
3 Corn 2676
4 Sedge 2542
5 portulaca oleracea 126

2.2. YOLOv8 Algorithm Description

The backbone and neck form the core of YOLOv8, processing the image through Conv
and C2f modules. The C2f module, derived from YOLOv7’s C3 [17], enhances gradient
branches while maintaining a lightweight structure. The SPPF module refines feature maps
before passing them to the neck layer. Figure 3 illustrates the base algorithm structure.
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The neck module in YOLOv8 leverages FPN [18] and PAN [19] structures to enhance
feature fusion. This design integrates high- and low-level features through upsampling
and downsampling. This method enhances the network’s capability to integrate features
from different scales, boosting detection performance for objects of varying sizes.

The detection module of YOLOv8 separates the classification head from the detection
head and processes the sample category loss and bounding box loss. The author uses
binary cross-entropy loss to obtain the sample category loss. Then, the author uses CIoU
to calculate the bounding box loss [20]. In order to balance the effects of the two loss
calculation indicators on the detection evaluation, the author uses the task alignment
allocator to calculate a more balanced prediction evaluation indicator. This indicator
combines the classification loss with the bounding box loss. This indicator optimizes both
classification and positioning, effectively reducing the impact of low-quality prediction
boxes. The equation of the task alignment metric is given in detail in Equation (1):

t = Sα ×U β (1)
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The task alignment metric equation integrates the classification score (S) and the IoU
value (U), with α and β as weighted hyperparameters [21]. The value of t dynamically
guides the network towards high-quality anchor prediction. An IoU greater than 0.5 usually
indicates a successful detection. The specific equation is provided in Equation (2):

IoU =
|A ∩ B|
|A ∪ B| (2)

2.3. Improved YOLOv8 Algorithm

This study adjusts the model structure to minimize parameters and computational
complexity. These modifications aim to optimize the model for environments with limited
computational resources, achieving significant reductions in parameters and complexity
while enhancing detection accuracy.

For instance, a more lightweight and efficient AKConv network replaces the stan-
dard convolutional layers stacked before each C2f module in the backbone network of
YOLOv8 [22]. Using attention mechanisms is a common approach to improve model accu-
racy. Attention mechanisms have relatively few parameters and can offer high performance.

Additionally, the upsampling module in the neck module of the source network em-
ploys [23] an ultra-lightweight and efficient dynamic upsampler, DySample [24]. DySample
features fewer parameters, FLOPs, GPU memory, and latency, while significantly improving
accuracy and mean average precision (mAP).

Finally, surprisingly, by cleverly introducing the advanced attention mechanism, the
model has become extremely effective in detecting targets, especially for small objects,
which can be detected accurately, thereby greatly improving the detection accuracy. This
study selects the outstanding LSKA-Attention and integrates it into the original YOLOv8
model. This module not only reduces computational complexity but also improves detec-
tion accuracy. Figure 4 illustrates the improved YOLOv8 algorithm.
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2.3.1. AKConv Model

In the backbone network of YOLOv8, there are five main components: the Stem Layer
and Stage Layers 1 through 4. Each of the Stage Layers 1 through 4 contains a convolution
module and several C2F modules, with the final layer requiring the output features to pass
through an SPPF module. The Stem Layer is the initial part of the network. This reduces
the dimensionality of the input image while retaining key information. The four Stage
Layers form the core part of the backbone network, particularly Stage Layers 2, 3, and 4, as
their output is used as input for the top-down multi-scale feature pyramid structure (FPN)
in the neck network.

Each layer needs to use a traditional convolution kernel for downsampling before
processing. However, standard convolution operations often rely on square kernels with
fixed sampling positions, such as 1 × 1, 3 × 3, 5 × 5, and 7 × 7. The sampling positions
of these regular kernels are immutable, and their sizes cannot dynamically change with
the shape of the objects, leading to suboptimal feature extraction for some specific data
samples, failing to encompass semantic information at every scale.

To effectively address the aforementioned issues, the standard convolution kernel
before each stacked C2F module is improved to create special sampling shapes for convolu-
tion operations based on prior knowledge. This is achieved through AKConv, a convolution
kernel that dynamically adapts to changes in object shapes via offsets. AKConv belongs to
a class of deformable convolution networks that can handle irregularly shaped convolution
kernels, such as sizes 5, 7, and 13. AKConv first generates a regular sampling grid, then
creates irregular grids for the remaining sampling points, and finally combines them into a
complete sampling grid.

Since standard convolution operations often rely on square kernels with fixed sam-
pling positions centered at (0,0), irregular convolutions lack a center point for many sizes.
To adapt to the size of the convolutions used, AKConv generates the initial sampling
coordinates with the top-left corner (0,0) as the sampling origin, representing the uniform
distribution of sampling points without additional offsets. The generated initial sampling
coordinates are shown in Figure 5.
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After initializing the sampling grid, AKConv first obtains the offsets through con-
volution operations. The number of channels of the offset divided by 2 and rounded
down to the nearest integer is used as the input to generate the basic offset grid pn. Then,
the base offset points pn, initial grid points, and offsets are added together to obtain the
final sampling coordinates p. This integration of regular sampling positions, preset base
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offsets, and dynamically learned offsets allows the sampling to adapt to the changes in
the input features. Finally, bilinear interpolation resampling is used to extract features
from the corresponding positions, thereby achieving adaptive resampling of the input. The
feature map is then reshaped for subsequent feature processing. The principles and specific
structure of AKConv convolution operations are shown in Figure 6.
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AKConv assigns initial sampling coordinates to convolution operations of any size
and adjusts the sample shape with learnable offsets. Compared to the original sample
shape, resampling changes the shape of each position [25]. Therefore, AKConv effectively
performs the feature extraction process for irregular convolutions. By completing the
feature extraction process through irregular convolutions, AKConv can flexibly adjust
sample shapes based on offsets, providing more exploratory options for convolution
sampling shapes. Unlike standard convolutions and deformable convolutions, which are
constrained by the concept of regular convolution kernels, AKConv is more suitable for
tasks that require detection of specific shapes (such as elongated tubular structures) or tasks
that require convolution operations of arbitrary shapes and sizes.

2.3.2. DySample Upsampling Module in FPN

The model’s neck module utilizes an enhanced PAN-FPN structure, improving upon
the traditional FPN, which traditionally passes deep semantic information top-down. In
YOLOv8, B3-P3 and B4-P4 are concatenated. This operation is performed to strengthen
semantic features. However, it can lead to some loss of localization information [26]. To
mitigate this, a bottom-up PAN structure is added, enhancing localization through P4-N4
and P5-N5 fusion. This complementary approach ensures better feature learning. The
specific architecture is shown in Figure 7.
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But the PAN-FPN structure still has limitations. One key issue is its potential inef-
ficiency in handling large-scale feature maps, which may lead to the omission of critical
details and a reduction in detection quality. Furthermore, after upsampling and down-
sampling, some original information in the feature maps is lost. Therefore, the PAN-FPN
structure still has potential for enhancement.

The backbone network uses three improved AKConv output convolutions to obtain
three feature maps of different scales, which serve as the input for the FPN in the neck
module. However, the FPN structure in YOLOv8 uses the traditional nearest-neighbor
interpolation algorithm for upsampling. This algorithm can lead to jagged edges in image
features, unsmooth details, and semantic consistency issues due to noise introduction.
In contrast, dynamic upsamplers address these issues by generating content-aware up-
sampling kernels through dynamic convolution, but this approach introduces significant
computational overhead.

To more effectively resolve the above problems of traditional upsampling, this study
reconstructs the upsampling module in the feature merging part of YOLOv8 according to
the idea of Learning to Upsample by Learning to Sample (DySample). Dynamic upsampling
is introduced into the neck network. Unlike other dynamic upsamplers like CARAFE,
FADE, and SAPA, which generate dynamic kernels and guide the upsampling process
with higher resolution structures, DySample is ultra-lightweight and efficient. It does not
require any additional CUDA packages apart from PyTorch, and it has significantly lower
inference latency, memory usage, FLOPs, and parameter count.

DySample’s core idea is point sampling. Specifically, it assumes that input features are
interpolated into a continuous space through bilinear interpolation and generates content-
aware sampling points to resample this continuous mapping. Finally, DySample optimizes
the upsampling performance by controlling the initial sampling positions, adjusting the
offset movement range, and dividing the upsampling process into several independent
groups. Grid sampling is illustrated in Figure 8.

In the aforementioned sampling generator, there are two primary steps: linear transfor-
mation and pixel rearrangement. First, the input feature map X [27] is processed through a
linear layer with input and output channel dimensions of C and 2s2, respectively [28]. This
is followed by pixel transformation, which produces an offset map O of size 2 × sH × sW.
Subsequently, grid sampling is performed, where the spatial sampling of the input image X
is conducted based on the computed offsets to generate new coordinates. Finally, bilinear
interpolation is applied to the image based on the calculated grid coordinates, resulting in
the final feature map.
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However, the initial offset positions shared by s2 upsampling points in the sampling
set ignore positional relationships, and the unconstrained roaming range of the offsets can
lead to disordered sampling points. To address these two issues, the algorithm optimizes
by grouping the samples and adjusting the movement range of the offsets.

The initial sampling positions are shown in Figure 9a. Since the initial sampling
positions for each upsampling point are the same, the positional relationships between
adjacent points are ignored, leading to uneven sampling position distribution. Therefore,
“bilinear initialization” is introduced, as shown in Figure 9b. This changes the initial
positions so that when the offset is zero, bilinear interpolation results can be obtained. To
facilitate understanding of the bilinear interpolation in the below figure, four colors are
used here to distinguish the sampling range of each sampling point.
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offset ranges are constrained to reduce overlapping.

This improvement enhances the model’s performance. However, the normalization
of the offset range might cause adjacent sampling positions to overlap, affecting bound-
ary prediction and generating output artifacts. To mitigate this, we multiply the offset
by 0.25, which meets the theoretical marginal condition between overlapping and non-
overlapping [29], as shown in Figure 9c. This factor, known as the “static range factor,”
constrains the walking range of sampling positions locally, reducing overlap and further
improving performance. We rewrite Equation (3) as follows:

O = 0.25linear(X ) (3)

The implementation principle of the improved static sampling set generator is illus-
trated in Figure 10.
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To increase the flexibility of the offsets, a point-to-point dynamic range factor is gener-
ated through linear mapping of the input features combined with a sigmoid function. This
makes the offset range more adaptable to different situations, further fine-tuning perfor-
mance. The implementation principle of the improved dynamic sampling set generator is
illustrated in Figure 11. In this setup, the range factor is first generated and then used to
modulate the offsets [30]. The σ represents the sigmoid function. The final results for both
types of sampling sets are the aggregate of the generated offsets and the initial grid posi-
tions. The feature map is then divided into multiple groups by channels, with each group
dividing the same set of offsets. This approach improves model performance, especially
when the number of groups is set to 4, showing a significant enhancement in performance.
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Furthermore, according to the above discussion, the offset generation method can be
divided into two approaches: first linear mapping and then pixel rearrangement (LP) and
first pixel rearrangement and then linear mapping (PL).

The upsampling module in YOLOv8’s feature fusion component introduces DySample.
It not only significantly reduces inference latency, memory usage, FLOPs, and parameter
count but also enhances the source network’s detection accuracy. This algorithm not only
addresses the issues of jagged edges and uneven details that may arise from traditional
nearest-neighbor interpolation upsampling algorithms through continuous and context-
aware point sampling but also prevents the semantic consistency issues that may result
from noise introduced by conventional upsampling algorithms. Consequently, the PAN-
FPN module’s capability to fuse multi-scale features has been optimized, providing more
accurate feature maps for subsequent model detection modules and enhancing the model’s
detection capabilities.
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2.3.3. LSKA-Attention

In the head detection network of YOLOv8, the three feature maps that need to be
detected, sized 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024, respectively, are
processed through two (3,1) CBS convolution modules. These are then followed by a (1,1)
convolution module with a channel number of 4*reg_max to obtain the anchor box loss.
Additionally, they pass through two (3,1) CBS convolution modules followed by a (1,1)
convolution module with a channel number of num_class to obtain the classification loss.
These three detection feature maps are obtained after feature extraction and enhancement
through a C2f convolution module following feature fusion in the PAN-FPN module.

Although the inclusion of the AKConv and DySample algorithms has already im-
proved the model’s feature extraction capability, further enhancements are needed to ensure
that the detection network selectively focuses its limited resources on critical information
during feature processing. Therefore, a C2f-LSKA-Attention module is proposed, which
integrates a large kernel separable convolution attention mechanism (LSKA-Attention) into
the C2f module. This allows the model to dynamically allocate weights to different parts
of the input [31], focusing on important information in the feature map while ignoring or
de-emphasizing unimportant information during subsequent detection.

The core idea of LSKA-Attention is similar to the Vision Transformer (VIT), employing
the currently popular Transformer self-attention mechanism module. However, LSKA
possesses channel adaptability that standard CNN and Transformer self-attention modules
do not have. LSKA constructs the attention module by introducing a large kernel size (i.e.,
large kernels), allowing each attention head to cover a larger image area and capture a
broader range of contextual information [32].

In addition, the separation of large kernels is proposed, which solves the problem of
significant computational and memory overhead when processing high-resolution images.
Then, we introduce the principles of LSKA step by step through a simple example.

Firstly, the authors designed a simple large kernel convolution, as shown in Figure 12a.
Its output expression is given by the following:

ZC = ∑
H,W

WC
k×k ∗ FC (4)

AC = W1×1 ∗ ZC (5)

FC
= AC ⊗ FC (6)

Here, ∗ denotes convolution, and ⊗ signifies the Hadamard product [33]. As the
kernel size grows, the computational cost of depth-wise convolution within the large kernel
module increases quadratically.

To reduce the high computational cost [34] of large kernel depth-wise convolutions,
the authors decomposed them into cascaded one-dimensional horizontal and vertical
depth-wise convolutions combined with a 1 × 1 convolution (Figure 12b). However, they
observed that increasing the kernel size in LKA-trivial leads to a rise in computational
complexity proportional to k2.

To address the quadratic increase in computational cost due to large kernel sizes, the
authors drew on the original LKA design from the VAN network, which incorporates
standard depth-wise convolution, dilated depth-wise convolution, and 1 × 1 convolution
(Figure 12c). This large kernel decomposition mitigates the computational burden associ-
ated with depth-wise convolution. The LKA output is obtained through this approach:

ZC
= ∑

H,W
WC

(2d−1)×(2d−1) ∗ FC (7)

ZC = ∑
H,W

WC
⌊ k

d ⌋×⌊ k
d ⌋

∗ ZC (8)
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AC = W1×1 ∗ ZC (9)

FC
= AC ⊗ FC (10)

where d is the dilation rate, and ZC denotes the output from a depth-wise convolution with
a kernel size of (2d − 1) × (2d − 1), capturing local spatial details [35]. This helps offset
the grid effect of the subsequent depth-wise dilated convolution, which uses a kernel size
of
⌊

k
d

⌋
×
⌊

k
d

⌋
. The dilated depth-wise convolution is meant to seize overall space-related

data from the output ZC. However, when the kernel size increases to more than 23 × 23, it
still results in very high computational complexity and memory usage.
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Finally, the authors applied the method shown in Figure 12b, where the two-dimensional
weight kernels from depth-wise and dilated depth-wise convolutions are divided into
two sequential one-dimensional separable kernels. This results in an equivalent enhanced
LKA structure. This yields the LSKA (Large Kernel Separable Attention) module, as shown
in Figure 12d. Its output expression is given by the following:

ZC
= ∑

H,W
WC

(2d−1)×1∗
(

∑
H,W

WC
1×(2d−1) ∗ FC

)
(11)

ZC = ∑
H,W

WC
⌊ k

d ⌋×1
∗( ∑

H,W
WC

1×⌊ k
d ⌋

∗ ZC
) (12)

AC = W1×1 ∗ ZC (13)

FC
= AC ⊗ FC (14)

This module adopts a cascaded horizontal and vertical kernel design, which not only
retains the model’s ability to capture long-range dependencies but also further reduces
memory and computational complexity.
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The aforementioned improvements enable the model to concentrate its limited re-
sources on critical information. Consequently, this approach provides more accurate feature
maps for the detection module, thereby enhancing the capabilities of the detection network.

2.4. Experimental Parameters and Evaluation Metrics
2.4.1. Experimental Parameters

Experimental basic parameters are categorized into hardware parameters and algo-
rithm parameters. To ensure the comparability of experimental results, different algorithm
innovations must be executed under the same hardware environment to eliminate the ef-
fects of hardware variations [36]. Throughout the entire training process of all experiments,
consistent hyperparameters must be applied to each algorithm.

The hardware equipment of the experiment includes CPU, GPU, and RAM. The
graphics card used is RTX 3080, which has a video memory capacity of 10 GB. In order to
provide a temporary data storage area when the algorithm is running, the experiment also
uses a 40 GB memory capacity. The software part uses the Ubuntu 20.04 operating system
equipped with the PyTorch 1.11.0 framework.

The implementation language of the algorithm is Python3.8. The algorithm part uses
the YOLOv8n model as the baseline network, which has many customized hyperparam-
eters. The learning rate of this experiment is 0.01, and the model input size is 640 × 640.
For the efficient progress of the experiment, it is necessary not only to make full use of the
video memory to increase the training speed of the model but also to ensure that the total
memory occupation of each batch of processed pictures does not exceed the size of the
video memory to prevent the model training from crashing. Therefore, through the initial
tests, it is determined that the training batch size, epoch, and workers are 40, 300, and 24,
respectively. α and β in Equation (1) are set to 0.5 and 7.5, respectively [37].

2.4.2. Model Evaluation Indicators

This experiment adopts three detection indicators that are widely used in classification,
detection, and recognition tasks. First, precision refers to the proportion of samples pre-
dicted as positive examples that are actually positive examples [38]. Its definition equation
is as follows (15):

P =
TP

TP + FP
(15)

A higher precision means that a higher proportion of the positive examples predicted
by the model are indeed positive examples [39], that is, the prediction results of the model
are more accurate. Then, recall refers to the proportion of samples that are correctly
predicted as positive examples among samples that are actually positive examples. Its
definition equation is as follows (16):

R =
TP

TP + FN
(16)

Recall measures the ability of the model to detect all positive examples. A higher
recall means that the model can better find all samples that are actually positive examples.
The last indicator is mAP, which is a comprehensive evaluation indicator that evaluates
the overall accuracy based on the overlap of predictions with the actual box. Its definition
equation is as follows (17):

mAP =

Q
∑

i=1
APi

Q
× 100% (17)

The average precision of each category is represented as APi. Its definition equation is
as follows (18):

APi =
TP

TP+FP
N

(18)



Agronomy 2024, 14, 2355 15 of 24

This study also takes into account computational cost (GFLOPS) and model size,
where lower values mean better performance and efficiency.

3. Results
3.1. Ablation Experiment

The ablation experiments were conducted to assess the effectiveness of the improved
YOLOv8 algorithm in weed detection tasks by progressively incorporating different en-
hancement modules to evaluate their impact on model performance. Each enhancement
demonstrated performance improvements, particularly in recall and mAP metrics. The
introduction of AKConv effectively reduced model complexity while maintaining strong
performance. The replacement with DySample enhanced precision and recall, indicating
its advantages in the upsampling process. The integration of the LSKA method further
optimized the model’s efficiency and performance [40]. Detailed experimental results and
performance improvements are presented in Table 2. As shown in the following table, we
use

√
to indicate the introduction of a certain module in the original model.

Table 2. Results of the ablation experiment.

AKConv DySample LSKA-Attention Precision
(%) Recall (%) mAP50 (%) mAP50:95

(%)
Model Size

(MB) GFLOPS

89.93 86.16 91.64 72.53 5.96 8.2√
88.34 89.01 93.43 73.12 5.51 7.8√
91.37 87.79 94.42 73.20 5.98 8.2√
88.60 88.77 93.52 74.57 5.37 7.6√ √
89.49 88.56 93.72 75.20 5.52 5.4√ √
90.81 86.44 92.41 70.38 10.16 5.2√ √ √
92.13 88.61 94.71 74.43 5.02 7.3

Overall, the enhanced YOLOv8 model combines AKConv, DySample, and LSKA.
This enhanced model outperforms the original YOLOv8 in detection accuracy. It also
outperforms the original YOLOv8 in computational efficiency. In addition, it has fewer
parameters than the original YOLOv8. This improved model showed a 2.2% increase in
precision, a 2.45% boost in recall, a 3.07% rise in mAP@0.5, and a 1.9% gain in mAP@0.95.
The model size was reduced by 15.77%, and computational complexity was decreased
by 10.98%.

3.2. Confusion Matrix

Deep-learning models are often viewed as complex and somewhat mysterious black-
box systems because their inner workings and decision-making processes are not always
easy to understand or explain. Despite their strong performance across various tasks,
their decision-making and reasoning processes are difficult to interpret. Understanding
the explainability of these complex and powerful deep-learning models is of extreme
essential significance in diverse significant areas like medical diagnosis, where accurate
and explainable results can mean the difference between life and death, and autonomous
driving, where safety and reliability depend on understanding the decisions made by
the model.

In this experiment, both the enhanced and original YOLOv8 models were validated
by examining their confusion matrices, as shown in Figure 13, to gain insights into
their performance.
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The confusion matrix [41] clearly shows that both models have cases where the actual
target cannot be detected (false negatives) and also incorrectly identified negative cases
as positives (false positives). Detailed analysis reveals that the original YOLOv8 model
performs poorly in recognizing portulaca oleracea (purslane) and bluegrass, with accuracies
of only 79% and 83%, respectively. In contrast, the proposed improved YOLOv8 model
significantly enhances the recognition accuracy of portulaca oleracea and bluegrass by 3%
and 17%, respectively. Additionally, other categories, which already had high accuracy in
the original network, saw improvements as well: chenopodium album, corn, and sedge
each improved by 1%, and cirsium setosum improved by 2%.

3.3. Comparison of Other Models

To further assess the practical applicability and usefulness of the proposed algorithm,
this study undertook a comprehensive comparison between the ADL-YOLOv8 model and
widely used object detection models including SSD, Faster R-CNN, YOLOv5n, YOLOv5s,
YOLOv7-tiny, YOLOv7, YOLOv9t [42], and YOLOv10n [43]. The experiment, which was
conducted under the same dataset and parameters and carried on for 300 iterations, clearly
highlighted the outstanding effectiveness and superiority of ADL-YOLOv8. Table 3 presents
the comparison of precision, recall, mAP@50, mAP@50:95, model size [44], and GFLOPs
for each model.

Table 3. Comparison of different algorithms.

Model Precision
(%)

Recall
(%)

mAP50
(%)

mAP50:95
(%) GFLOPS Model

Size (MB)

SSD 41.26 48.31 61.69 37.67 68.2 105
Faster R-CNN 58.00 62.31 81.38 52.64 78.8 628.7

YOLO v5n 89.03 85.85 92.40 73.26 7.1 5.04
YOLO v5s 88.65 89.54 94.90 75.40 23.8 17.6

YOLO v7_tiny 86.50 83.20 86.10 63.90 13.2 12.3
YOLO v7 85.40 85.20 89.40 68.20 105.2 74.8
YOLO v9t 91.47 87.51 93.72 75.88 7.6 4.43

YOLO v10n 89.74 87.32 93.09 74.35 8.2 5.5
ADL-YOLOv8 92.13 88.61 94.71 74.43 7.3 5.02

Although YOLOv5s showed 0.19%, 0.97%, and 0.93% higher mAP@50, mAP@50:95,
and recall rates, respectively, compared to the proposed algorithm, its precision, computa-
tional load, and model size were 3.48% lower, 226.0% larger, and 250.6% larger, respectively.
Therefore, the results of the comparison clearly demonstrate that the improved ADL-
YOLOv8 model exhibits the highest level of overall performance in terms of detection
accuracy, recall rate, mAP@50, and mAP@50:95 when contrasted with other networks. Ex-
cluding YOLOv9t, which is rather closely comparable, and the non-lightweight YOLOv5s,
it can be observed that the mAP@50 of the ADL-YOLOv8 model is, respectively, 33.02%,
13.33%, 2.31%, 8.61%, 5.31%, and 1.62% superior to that of the other six models. At the
same time, the mAP@50:95 of the ADL-YOLOv8 model is, respectively, 36.76%, 21.79%,
1.17%, 10.53%, 6.23%, and 0.08% greater than that of the other six models.

The improved model presents a compact form. With a size of just 5.02 MB, it is
significantly 0.94 MB smaller than YOLOv8n. As a result, it stands as one of the most
diminutive models available, occupying the position that is second only to YOLOv9t.
The ADL-YOLOv8 model also demands fewer computational resources, with GFLOPs
at 7.3, which is 0.9 lower than the already efficient YOLOv8n. The ADL-YOLOv8 model
has nearly 8.43 times higher GFLOPs than SSD, 9.79 times higher than Faster R-CNN,
2.26 times higher than YOLOv5s, and nearly 13.41 times higher computational efficiency
than YOLOv7. Considering the need for real-time processing and model lightweighting
while ensuring detection accuracy, the following three aspects are analyzed based on
Table 3.
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• Real-Time Performance

Although the GFLOPs of the proposed algorithm are not the lowest among similar
models, reaching 7.3 GFLOPs, it is still significantly lower than most high-load models and
remains closely aligned with designs that have extremely high computational efficiency,
such as YOLO v9t. This allows the algorithm to ensure real-time performance while
demonstrating a thoughtful balance between speed and efficiency in the algorithm design,
making it an optimal choice for real-time application scenarios.

• Lightweight Design

Despite the proposed algorithm model size being 5.02 MB, slightly larger than YOLO v9t’s
4.43 MB, this value still highlights significant achievements in lightweight design in the overall
comparison. Specifically, when assessing the model’s portability and resource efficiency, the
proposed algorithm not only surpasses large models such as Faster R-CNN (628.7 MB) and
YOLO v7 (74.8 MB) but also shows minimal differences compared to leading lightweight
designs like YOLO v5n (5.04 MB) and YOLO v10n (5.5 MB). Therefore, the proposed algorithm
is an ideal choice for edge computing and mobile device deployment, fully reflecting the
delicate balance in algorithm design between accuracy and resource conservation.

• Accuracy

Among all the listed algorithms, the proposed algorithm exhibits outstanding perfor-
mance in precision (P), recall (R), and mAP@0.5% and mAP@0.5:0.95% metrics, reaching
92.13%, 88.61%, 94.71%, and 74.43%, respectively. These values are significantly higher
than other algorithms, such as the latest YOLO v9t algorithm (precision: 91.47%; recall:
87.51%; mAP@0.5%: 93.72%; mAP@0.5:0.95%: 75.88%) and YOLO v10n algorithm (preci-
sion: 89.74%; recall: 87.32%; mAP@0.5%: 93.09%; mAP@0.5:0.95%: 74.35%), demonstrating
the superior detection accuracy of the proposed algorithm.

The proposed algorithm achieves high-precision detection results while maintaining
low computational load (7.3 GFLOPs) and small model size (5.02 MB). This makes it com-
petitive with YOLO v9t and YOLO v10n in terms of real-time performance and lightweight
design, while also significantly surpassing all comparison objects in detection accuracy.
Therefore, for the field of weed detection, the proposed algorithm is an ideal solution,
capable of providing excellent detection performance without compromising on real-time
and lightweight requirements.

In summary, the ADL-YOLOv8 model that has been developed in this study offers
extremely high accuracy in detecting weeds while keeping the additional parameters to an
absolute minimum. As a result, it effectively improves the inference speed. The optimized
YOLOv8 model also features a reduced memory footprint and lower computational de-
mands, making it well-suited for deployment on embedded devices. This can facilitate the
accelerated implementation of smart weeding equipment and precise pesticide application
by drones in agriculture.

3.4. Different Models’ Detection Visualization Results Analysis

The evaluation metrics of the Faster R-CNN, SSD, YOLO v7_tiny and YOLO v7 algo-
rithms are far lower than those of the original YOLOv8. Moreover, the model size and GFLOPs
of YOLOv5s are relatively large and fail to meet the basic requirements of this experiment.

To evaluate the practical effectiveness of the ADK-YOLOv8 model in weed detection,
we utilized pre-trained ADK-YOLOv8, YOLOv5n, YOLOv9t, and YOLOv10n models to
detect various types of weeds. This validation primarily tested the accuracy of these
four models in detecting small and occluded targets. In the visualization results, blue
and red bounding boxes indicate bluegrass, pink and light blue bounding boxes indicate
chenopodium album, orange and white bounding boxes indicate cirsium setosum, and
orange-yellow bounding boxes indicate corn, while yellow and dark blue bounding boxes
indicate sedge. Due to the simplicity of the features of corn, sedge, and portulaca oleracea,
the differences in performance among the four models in detecting these weeds were not
significant, and thus, they were excluded from the visualization validation.
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As shown in Figure 14, the results of the YOLOv5n, YOLOv9t, YOLOv10n, and
ADK-YOLOv8 networks in detecting a large number of small targets are displayed. In
images with complex backgrounds and multiple small targets, YOLOv5n, YOLOv9t, and
YOLOv10n demonstrate notable deficiencies in extracting small target features. These
models all exhibit missed detections, identifying 9, 10, and 11 bluegrass targets, respectively.
However, the ADK-YOLOv8 model exhibits significant superiority in handling similar
scenarios, with only one occluded target missed and successfully detecting the remaining
small targets, resulting in a total of 15 detected weed targets.
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The following shows the performance of the four models when detecting both the
ash and bluegrass targets. YOLOv5n not only missed one bluegrass target but also pro-
duced a false positive; YOLOv9t missed three bluegrass targets; and YOLOv10n missed
two bluegrass targets. In contrast, the improved ADK-YOLOv8 network successfully
detected all targets without any missed detections or false positives, as shown in Figure 15.

Next is their ability to detect occluded prickly lettuce targets. The image contains
a complete target and an occluded target. The results show that both YOLOv9t and
YOLOv10n fail to detect the occluded target, showing significant missed detections. In con-
trast, YOLOv5n and the improved ADK-YOLOv8 successfully detect all targets, including
the occluded ones, as shown in Figure 16.

Through the above visual analysis, ADK-YOLOv8 is significantly better than other
models in handling complex backgrounds and occluded targets. Its high accuracy is
attributed to its improved network architecture and more efficient feature extraction
mechanism. And it also solves the problem of high missed detection rate of mainstream
lightweight models in small target detection in weeds. In addition, ADK-YOLOv8 performs
well in complex scenarios with multiple targets, significantly reducing missed detections
and false positives, demonstrating excellent adaptability and robustness. This performance
advantage enhances the model’s reliability and usefulness in real-world applications, espe-
cially in agricultural weed detection tasks that require high-accuracy capabilities.
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4. Discussion
4.1. Comparison among Different YOLO Versions

In the comparative experiment with mainstream models, we newly carried out
two experiments aiming to compare the performance of the latest target detection models,
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YOLOv11-S, RVDR-YOLOv8 and YOLOv8-ADL, in terms of accuracy, recall rate, mean av-
erage precision (mAP), model size, and giga floating-point operations per second (GFLOPS).
Table 4 shows the comparison results of this experiment. It can be seen from the comparison
results that our research has significant advantages in weed detection.

Table 4. The comparison between the improved model and the latest YOLO version as well as
YOLO—variant models.

Model Precision
(%)

Recall
(%)

mAP50
(%)

mAP50:95
(%) GFLOPS Model

Size (MB)

RVDR-YOLOv8 91.88 87.24 93.34 73.64 7.4 5.43
YOLO v11s 92.14 88.32 94.09 74.35 7.2 5.27

ADL-YOLOv8 92.13 88.61 94.71 74.43 7.3 5.02

4.2. Current Research Challenges

Compared with the original network, the ADL-YOLOv8 model proposed in this
article has achieved substantial improvements in various indicators of weed detection.
Furthermore, it successfully achieves the goal of making the model lightweight. This feature
opens up the possibility for affordable and cost-effective deployment on embedded devices
or mobile devices. The model becomes more suitable for these types of devices. This
not only expands the application scope of the model but also provides more convenience
for users who need to detect weeds in various environments. However, there are still
two challenges in the current experiment.

1. Variable appearance of weeds:

Weeds show significant differences in appearance under different lighting conditions
and growth environments.

Weeds may grow in the shadows or be occluded by other vegetation, resulting in
blurry images and increasing the difficulty of weed detection.

2. Improvement needed in the detection accuracy of small weeds or those with indis-
tinct features:

Although the model has been improved in terms of small-object detection, the detec-
tion accuracy for very small weeds or those with textures very similar to the surrounding
environment still needs to be enhanced. Because small-sized weeds may occupy only a tiny
part of the image and have indistinct features, the identification is rather difficult.

4.3. Future Research Priorities

In future research, to address these limitations, specific data augmentation algo-
rithms will be designed, considering the following aspects: 1. Simulating lighting changes:
augmenting the dataset with images simulating different lighting conditions. 2. Simulat-
ing occlusion: adding samples where weeds are partially obscured by other vegetation.
3. Collecting diverse samples: gathering samples from various environments, including
different times of day (morning and evening), different weather conditions (sunny, cloudy,
and rainy), and different types of soil and background environments.

5. Conclusions

Precise herbicide application results in weed detection playing a crucial role in modern
agriculture. It can not only effectively reduce the indiscriminate use of pesticides, thereby re-
ducing agricultural production costs at the economic level, but also has great significance in
environmental protection. It greatly alleviates the burden on the environment and strongly
promotes the development of agriculture towards green and sustainable directions. Based
on this, this paper proposes an improved weed detection model named ADL-YOLOv8.

We assume that the ADL-YOLOv8 model mainly introduces dynamic feature ex-
tractors and advanced attention mechanisms. These measures are aimed at achieving a
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lightweight model and improving its accuracy. Moreover, in the discussion section, by
comparing with the latest YOLOv11s and the recent RVDR-YOLOv8, it is concluded that
our experimental results support this hypothesis. The main research achievements are
as follows:

1. During the model construction process, this method adopts the AKConv network.
This network is lightweight and efficient and has unique advantages in processing
targets of specific shapes. For example, when dealing with targets with elongated
tubular structures, the AKConv network can better adapt to the shape characteristics
of the targets, thereby extracting relevant feature information more accurately and
effectively enhancing the performance of the entire model. This optimization for
targets of specific shapes enables the model to handle complex-shaped weed targets
more easily, providing a strong guarantee for the accuracy of weed detection.

2. In the neck part of the model, its upsampling module adopts a super-lightweight and
efficient dynamic upsampler named DySample. This dynamic upsampler plays an
indispensable role in the model and has a significant effect on improving the accuracy
and mean average precision (mAP) of the model. Through this special upsampling
method, the model can restore the detailed information in the image more accurately,
making the features of weed targets in the image more obvious, thereby improving
the accuracy of the model in weed detection and making the weed detection results
more reliable.

3. Finally, the introduction of the attention mechanism is another highlight of this
model. By introducing the attention mechanism, the model becomes more sensitive
when detecting targets, especially when dealing with small targets. This attention
mechanism can guide the model to focus on the key areas in the image, that is, the
areas where weeds are located, thereby improving the detection accuracy of weeds.
Specifically, this study integrates the high-performance LSKA-Attention into the C2f
module of the original YOLOv8 model, thereby forming the C2f_LSKA_Attention
module [45]. This newly formed module has multiple advantages. It can not only
effectively reduce the computational complexity of the model and the consumption of
computational resources during the model operation but also significantly improve
the detection accuracy of the model for weeds, making the model more efficient and
accurate when handling complex weed detection tasks.

From the experimental results, the ADL-YOLOv8 model shows excellent performance
and surpasses other leading target detection models in multiple aspects. Especially in
terms of model optimization, ADL-YOLOv8 reduces the computational requirements and
parameter scale while improving the detection accuracy. Specifically, compared with the
original YOLOv8n, ADL-YOLOv8 has 29.92% fewer parameters and 11.45% less computa-
tional load. These optimized model characteristics make it very suitable for being applied
in environments with limited memory and computational resources, such as embedded
devices. In embedded devices, the memory and computational capacity are often relatively
limited, and the light weight and high efficiency of the ADL-YOLOv8 model enable it to run
stably in such an environment and maintain high-performance weed detection capabilities.

These improvements confirm our hypothesis. The ADL-YOLOv8 model helps promote
the development of agriculture towards a more intelligent and sustainable direction, which
is of great significance for the sustainable development of the entire field of agriculture.

Author Contributions: Z.J.: methodology, visualization, and writing—original draft; M.Z.: validation
and writing—review and editing; C.Y.: investigation, formal analysis, and validation; Q.L.: funding
acquisition, writing—review and editing, and validation; H.L.: data curation, visualization, and
validation; X.Q.: writing—review and editing; W.Z.: validation, data curation, visualization, and
formal analysis; J.S.: supervision, data curation, and validation. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (52275251)
and The Earmarked Fund for CARS-18.



Agronomy 2024, 14, 2355 23 of 24

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Xiaoming, C.; Tianzeng, C.; Haomin, M.; Ziqi, Z.; Dehua, W.; Jianchao, S.; Jun, W. An improved algorithm based on YOLOv5 for

detecting Ambrosia trifida in UAV images. Front. Plant Sci. 2024, 15, 1360419. [CrossRef] [PubMed]
2. Gao, L.; Zhao, X.; Yue, X.; Yue, Y.; Wang, X.; Wu, H.; Zhang, X. A Lightweight YOLOv8 Model for Apple Leaf Disease Detection.

Appl. Sci. 2024, 14, 6710. [CrossRef]
3. Parra, L.; Marin, J.; Yousfi, S.; Rincón, G.; Mauri, P.V.; Lloret, J. Edge detection for weed recognition in lawns. Comput. Electron.

Agric. 2020, 176, 105684. [CrossRef]
4. Gée, C.; Denimal, E. RGB image-derived indicators for spatial assessment of the impact of broadleaf weeds on wheat biomass.

Remote Sens. 2020, 12, 2982. [CrossRef]
5. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Proceedings,
Part I 14, pp. 21–37.

6. Zhao, M.; Su, Y.; Wang, J.; Liu, X.; Wang, K.; Liu, Z.; Liu, M.; Guo, Z. MED-YOLOv8s: A new real-time road crack, pothole, and
patch detection model. J. Real-Time Image Process. 2024, 21, 26. [CrossRef]

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

8. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference on Computer
Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969.

9. Gan, D.; Gromiha, P. Advanced Intelligent Computing Theories and Applications; Springer: Berlin/Heidelberg, Germany, 2010.
10. Zhang, R.; Wang, C.; Hu, X.; Liu, Y.; Chen, S. Weed location and recognition based on UAV imaging and deep learning. Int. J.

Precis. Agric. Aviat. 2020, 3, 23–29. [CrossRef]
11. Hu, D.; Ma, C.; Tian, Z.; Shen, G.; Li, L. Rice Weed detection method on YOLOv4 convolutional neural network. In Proceedings

of the 2021 International Conference on Artificial Intelligence, Big Data and Algorithms (CAIBDA), Xi’an, China, 28–30 May 2021;
pp. 41–45.

12. Wang, A.; Peng, T.; Cao, H.; Xu, Y.; Wei, X.; Cui, B. TIA-YOLOv5: An improved YOLOv5 network for real-time detection of crop
and weed in the field. Front. Plant Sci. 2022, 13, 1091655. [CrossRef]

13. Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; La Grassa, R.; Boschetti, M. Deep object detection of crop weeds: Performance
of YOLOv7 on a real case dataset from UAV images. Remote Sens. 2023, 15, 539. [CrossRef]

14. Ding, Y.; Jiang, C.; Song, L.; Liu, F.; Tao, Y. RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8.
Electronics 2024, 13, 2182. [CrossRef]

15. Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques.
Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]

16. Jing, J.; Zhai, M.; Dou, S.; Wang, L.; Lou, B.; Yan, J.; Yuan, S. Optimizing the YOLOv7-Tiny Model with Multiple Strategies for
Citrus Fruit Yield Estimation in Complex Scenarios. Agriculture 2024, 14, 303. [CrossRef]

17. Wang, C.-Y.; Bochkovskiy, A.; Liao, H.-Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

18. Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

19. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768.

20. Ma, N.; Wu, Y.; Bo, Y.; Yan, H. Chili Pepper Object Detection Method Based on Improved YOLOv8n. Plants 2024, 13, 2402.
[CrossRef] [PubMed]

21. Hung, M.-H.; Ku, C.-H.; Chen, K.-Y. Application of Task-Aligned Model Based on Defect Detection. Automation 2023, 4, 327–344.
[CrossRef]

22. Zhang, Y.; Ni, Q. A novel weld-seam defect detection algorithm based on the s-yolo model. Axioms 2023, 12, 697. [CrossRef]
23. Zhang, T.; Zhang, J.; Pan, P.; Zhang, X. YOLO-RRL: A Lightweight Algorithm for PCB Surface Defect Detection. Appl. Sci. 2024,

14, 7460. [CrossRef]
24. Zheng, S.; Jia, X.; He, M.; Zheng, Z.; Lin, T.; Weng, W. Tomato Recognition Method Based on the YOLOv8-Tomato Model in

Complex Greenhouse Environments. Agronomy 2024, 14, 1764. [CrossRef]
25. Zhang, X.; Song, Y.; Song, T.; Yang, D.; Ye, Y.; Zhou, J.; Zhang, L. LDConv: Linear deformable convolution for improving

convolutional neural networks. Image Vis. Comput. 2024, 149, 105190. [CrossRef]
26. Tang, S.; Zhang, S.; Fang, Y. HIC-YOLOv5: Improved YOLOv5 for small object detection. In Proceedings of the 2024 IEEE

International Conference on Robotics and Automation (ICRA), Yokohama, Japan, 13–17 May 2024; pp. 6614–6619.

https://doi.org/10.3389/fpls.2024.1360419
https://www.ncbi.nlm.nih.gov/pubmed/38799099
https://doi.org/10.3390/app14156710
https://doi.org/10.1016/j.compag.2020.105684
https://doi.org/10.3390/rs12182982
https://doi.org/10.1007/s11554-023-01405-5
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.33440/j.ijpaa.20200301.63
https://doi.org/10.3389/fpls.2022.1091655
https://doi.org/10.3390/rs15020539
https://doi.org/10.3390/electronics13112182
https://doi.org/10.1016/j.compag.2019.02.005
https://doi.org/10.3390/agriculture14020303
https://doi.org/10.3390/plants13172402
https://www.ncbi.nlm.nih.gov/pubmed/39273886
https://doi.org/10.3390/automation4040019
https://doi.org/10.3390/axioms12070697
https://doi.org/10.3390/app14177460
https://doi.org/10.3390/agronomy14081764
https://doi.org/10.1016/j.imavis.2024.105190


Agronomy 2024, 14, 2355 24 of 24

27. Huynh-The, T.; Hua, C.-H.; Pham, Q.-V.; Kim, D.-S. MCNet: An efficient CNN architecture for robust automatic modulation
classification. IEEE Commun. Lett. 2020, 24, 811–815. [CrossRef]

28. Jiang, T.; Zhou, J.; Xie, B.; Liu, L.; Ji, C.; Liu, Y.; Liu, B.; Zhang, B. Improved YOLOv8 Model for Lightweight Pigeon Egg Detection.
Animals 2024, 14, 1226. [CrossRef]

29. Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to upsample by learning to sample. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Paris, France, 1–6 October 2023; pp. 6027–6037.

30. Yang, W.; Qiu, X. A lightweight and efficient model for grape bunch detection and biophysical anomaly assessment in complex
environments based on YOLOv8s. Front. Plant Sci. 2024, 15, 1395796. [CrossRef] [PubMed]

31. Khaniki, M.A.L.; Mirzaeibonehkhater, M.; Manthouri, M. Enhancing Pneumonia Detection using Vision Transformer with
Dynamic Mapping Re-Attention Mechanism. In Proceedings of the 2023 13th International Conference on Computer and
Knowledge Engineering (ICCKE), Mashhad, Iran, 1–2 November 2023; pp. 144–149.

32. Zheng, Z.; Ge, Z.; Tian, Z.; Yang, X.; Zhou, Y. WoodGLNet: A multi-scale network integrating global and local information for
real-time classification of wood images. J. Real-Time Image Process. 2024, 21, 147. [CrossRef]

33. Lau, K.W.; Po, L.-M.; Rehman, Y.A.U. Large separable kernel attention: Rethinking the large kernel attention design in cnn. Expert
Syst. Appl. 2024, 236, 121352. [CrossRef]

34. Cong, S.; Zhou, Y. A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 2023, 56,
1905–1969. [CrossRef]

35. Wang, J.; Wang, Y.; Sun, A.; Zhang, Y. A Lightweight Network FLA-Detect for Steel Surface Defect Detection. Res. Sq. 2024, preprint.
[CrossRef]

36. Chen, X.; Lv, J.; Fang, Y.; Du, S. Online detection of surface defects based on improved YOLOV3. Sensors 2022, 22, 817. [CrossRef]
37. Yang, J.; Hu, Q.; Cheng, M.-M.; Wang, L.; Liu, Q.; Bai, X.; Meng, D. Computer Vision: Second CCF Chinese Conference, CCCV 2017,

Tianjin, China, October 11–14, 2017, Proceedings, Part III; Springer: Berlin/Heidelberg, Germany, 2017; Volume 773.
38. Du, W.; Jiang, G.; Xu, W.; Ma, J. Sequential patent trading recommendation using knowledge-aware attentional bidirectional long

short-term memory network (KBiLSTM). J. Inf. Sci. 2023, 49, 814–830. [CrossRef]
39. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.
40. Gao, H.; Sun, Y.; Shi, W. The Internet of Things Drives Smart City Management: Enhancing Urban Infrastructure Efficiency and

Sustainability. J. Organ. End User Comput. (JOEUC) 2024, 36, 1–17. [CrossRef]
41. Deng, X.; Liu, Q.; Deng, Y.; Mahadevan, S. An improved method to construct basic probability assignment based on the confusion

matrix for classification problem. Inf. Sci. 2016, 340, 250–261. [CrossRef]
42. Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. Yolov9: Learning what you want to learn using programmable gradient information. arXiv

2024, arXiv:2402.13616.
43. Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J.; Ding, G. Yolov10: Real-time end-to-end object detection. arXiv 2024,

arXiv:2405.14458.
44. Uygun, T.; Ozguven, M.M. Real-Time Detection of Shot-Hole Disease in Cherry Fruit Using Deep Learning Techniques via

Smartphone. Appl. Fruit Sci. 2024, 66, 875–885. [CrossRef]
45. Tang, Z.; Zhang, W.; Li, J.; Liu, R.; Xu, Y.; Chen, S.; Fang, Z.; Zhao, F. LTSCD-YOLO: A Lightweight Algorithm for Detecting

Typical Satellite Components Based on Improved YOLOv8. Remote Sens. 2024, 16, 3101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LCOMM.2020.2968030
https://doi.org/10.3390/ani14081226
https://doi.org/10.3389/fpls.2024.1395796
https://www.ncbi.nlm.nih.gov/pubmed/39166243
https://doi.org/10.1007/s11554-024-01521-w
https://doi.org/10.1016/j.eswa.2023.121352
https://doi.org/10.1007/s10462-022-10213-5
https://doi.org/10.21203/rs.3.rs-4581669/v1
https://doi.org/10.3390/s22030817
https://doi.org/10.1177/01655515211023937
https://doi.org/10.4018/JOEUC.338214
https://doi.org/10.1016/j.ins.2016.01.033
https://doi.org/10.1007/s10341-024-01085-w
https://doi.org/10.3390/rs16163101

	Introduction 
	Materials and Methods 
	Experimental Data 
	Data Collection and Annotation 
	Data Enhancement 

	YOLOv8 Algorithm Description 
	Improved YOLOv8 Algorithm 
	AKConv Model 
	DySample Upsampling Module in FPN 
	LSKA-Attention 

	Experimental Parameters and Evaluation Metrics 
	Experimental Parameters 
	Model Evaluation Indicators 


	Results 
	Ablation Experiment 
	Confusion Matrix 
	Comparison of Other Models 
	Different Models’ Detection Visualization Results Analysis 

	Discussion 
	Comparison among Different YOLO Versions 
	Current Research Challenges 
	Future Research Priorities 

	Conclusions 
	References

