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Abstract: Machine vision and near-infrared light technology are widely used in fruits and vegetable
grading, as an important means of agricultural non-destructive testing. The characteristics of fruits
and vegetables can easily be automatically distinguished by these two technologies, such as appear-
ance, shape, color and texture. Nondestructive testing is reasonably used for image processing and
pattern recognition, and can meet the identification and grading of single features and fusion features
in production. Through the summary and analysis of the fruits and vegetable grading technology in
the past five years, the results show that the accuracy of machine vision for fruits and vegetable size
grading is 70–99.8%, the accuracy of external defect grading is 88–95%, and the accuracy of NIR and
hyperspectral internal detection grading is 80.56–100%. Comprehensive research on multi-feature
fusion technology in the future can provide comprehensive guidance for the construction of auto-
matic integrated grading of fruits and vegetables, which is the main research direction of fruits and
vegetable grading in the future.

Keywords: machine vision; near infrared technology; fruits and vegetables; grading

1. Introduction

According to the statistics of the Forward-looking Industry Research Institute, the
global fruit planting area used to be 64.86 million hectares, and the output used to be
88.7 million tons in 2020. China, India and the United States were among the top fruit
producers in the world [1,2]. The global vegetable output used to be 1.15 billion tons
in 2020. China, India and Brazil were among the top vegetable producers in the world.
With the development of global agriculture and information technology [3] and the rise of
related industries, it is very important to test and grade the quality of fruit and vegetables.
The augmented production of fruit [4] and vegetables [5] has resulted in a progressive
increase in the demand for labor worldwide. However, owing to the scarcity of the labor
force globally, the traditional fruit and vegetable grading is readily influenced by human
psychological factors [6], characterized by high intensity [7,8], low efficiency [9] and low
precision. Hence, the application of novel detection and grading technology is urgently
required [10]. The research of machine vision technology, near-infrared spectroscopy
technology and hyperspectral technology has effectively solved the above problems of
traditional grading.

Nowadays, machine vision technology, near-infrared light technology and hyperspec-
tral technology are rapidly maturing and being applied to fruit and vegetables grading.
Machine vision can improve the efficiency of the fruit and vegetables sorting process, reduce
labor costs and pave the way for automation in agriculture by introducing faster, cost-
effective and non-destructive methods. By analyzing the spectral characteristics of fruits
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and vegetables, near-infrared light technology and hyperspectral technology can quickly
detect the maturity [11], quality and intrinsic attributes of fruits and vegetables such as mois-
ture, sugar and nutrition. Varghese, Renju Rachel et al. [12] proposed a real-time fruit and
vegetables grading system based on machine vision for the shelf life of fruits and vegetables
to help users choose ideal vegetables and fruits for consumption. Tang Yunchao et al. [13]
used machine vision technology to identify and locate fruits in complex environments, and
reviewed two main methods for fruit recognition and location, including digital image
processing technology and algorithms based on deep learning. Ismail, Nazrul et al. [14]
used a variety of models to grade apples and bananas, and found that the Efficient Net
model had the highest accuracy of apple and banana grading, 96.7% and 93.8%, which
made a contribution to the future automatic-grading accuracy. Fan Shuxiang et al. [15]
independently developed a rapid-response portable Vis/NIR device prototype. The experi-
mental results showed that the ratio of the predicted determination coefficient (R-p (2)),
the predicted root mean square error (RMSEP) and the standard deviation of the reference
destructive SSC to RMSEP (RPD) was 0.690, 0.604% and 1.794, respectively, proof that
the device can detect Apple internal features. Yuan Yuhui et al. [16] used three object
detection algorithms, Faster R-CNN, Yolov3-Tiny and Yolov5s, to extract the bruised area
of apples for damage detection to grade the bruises of apples. The results showed that
the accuracy of the three algorithms for early bruised and non-bruised apples was more
than 99%. The accuracy was above 96% for apples with no bruising, mild bruising, and
severe bruising, and the shortest detection speed for a single image was 6.8 ms. When Unal,
Zeynep. et al. [17] used NIR data for training, AlexNet, InceptionV3, and VGG16 models
had high accuracy in bruise detection, with 99.33%,100%, and 100%.

In view of this, in order to achieve accurate grading of the exterior and interior of
fruits and vegetables, researchers have carried out extensive research in machine vision
technology, near-infrared light technology, and hyperspectral technology. In this paper,
the advantages and disadvantages of different experiments are summarized and analyzed.
This paper reviewed the research progress of the three technologies, discussed how to
effectively improve the grading efficiency, and analyzed the limitations and challenges
of the existing technologies, as well as the development trend of fruits and vegetable
grading. It is pointed out that automatic grading in a multi-source environment, improving
the recognition accuracy of fruits and vegetables, and automatic integrated grading are
important directions for future research.

2. External Inspection of Fruits and Vegetables

Machine vision is one kind of comprehensive technology that emulates the human
eye using computers and can identify specific images through training. It mainly includes
five steps: image acquisition, image preprocessing, feature extraction, size grading and
hierarchical output. It is widely applied in various fields of social production. Due to
its advantages of high precision, fast speed, and user-friendly operation, products from
international industry leaders such as Cognex (Boston, MA, USA), Basler (Arnsberg, Ger-
many), Keyence (Japanese large version), and Omron (Kyoto, Japan) have found extensive
use in external inspection and grading of fruit and vegetable products [18]. Autoline’s
fruit grading equipment from the United States holds a leading position globally [8]. The
process of fruit and vegetable grading based on machine vision technology mainly includes
the following core steps: image acquisition, image preprocessing, feature extraction, size
grading, and graded output. This section presents a comprehensive study on the applica-
tion of machine vision in fruits and vegetables grading, as shown in Table 1, and elaborates
the methods, conclusions, advantages and disadvantages of each study. A detailed review
is made for the follow-up research.
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Table 1. Research and comparison of machine vision technology in fruit and vegetable grading.

Author Objects Characteristics Conclusion Advantages Disadvantages

[19]
Citrus

Python does the
processing

Canny edge detection.
Find contours of citrus

counter area to calculate
the contour area.

It has high accuracy,
saves time and effort,

and reduces the
interference of human

factors.

~ ~

[20]
The 2D projection image

is used for integral
calculation.

The error is 5%.
The accuracy is

90.54%.

Comprehensive and
concise information.

Accuracy needs to be
improved.

[21]

Apple

Threshold segmentation.
Fisher support vector

machine.

Apple’s overall
accuracy is 95%.

Accurately divides the
damage area.

Improves grading
efficiency

Minor defects cannot
be accurately

identified

[22]
Machine vision is

combined with a robotic
arm.

The grading accuracy
is 95%.

The time for grading is
about 5.2 s.

Machine vision is
combined with a

robotic arm.
It has reliability and

practicability.
Multiple metrics.

The number of
indicators is relatively

small.
Detection speed

limited the
manipulator speed.

[23]

PP-YOLO Object
Detection algorithm

writes the control
software in Python

(PyQt5)

The error is within
±1.5 mm.

PP-YOLO object
detection: low false
detection rate and

high efficiency.

~

[24] Spherical
fruit

Minimal enclosing
matrix.

Morphological
region-filling analysis of

fruit surface defects.

The average
recognition rate is

94.4%.

Surface-defect features
can be extracted.

The grading accuracy
is high.

Full surface inspection
is not possible.

Fruit surface defect
characteristics have a

certain effect.

[25] A variety of
fruits

Multi-sensor
information fusion

technology.

Fruit grading should
be considered in many

ways.

A precise grading of
the fruit can be made.

Lacks multi-scene and
is static.

[26] Strawberry

The SLR camera
performs image
acquisition and

processing.
Median filtering
denoising, gray

enhancement and
binarization processing.

The white background
can clearly segment
the strawberry fruit.
The median-filtering
algorithm can better

remove the
salt-and-pepper noise

mixed in the
strawberry image
collection process.

Five typical algorithms
can segment the image

contour clearly.

On-line, lossless and
good real-time
performance.

Effects such as
strawberry rot were

not considered.
The segmentation and
maturity recognition

were completed
without considering

the complex
background.

[27] Blueberries

Maximum
between-cluster

variance-method
morphology.

Least squares method.

The area accuracy is
98.93%.

The accuracy of the
perimeter is 87.74%.

Grading was
performed based on
area and perimeter.
The complexity and

cost are low.

Fruiting stems cannot
be segmented

accurately.
Some images are

unimodal and cannot
be segmented out.
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Table 1. Cont.

Author Objects Characteristics Conclusion Advantages Disadvantages

[28] Potato
Support vector machine.

BP neural network
model.

The average accuracy
of SVM is 87.5%.

The texture structure
of the image processed

by the weighted
average method is

clear.

The recognition
accuracy is low.

[29] Day lily
flower

Heatmap branch.
Improved

non-maximum
suppression algorithm.
Joint-point prediction.

The recognition
accuracy is 91.02%.

The positioning
accuracy is 99.8%.

Satisfies most models.
High positioning

accuracy.
Detection-box

prediction is changed
to joint-point
prediction.

The recognition
accuracy is low.
Recognition and

localization in
complex environments

is not considered.

[30] Black
fungus

The DMV-VGR software
processes the images.
PLC data monitoring.

A preliminary grading
can be performed.

Provides a hierarchical
scheme.

Low accuracy.
No omnidirectional

acquisition.
There are

uncertainties.

[31]

A variety of
fruits and
vegetables

Gaussian filtering.
Fuzzy C-means

clustering.
Grab-cut.

The detection and
grading accuracy of
SVM are 97.63% and
96.59%, respectively.

Consider the impact of
multiple factors.
The accuracy is
relatively high.

~

[12] SVM, K-NN, Anna
The accuracy of the
proposed system is

70%.

It works without a
network.

The accuracy is
relatively low, and

more fruits and
vegetables should be

introduced for
experimentation.

[32] Mango

Sobel operator and
Canny operator.

MATLAB is used for
image processing.

The accuracy of the
first-grade fruit is

93.3%.
The accuracy of the

second-grade fruit is
95%.

The accuracy of the
third-grade fruit is

95%.

Solves the problem of
unclear edge and

discontinuity.

The lighting
conditions are not

uniform.

~ The representative information is not mentioned in the text.

2.1. Fruit and Vegetable External-Size Detection

In terms of citrus color and grade detection [33,34], Zou Wei [19] transformed RGB
images into HSV images and processed them with image noise reduction and binarization.
The Canny algorithm was used for edge detection and the Find Contours function was used
to identify the contours of citrus fruits. The area of the contour is calculated and graded
by the counter area function (Figure 1). Experimental results show that the proposed
method can accurately distinguish citrus fruits of different sizes and qualities. It has made a
contribution to the target area recognition, but this method is only suitable for static, not for
dynamic situations. Li Lang et al. [20] developed an online citrus detection system using
machine vision. (Figure 2) In this system, each frame image is segmented, sorted, denoised,
and two-dimensional coloring ratio is extracted to reduce the influence of coloring rate in
the image. Experimental results show that the maximum error tolerance is 5%, and the
overall grading accuracy is 90.54%. Compared with Zou Wei [19], the accuracy of this
experiment is higher, and it is suitable for grading in dynamic environments.
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14. Industrial camera.

For the apple image recognition and grading process (Figure 3), Shi Ruiyao [21] used
the Support Vector Machine (SVM) to segment and fill the apple image, calculated the
threshold according to the OTSU algorithm, and reconstructed the image (Figure 4). In
the experiment, the penalty factor C = 0.01 and the number of iterations 1000 have the
best effect, reaching 95% accuracy. The experiment carried out a comprehensive detection,
and can identify the defects by extracting the image, but there will be errors in the stem
or calyx of the apple, which will be improved in the future. Peng Yankun et al. [22] used
machine vision and a robotic arm to detect and grade apples [35,36]; the grading accuracy
reached 95%, and the grading time was about 5.2 s. Using the PP-YOLO target-detection
algorithm and the control software developed in Python to train and test images has
high reliability and practicability. However, the grading speed will be affected by the
manipulator. Liu Jiahao et al. [23] used the improved algorithm to fit and extract the edge
image of apple, and then converted it into HIS Canny edge-detection image to calculate
its roundness. Compared with the traditional manual identification of the apple diameter,
the error is within ±1.5 mm, which meets the actual grading requirements. This method
effectively solves the problem of high false detection rate and low detection efficiency of
spherical fruit.

Rao Jian et al. [24] employed an online detection system for the identification and
grading of spherical fruits (Figure 5). The proposed method utilizes the minimum external
matrix to determine the fruit shape index, while also analyzing fruit surface defects through
morphological region-filling techniques. In this experimental study, a total of 120 test sets
were utilized for grading detection, resulting in the detection of 18 special-grade fruits,
39 first-grade fruits, 39 s-grade fruits, and 24 externally identical fruits. The experimental
results demonstrate an average recognition rate of 94.4%. This research possesses the advan-
tages of extracting surface-defect features accurately and achieving high grading accuracy.
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However, it has limitations in terms of not being able to detect the entire fruit surface and
potential impact from fruit surface-defect characteristics on the detection results.
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Zhang Yuhua et al. [25] employed multi-sensor information fusion technology for
the detection of various fruits. The findings demonstrate that fruit grading should be
approached from multiple perspectives, rather than a singular standpoint. This study
enables accurate fruit grading, although it is limited by single-point detection and predom-
inantly static images collected in the university laboratory, which do not fully capture the
dynamic nature of real-world scenarios. Su Boni et al. [26] identified and graded straw-
berries [37,38]. The images are collected by SLR camera, and the images are processed
by median filter for denoising, gray enhancement and binarization. The experimental
results demonstrate that a white background enables clear segmentation of strawberry fruit,
while the median-filtering algorithm effectively removes salt-and-pepper noise present in
the image collection process. The five typical algorithms successfully segment the image
contour. This experiment offers online, lossless, and real-time advantages; however, it
does not consider factors such as strawberry rot or breakage, nor does it address complex
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background scenarios when completing strawberry fruit segmentation and maturity recog-
nition. The machine vision technology was employed by Li Jianhang et al. [27] to accurately
identify and classify blueberries (Figure 6). The image segmentation was performed using
the maximum between-cluster variance method, followed by morphology-based removal
of connected regions and fitting using the least squares method [39]. Experimental results
demonstrate that the average accuracy for calculating blueberry fruit area is 98.93%, while
the average accuracy for calculating blueberry fruit circumference is 87.74%. Comparing to
manual segmentation as the standard calculation accuracy, area grading proves to be more
accurate than perimeter grading. Blueberry fruits are classified based on their area and
perimeter calculations, offering a low-complexity and cost-effective approach. However, it
should be noted that accurate segmentation of fruit stems remains challenging, particularly
in cases where images are unimodal.
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camera. 5. Camera support.

The potato peel images (Figure 7) were preprocessed using MATLAB R2016a in Tang
Zhensan’s [28] study on potato grading technology [40]. Additionally, support vector
machine and BP neural network models were developed to effectively grade and classify
the roughness of the potato peel. In this particular experiment, a total of 79 potato samples
were employed, with 55 samples allocated as the training set and 24 samples designated as
the test set. The experimental findings demonstrate that SVM achieves an average accuracy
rate of 87.5%, surpassing that achieved by the BP neural network in terms of potato peel
grading. Consequently, a highly effective grading model was established utilizing support
vector machines alongside feature comparison using GLCM, enabling recognition and
grading of potato peels. However, it is worth noting that one limitation is the relatively
lower recognition accuracy.

Zhang Yanjun [29] optimized the yolov6 neural network to accurately predict the
Huanghua joint node, and added the heat map branch to enhance the non-maximum
suppression algorithm. The experimental results show that the recognition accuracy is
91.02%, and the positioning accuracy is 99.8%. The Agaric recognition grading system
(Figure 8) was developed by Wang Mengxin et al. [30], using image processing techniques
of the DMV-VGR software and PLC data monitoring. The system is able to perform initial
grading and provide efficient and accurate grading solutions. The disadvantages are low
grading accuracy and lack of omnidirectional features.

Bhargava, A. et al. [31] used Gaussian filtering for denoising, fuzzy C-means clustering
and grab-cut for image segmentation in their experiments on detection and grading of
various vegetables and fruits, respectively. Subsequently, they compared the accuracy with
SVM and four other decision methods. The experiments were conducted on five vegetables
and four fruits. Experimental results show that the accuracy of SVM decision detection
reaches 97.63%, and the accuracy of grading reaches 96.59%. The SVM with the highest
accuracy is selected for validation. Renju Rachel Varghese et al. [12] used SVM, K-NN and
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the Anna algorithm to design a system that can identify and grade a variety of fruits and
vegetables without a network, and the overall accuracy of the experiment reached 70%.
Anuja Bhargava and Atul Bansal [41] developed a fruit grading system using K-NN, SVM,
SRC, ANN, and other methods. The system shows superior accuracy compared to existing
techniques, being able to analyze and identify fruits based on color, geometry, statistics,
and texture.
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2.2. External-Defect Detection of Fruits and Vegetables

A set of image acquisition devices was developed by Chen Yingxue et al. [32] (Figure 9)
for lossless feature recognition and grading, using mangoes. In the experiment, Sobel operator
and Canny operator are used to detect the edge, which solves the problem of unclear and
discontinuous edge in the previous defect recognition. The results indicate that the accuracy
of first-grade fruits is 93.3%, while second-grade fruits exhibit an accuracy of 95%, and third-
grade fruits demonstrate a similar accuracy level of 95%. This research successfully addresses
issues related to unclear and discontinuous edges, while also mitigating noise interference
in the images captured. However, it should be noted that variations in illumination during
experimentation can impact image quality.

Due to the good grading performance of the VGG network, Zhou HaiYan [42] used the
Random Weighted Average (SWA) optimizer and w-softmax loss function to improve the
VGG network to identify Qingmei defects. The accuracy of defect grading and recognition
is increased by 9.8% and 16.6%, and the test speed is increased by 1.87 ms and 6.21 ms,
respectively. This experiment can well identify the external defects of green plum, but
cannot identify the stem of green plum and the whole green plum. This experiment is not
suitable for dynamic identification. For dynamic defect identification, Chen Yaohui [43]
developed the SORT algorithm to track and identify citrus defects, as shown in Figure 10,
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which made up for the shortcomings of static identification. The overall recall, precision,
and F1 score are 0.87, 0.88, and 0.871, respectively. The accuracy of defect-grading judgment
in dynamic recognition is low, and high accuracy is needed to locate the position of
the orange.
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Figure 10. Comparison of mobile-citrus network results and development trace results. The tracking
series of five identified defective mandarins are shown in figure. Green box stands that this mandarin
is identified as normal case, while red box stands that this mandarin is identified as defect [43].

Non-destructive identification of defects in fruits and vegetables is still a difficult
problem in the field. Zhang Xinxing [44] uses the optimized YOLO-V4 model for detection
and the Efficient Net model for grading. The accuracy and F1 score are 0.890 and 0.872,
respectively. The YOLO-V4 model before and after optimization identifies defects well, and
after optimization it can be classified more accurately (Figure 11), but it will lose confidence,
location, and grading. Improving the model accuracy and simplifying the model are the
main research directions in the future.

The YOLOv5 network uniformly changes the size of the input image to 640 × 640,
which will improve the speed of inference and detection. The YOLOv5 model was opti-
mized by Hu Wenxin [45], and the training comparison with the YOLOv5x model is shown
in Figure 3. The average precision, precision and recall reach 95.5%, 94.0% and 95.1%,
respectively, which are 5.8%, 3.6% and 7.6% higher. At the same time, the image detection
speed is increased by 22.1 ms. Experiments show that the improved network can achieve
good performance in citrus skin defect detection, but there is a problem, in that the defect
data set is difficult to collect.

We examined recent studies on fruit defect detection, which are organized into tables
as shown in Table 2. In recent years, most works on fruit defect detection are based on
convolutional neural networks. The datasets used in the literature mainly consist of an
image with a single object in a laboratory environment as the dataset and a dataset with
multiple objects in an orchard environment as the background. However, the datasets used
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in the above studies are different, so it is not possible to directly compare the performance
of the detection networks used. For fair evaluation, the image content and background,
network and detection performance of the dataset were selected for comparative study. As
can be seen from Table 2, the detection effect of the optimized detection network is better
than that of the original network, and the detection difficulty of the data set collected in
the orchard environment is usually greater than that in the laboratory environment. This
indicates that it is effective and necessary to improve the network when the image contains
multiple target objects and a complex background.
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Table 2. Some research studies on fruit defect detection in recent years.

Object Network Defect Condition
Dataset Condition Network Performance

Image Content Image Background Recall Accuracy F1 Score Precision mAP

Defective
mangoes

[32])

MATLAB
software Rot, spots, scars A mangled

mango Laboratory ~ 95% ~ ~ ~

Green plum
defects [42]

Improved
VGG

network

Rot, spots, scars,
cracks

A damaged green
plum Laboratory ~ 93.8% ~ ~ ~

Defective
citrus [43]

Mobile-
Citrus

Mechanical damage
and skin lesions

Multiple
defective citrus

fruits
Laboratory 87.0% 88.0% 87.1% ~ ~

Defective
citrus [44]

YOLOv4 and
EfficientNet

Canker,
anthracnose,

sunscald, greening,
and melanose

Multiple
defective citrus

fruits
Orchard ~ 89.0% 87.2% ~ ~

Citrus
epidermal
defects [45]

Based on the
improved
YOLOv5

Injury and scar A defective citrus
fruit Laboratory 95.1% ~ ~ 94.0% 95.5%

~ The representative information is not mentioned in the text.

The accuracy of machine vision in grading the external dimensions and defects of
fruits and vegetables is 70–99.8% and 88–95%, and it has good grading ability under specific
lighting conditions. However, there are still some shortcomings, such as high hardware
and lighting requirements, a relatively single environment, complex image processing,
and being unable to detect multiple defects at the same time. In the future, deep-learning
and computer-vision technologies should be combined to develop more efficient image
processing algorithms to improve the recognition ability of surface defects in fruits and
vegetables. Using the AI Vision cloud platform improves the simultaneous detection of
multiple defects through online annotation and learning, reducing the complexity and cost
of custom development.
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3. Internal Inspection of Fruits and Vegetables

The near-infrared spectrum refers to the range of wavelengths between the red edge
of the visible spectrum and the infrared spectrum, spanning from 780 to 2526 nm [46].
Detection technology utilizes electromagnetic waves within the wavelength range of 700 to
1100 nm [47]. In recent years, the Perkin Elmer factory and Thermos factory in the United
States, and the Bruker company in Germany have ventured into research and development
of near-infrared spectrometers. Infrared spectroscopy is widely used in many fields, such
as food detection, chemical analysis, and biological research. For fruits and vegetables
specifically, near-infrared light technology enables non-destructive detection of various
indicators such as sugar content and moisture levels. Its advantages can be harnessed
for damage-free fruits and vegetable grading, with significant implications. The United
States conducted the initial study on imaging spectrometers in 1983. AVIRIS and DAIS in
the United States, FLI and CASI in Canada, ROSIS in Germany and HyMap in Australia
have successively studied fruit and vegetable grading in the hyperspectral field. The “atlas
and spectrum integration” technology of hyperspectral analysis utilizes a wide range of
continuous-wavelength spectral data to extract object characteristics. This technology cap-
tures information within the visible-light-to-infrared spectrum, enabling change detection
and target tracking [48]. It provides more detailed and comprehensive data compared to
human eyes or conventional photography. Hyperspectral “map and spectrum integration”
technology has found extensive applications in diverse fields such as agriculture, geological
exploration, environmental monitoring, and medical diagnosis. Table 3 shows the applica-
tion of machine vision and NIR spectroscopy and hyperspectral technology in fruit and
vegetable grading in recent years.

Table 3. Comparative study of near-infrared light technology in fruit and vegetable grading.

Author Objects Characteristics Conclusion Advantages Disadvantages

[49]

Apple

Near-infrared
spectroscopy.
PLS model.

PCA dimensionality
reduction.

Ridge processing.

The accuracy of
grading ranged from

88.38% to 90.84%.

The ridge regression
model has good

stability.
Multiple-

preprocessing and
dimensionality-

reduction algorithms.

Low accuracy-
The data are not good
enough and there is

overfitting.

[22]
Machine vision.

Normalized spectral
ratio method.

The grading accuracy
is 95%.

Nir spectroscopy is
combined with robotic

arms and machine
vision.

More indicators.

Lack of internal
metrics.

The dynamic
acquisition of the

spectrum will have an
impact on the model.

[50]
Hyperspectral

technology is combined
with BP neural network.

The correlation
coefficient R of the

prediction set reaches
0.86, and the root

mean square error is
0.69.

The computational
complexity of the
model is reduced
without losing the
main information.

Fruit stem and calyx
removed, the area is

small.

[51] Multi-channel
hyperspectral. The accuracy is 0.994.

Spectral combination
gives better accuracy
in variety detection.

Spectral combination
was not able to

improve the results of
the best single SR

spectra in the visible
region.
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Table 3. Cont.

Author Objects Characteristics Conclusion Advantages Disadvantages

[52] Corn
Near-infrared

reflectance spectroscopy.
Partial least squares.

The SG convolution
accuracy is 98.7% and

the prediction set
accuracy is 96%.

The overall accuracy
of liveness prediction

is 97%.

High efficiency of
single granulation.

The modeling accuracy
and stability are good.

The detection
efficiency will be

affected by the wheel
speed or angle.

[53] White
radish

Pre-dispersive
near-infrared light

technology

The accuracy of
grading is 80.56%.

Pre-dispersive NIR
light technology is

used.
New detection

method, low cost.

It is only applicable
when the internal mass

changes are small.

[54] Ioquat

Hyperspectral
technology.

RF.
Builds models with

multiple colors

The accuracy is 100%.
Multiple model

methods are compared.
High accuracy.

No other defects were
identified.

[55] Black
wolfberry

FD, FFT, HT, SG,
Normalize and SNV

preprocesses.
PCA, SPA, and CARS
extract wavelengths.

LIBSVM, LDA, KNN, RF
and NB build the model.

Stacking ensemble
learning.

The precision is
improved from 0.9417

to 0.9833.
Fast grading can be

achieved by
hyperspectral

ensemble training.

It can obtain spectral
and image information
at the same time. and

fast.
Comparison of

multiple methods.

The steps are
cumbersome and only
suitable for indoor use.

[56] Orange

Hyperspectral
technology.

PLS-DA and other
methods for modeling.

The false positive rate
is 0.78%.

It also reduces the
false positive rate

while reducing the
dimension of spectral

space.

The effect of thick skin
was not considered.

[57] Honey
SPA
FCM
KNN

It can classify grade 3
fruit accurately, but
grades 1 and 2 and

grades 4 and 5 are easy
to misjudge between

each other.

The samples are
non-destructive and
can capture internal

qualities.

It is suitable for grades
1–3, and the

recognition accuracy
of grades 4 and 5 is

low.

[58] Watermelon Near-infrared
reflectance spectroscopy

R2
cv = 0.73, RMSECV =
0.39%, R2

p = 0.81,
RMSEP = 0.30%.

Near-infrared light
penetration.

Heavily dependent on
optical geometry

measurements; further
instrument

optimization is
required.

[59] Jujube

Hyperspectral
technology is combined
with VISSA-GWO-SVM

model.

The accuracy rate is
91.67%.

The signal-to-noise
ratio of the spectrum is

improved.
It is fast and lossless.

The recognition
accuracy is low.
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Table 3. Cont.

Author Objects Characteristics Conclusion Advantages Disadvantages

[60] Eggplant
Hyperspectral

continuous-projection
method.

Rc
2 =0.94, Rp

2 = 0.90,
RMSEC = 0.19, RMSEP =

0.21.
The accuracy rate is

96.82%.

The grading accuracy
is improved, and the
eggplant damage can
be effectively graded

and evaluated.

The data dependence
is strong, and the

feature selection will
affect its stability.

[61] Potato
Partial least squares

regression.
OSC-CARS–PLSR

R2 is 0.9606 and 0.8925.
RMSE is 0.070% and

0.1385%.

The prediction
accuracy and stability

are improved.

It increases the
computational
complexity and

requires the use of
more computing

resources.

The main process of fruits and vegetables grading by near infrared spectroscopy
technology includes the selection of a calibration sample set and prediction sample set,
spectrum collection, chemical value detection and, finally, the establishment and testing of
the mathematical model. The process of fruit and vegetable grading based on hyperspectral
technology mainly includes the following core steps: data acquisition and preprocessing,
data dimensionality reduction, model construction and grading. The application of NIR
spectroscopy and hyperspectral technology in fruit and vegetable grading is reviewed in
detail below.

Liao Zhiqiang [49] used six preprocessing methods (Figure 12) for internal detection
and grading of apples, and used the ridge model for preprocessing; the accuracy of grading
ranged from 88.38% to 90.84%. Experimental results show that the ridge regression model
has better stability and higher grading accuracy. Peng Yankun et al. [22] developed a
robot hand system with lossless perception and grading (Figure 13). The PP-YOLO target-
detection algorithm is used to improve the detection speed, the normalized spectral ratio
method is used for brix modeling, and NSR + CARS is used as the robot-hand spectrum
model. The accuracy of the method is 0.9655, the recall rate is 1, the accuracy rate is 0.998 4,
and the model detection speed is 38 frames/s, which further improves the grading accuracy.
It has high reliability. However, there is a lack of sufficient internal indicators, and the
dynamic acquisition of the spectrum may have an impact on the model. The application
of hyperspectral imaging technology solves the above problems. Wang Jifang [50] used
hyperspectral imaging and the BP neural network to detect three indicators of apple sugar
content, pH value and hardness. The R values of the experiment are 0.85, 0.46, and 0.36,
and the RMSE values are 0.69, 0.76, and 0.86, respectively, which has a strong predictive
ability and is suitable for the grading of apples according to their sugar content. It should
be noted that the accuracy of using single-channel spectra needs to be further optimized.
For the application of multichannel spectroscopy, Huang Yuping et al. [51] used multi-
channel hyperspectral imaging technology to detect and classify apples, and the use of
spectral combination improved the recognition rate of the SR spectrum, reaching a grading
accuracy of 0.994. However, the spectral combination cannot improve the results of the
best single SR spectra in the visible region, which is a difficult point to be solved in the
future. Çetin, N. et al. [62] predicted apple hardness and soluble solid content and pointed
out that the potential use of ANN and DT methods for hyperspectral imaging was more
effective for hardness, while DT and MLR were more effective for SSC. These methods are
very feasible for industrial applications.



Agronomy 2024, 14, 2395 14 of 21

Agronomy 2024, 14, x FOR PEER REVIEW 15 of 23 
 

 

pointed out that the potential use of ANN and DT methods for hyperspectral imaging was 
more effective for hardness, while DT and MLR were more effective for SSC. These meth-
ods are very feasible for industrial applications. 

 
Figure 12. Six kinds of spectral preprocessing methods [49]. 

 
Figure 13. The diagram illustrates the structure of a robotic hand system. 

Wang Yali et al. [52] designed a set of maize vitality detection and grading devices 
(Figure 14), and the partial least squares method can be used to better analyze the vitality. 
Experimental results show that SG convolutional smoothing shows superior performance, 
the calibration accuracy reaches 98.7%, the prediction set accuracy reaches 96%, and the 
overall vitality prediction accuracy reaches 97%. This experiment effectively solves the 
problems of low efficiency, low modeling accuracy and instability associated with single 
granulation. In the actual agricultural application, there are some problems such as the 
mismatch between the sliding speed and the identification rate, and the changeable envi-
ronment. In research by Chia et al. [53], a low-cost artificial neural network based on k-
fold cross validation was developed to classify the sugar content of white radish. Experi-
mental results show that the accuracy of this method is 80.56%. Since the internal mass 
variation is small, pre-dispersive reflectance spectrum acquisition is used to improve the 
accuracy of the method. However, the grading accuracy of this method for white radish 
is relatively low, and it is more susceptible to other factors, such as illumination, in the 
actual grading process. 

Figure 12. Six kinds of spectral preprocessing methods [49].

Agronomy 2024, 14, x FOR PEER REVIEW 15 of 23 
 

 

pointed out that the potential use of ANN and DT methods for hyperspectral imaging was 
more effective for hardness, while DT and MLR were more effective for SSC. These meth-
ods are very feasible for industrial applications. 

 
Figure 12. Six kinds of spectral preprocessing methods [49]. 

 
Figure 13. The diagram illustrates the structure of a robotic hand system. 

Wang Yali et al. [52] designed a set of maize vitality detection and grading devices 
(Figure 14), and the partial least squares method can be used to better analyze the vitality. 
Experimental results show that SG convolutional smoothing shows superior performance, 
the calibration accuracy reaches 98.7%, the prediction set accuracy reaches 96%, and the 
overall vitality prediction accuracy reaches 97%. This experiment effectively solves the 
problems of low efficiency, low modeling accuracy and instability associated with single 
granulation. In the actual agricultural application, there are some problems such as the 
mismatch between the sliding speed and the identification rate, and the changeable envi-
ronment. In research by Chia et al. [53], a low-cost artificial neural network based on k-
fold cross validation was developed to classify the sugar content of white radish. Experi-
mental results show that the accuracy of this method is 80.56%. Since the internal mass 
variation is small, pre-dispersive reflectance spectrum acquisition is used to improve the 
accuracy of the method. However, the grading accuracy of this method for white radish 
is relatively low, and it is more susceptible to other factors, such as illumination, in the 
actual grading process. 

Figure 13. The diagram illustrates the structure of a robotic hand system.

Wang Yali et al. [52] designed a set of maize vitality detection and grading devices
(Figure 14), and the partial least squares method can be used to better analyze the vitality.
Experimental results show that SG convolutional smoothing shows superior performance,
the calibration accuracy reaches 98.7%, the prediction set accuracy reaches 96%, and the
overall vitality prediction accuracy reaches 97%. This experiment effectively solves the
problems of low efficiency, low modeling accuracy and instability associated with sin-
gle granulation. In the actual agricultural application, there are some problems such as
the mismatch between the sliding speed and the identification rate, and the changeable
environment. In research by Chia et al. [53], a low-cost artificial neural network based
on k-fold cross validation was developed to classify the sugar content of white radish.
Experimental results show that the accuracy of this method is 80.56%. Since the internal
mass variation is small, pre-dispersive reflectance spectrum acquisition is used to improve
the accuracy of the method. However, the grading accuracy of this method for white radish
is relatively low, and it is more susceptible to other factors, such as illumination, in the
actual grading process.

In terms of hyperspectral imaging technology, Li Bin et al. [54] used random forest,
least squares support vector machine, and other four methods to establish the spectral
characteristics of loquat to classify loquat contusions (Figure 15). The hybrid image model
has superior prediction performance, and the least squares support vector machine method
can achieve 100% prediction accuracy. It provides a high precision scheme for the future
damage identification. The fruit stem and pulp are relatively difficult to distinguish in
grading. Lu Wei et al. [55] used hyperspectral ensemble learning (Figure 16) to grade
anthocyanin content in black Lycium barbarum (Figure 17). Stacking ensemble learning is
used to improve the grading accuracy from 0.9417 to 0.9833. The spectral extraction and
grading of fruit stems and pulp are carried out, which verifies the feasibility of hyperspectral
ensemble training for rapid grading of Lycium ruthenicum.



Agronomy 2024, 14, 2395 15 of 21

Agronomy 2024, 14, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 14. Schematic diagram of seed-vigor detection and grading equipment. 1. Computer. 2. Near-
infrared spectrometer. 3. Optical fiber probe. 4. Light source. 5. Seed box (energetic). 6. Seed box 
(not energetic). 7.Sorting pipeline. 8. Running pipeline. 9. Single granulation device. 10. Fiber optic 
sensor. 

In terms of hyperspectral imaging technology, Li Bin et al. [54] used random forest, 
least squares support vector machine, and other four methods to establish the spectral 
characteristics of loquat to classify loquat contusions (Figure 15). The hybrid image model 
has superior prediction performance, and the least squares support vector machine 
method can achieve 100% prediction accuracy. It provides a high precision scheme for the 
future damage identification. The fruit stem and pulp are relatively difficult to distinguish 
in grading. Lu Wei et al. [55] used hyperspectral ensemble learning (Figure 16) to grade 
anthocyanin content in black Lycium barbarum (Figure 17). Stacking ensemble learning is 
used to improve the grading accuracy from 0.9417 to 0.9833. The spectral extraction and 
grading of fruit stems and pulp are carried out, which verifies the feasibility of hyperspec-
tral ensemble training for rapid grading of Lycium ruthenicum. 

 
Figure 15. Schematic diagram of hyperspectral imaging system. 

Figure 14. Schematic diagram of seed-vigor detection and grading equipment. 1. Computer. 2.
Near-infrared spectrometer. 3. Optical fiber probe. 4. Light source. 5. Seed box (energetic). 6. Seed
box (not energetic). 7. Sorting pipeline. 8. Running pipeline. 9. Single granulation device. 10. Fiber
optic sensor.

Agronomy 2024, 14, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 14. Schematic diagram of seed-vigor detection and grading equipment. 1. Computer. 2. Near-
infrared spectrometer. 3. Optical fiber probe. 4. Light source. 5. Seed box (energetic). 6. Seed box 
(not energetic). 7.Sorting pipeline. 8. Running pipeline. 9. Single granulation device. 10. Fiber optic 
sensor. 

In terms of hyperspectral imaging technology, Li Bin et al. [54] used random forest, 
least squares support vector machine, and other four methods to establish the spectral 
characteristics of loquat to classify loquat contusions (Figure 15). The hybrid image model 
has superior prediction performance, and the least squares support vector machine 
method can achieve 100% prediction accuracy. It provides a high precision scheme for the 
future damage identification. The fruit stem and pulp are relatively difficult to distinguish 
in grading. Lu Wei et al. [55] used hyperspectral ensemble learning (Figure 16) to grade 
anthocyanin content in black Lycium barbarum (Figure 17). Stacking ensemble learning is 
used to improve the grading accuracy from 0.9417 to 0.9833. The spectral extraction and 
grading of fruit stems and pulp are carried out, which verifies the feasibility of hyperspec-
tral ensemble training for rapid grading of Lycium ruthenicum. 

 
Figure 15. Schematic diagram of hyperspectral imaging system. 

Figure 15. Schematic diagram of hyperspectral imaging system.

Agronomy 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 16. Hierarchical flow chart of hyperspectral ensemble learning of Lycium ruthenicum [55]. 

 
Figure 17. Hyperspectral imaging system. 1. CCD-camera. 2. Spectrograph. 3. Lens. 4. Lamps. 5. 
Black goji berry. 6. Translation platform. 7. Dark box. 8. Motor controller. 9. Computer. 

The degree of granulation of fruit affects its taste. For fruits with thick skin, it can be 
challenging to predict internal fruit mass using imaging techniques [63]. Ref. [64] devel-
oped a method to estimate the ripening time of avocado using hyperspectral imaging 
combined with deep learning, with an average error of 1.17 days per fruit in the test set. 
When Liu Yande et al. [56] graded the granulation degree (Figure 18), the UVE-LS-SVM 
model based on RBF-Kernel was used for detection, and the misjudgment rate was only 
0.78%. The established model effectively reduces the false positive rate and spectral space 
dimension, which provides a solid foundation for navel orange detection and grading. 
The model is only suitable for the granulation grading of thin-skinned fruits. When grad-
ing thick-skinned fruits, Sun Xiaopeng et al. [57] used the continuous projection-k-nearest 
neighbor algorithm to predict the accuracy, sensitivity and specificity of the model to 
reach more than 0.97, 0.9231 and 0.9784, respectively (Figure 19). It is suitable for grades 
1–3, and the recognition accuracy of grades 4 and 5 is low. Miguel Vega-Castellote et al. 
[58] utilized near-infrared spectroscopy technology to detect the maturity and soluble 

Figure 16. Hierarchical flow chart of hyperspectral ensemble learning of Lycium ruthenicum [55].



Agronomy 2024, 14, 2395 16 of 21

Agronomy 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 16. Hierarchical flow chart of hyperspectral ensemble learning of Lycium ruthenicum [55]. 

 
Figure 17. Hyperspectral imaging system. 1. CCD-camera. 2. Spectrograph. 3. Lens. 4. Lamps. 5. 
Black goji berry. 6. Translation platform. 7. Dark box. 8. Motor controller. 9. Computer. 

The degree of granulation of fruit affects its taste. For fruits with thick skin, it can be 
challenging to predict internal fruit mass using imaging techniques [63]. Ref. [64] devel-
oped a method to estimate the ripening time of avocado using hyperspectral imaging 
combined with deep learning, with an average error of 1.17 days per fruit in the test set. 
When Liu Yande et al. [56] graded the granulation degree (Figure 18), the UVE-LS-SVM 
model based on RBF-Kernel was used for detection, and the misjudgment rate was only 
0.78%. The established model effectively reduces the false positive rate and spectral space 
dimension, which provides a solid foundation for navel orange detection and grading. 
The model is only suitable for the granulation grading of thin-skinned fruits. When grad-
ing thick-skinned fruits, Sun Xiaopeng et al. [57] used the continuous projection-k-nearest 
neighbor algorithm to predict the accuracy, sensitivity and specificity of the model to 
reach more than 0.97, 0.9231 and 0.9784, respectively (Figure 19). It is suitable for grades 
1–3, and the recognition accuracy of grades 4 and 5 is low. Miguel Vega-Castellote et al. 
[58] utilized near-infrared spectroscopy technology to detect the maturity and soluble 

Figure 17. Hyperspectral imaging system. 1. CCD-camera. 2. Spectrograph. 3. Lens. 4. Lamps.
5. Black goji berry. 6. Translation platform. 7. Dark box. 8. Motor controller. 9. Computer.

The degree of granulation of fruit affects its taste. For fruits with thick skin, it can
be challenging to predict internal fruit mass using imaging techniques [63]. Ref. [64] de-
veloped a method to estimate the ripening time of avocado using hyperspectral imaging
combined with deep learning, with an average error of 1.17 days per fruit in the test set.
When Liu Yande et al. [56] graded the granulation degree (Figure 18), the UVE-LS-SVM
model based on RBF-Kernel was used for detection, and the misjudgment rate was only
0.78%. The established model effectively reduces the false positive rate and spectral space
dimension, which provides a solid foundation for navel orange detection and grading. The
model is only suitable for the granulation grading of thin-skinned fruits. When grading
thick-skinned fruits, Sun Xiaopeng et al. [57] used the continuous projection-k-nearest
neighbor algorithm to predict the accuracy, sensitivity and specificity of the model to reach
more than 0.97, 0.9231 and 0.9784, respectively (Figure 19). It is suitable for grades 1–3, and
the recognition accuracy of grades 4 and 5 is low. Miguel Vega-Castellote et al. [58] utilized
near-infrared spectroscopy technology to detect the maturity and soluble solid content
(SSC) of watermelon based on its penetration characteristics. In this experiment, NIR spec-
tral data were obtained from two squares of one watermelon, while spectra were acquired
from five different measurement points of 19 other watermelons. The results revealed that
the penetration depth for both intact watermelon and pulp at four measurement points
was 11 mm. Moreover, the optimal performance in terms of SSC percentage exhibited
R2

cv = 0.73, RMSECV = 0.39%, R2
p = 0.81, and RMSEP = 0.30%. This study holds potential for

watermelon grading; however, it is worth noting that the accuracy of the model heavily
relies on optical geometry measurements, necessitating further optimization of the instru-
ment. Sharma, S. et al. [65] used the GA-PLSR model and SPA-PLSR model to measure
DM, TSS and FC of durian pulp, providing a quality inspection and grading system for
durian packaging companies.
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Lin Zhang et al. [59] used VISSA-GWO-SVM model to detect and classify saccharin
jujube, and achieved a grading accuracy of 91.67%. Three different algorithms are used to
tune the Support Vector Machine (SVM). The experimental method effectively overcomes
the limitations of traditional manual detection methods, and has the advantages of being
fast, accurate and lossless. It has made a contribution to food safety. Ci Jiangtao et al. [60]
used hyperspectral technology [61], the CARS-MLR model, to detect and classify the
external features of eggplant, and the accuracy of the prediction set reached 96.82%. The
grading accuracy is improved, and the eggplant damage can be effectively graded and
evaluated. However, the CARS-MLR model has strong dependence on data, and feature
selection will affect its stability. The content of potato can be accurately determined using
hyperspectral technology, as demonstrated by Jing Zhang et al. [66]. They developed the
OSC-CARS–PLSR model based on partial least squares regression and orthogonal signal
correction techniques. The obtained R2 values were 0.9606 and 0.8925, with corresponding
RMSE values of 0.070% and 0.1385%. The OSC-CARS-PLSR model improves the prediction
accuracy and stability, but it increases the computational complexity and needs to use more
computing resources. Qi Hengnian et al. [67] found in the non-destructive determination
of soluble-solid content of crown pear that the combination of Vis/NIR spectroscopy and
the MLP-CNN-TCN method can quickly and non-destructively detect the SSC of crown
pear, providing a new regression option for predicting the SSC of fruit.

4. Challenges and Trends

In the past few years, significant advances have been made in optical technology,
including complex areas such as spectral imaging, near-infrared light technology, and
computer vision [68]. However, there are still many challenges in the application of
this technology. These challenges mainly include how to perform efficient and accurate
fruit and vegetable recognition and grading in complex environments. Realizing multi-
source, efficient and accurate identification and grading of fruits and vegetables is of great
significance to improve the current agricultural labor shortage faced by the world, and to
realize the unmanned and integrated development of planting and picking of fruits and
vegetables. Therefore, future research needs to work on the following aspects:

(1) High yield. The increase in the world population will lead to an increase in the
demand for fruits and vegetables, and the global production of fruits and vegetables will
further increase. Fruit and vegetable grading is particularly important. Therefore, the
accurate grading of fruits and vegetables under complex conditions is still a focus. At
present, the research on fruit and vegetable grading requires less quantity; in the case of
high yield and long duration, it is a major direction and challenge in the future to grade
fruits and vegetables in real time and without error.

(2) Structure of orchard. An unstructured environment usually has the characteristics
of irregular terrain, many dynamic obstacles and complex information collection, which
adversely affect the fruit and vegetable grading in an unstructured environment. Therefore,
the challenge of fruit and vegetable grading in the future integration application stems from
the complexity of unstructured conditions, and the operation of the fruit and vegetable
grading system and robot in a complex environment is still the focus of research. In the
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future, the construction of a structured environment is the orchard, and the development of
the greenhouse is more conducive to the integrated management of fruits and vegetables,
which is also a major direction of future development.

(3) Grading technique. It is still difficult to classify the size of fruits and vegetables by
machine vision, taking into account factors such as high cost, complex technology, strong
dependence on the environment, and difficulty in optimization. Near-infrared spectroscopy
(NIRS) has some technical problems, such as difficult modeling, low sensitivity and poor
reliability. There are problems such as high cost of hyperspectral technology and complex
data processing of equipment structure. In the future, the theory and practice of machine
vision technology need to be further refined to improve the accuracy of recognition and
grading. Machine vision technology is applied to the whole growth process of crops to
give full play to its non-destructive testing ability to assess the appearance quality of crops.
NIR technology will enable miniaturization and lightweight design to be tested directly
through mobile phone software or small devices. This conversion will result in a versatile
and portable lossless internal-test instrument with multiple metrics that can be used at
any given time. One direction in the future is to improve the processing and analysis
capabilities of hyperspectral images, which will show great potential in fruit and vegetable
grading and detection. With the continuous development of hyperspectral technology,
sensors and devices will further improve their performance, thus promoting the role of
hyperspectral technology in various fields.

5. Conclusions

In order to solve the problems existing in fruit and vegetable grading, the research
status of fruit and vegetable grading was reviewed. At present, in the field of unmanned
grading, the research on automatic grading systems and machines is not sufficient. How-
ever, current scoring techniques are rapidly evolving, providing a wide range of algorithms
and techniques that can be used to enhance the capabilities of automated scoring sys-
tems and machines. This is the main contribution to fully automatic grading of fruits
and vegetables.

This paper reviews the application of machine vision technology, near-infrared light
technology and hyperspectral technology in fruit and vegetable grading in the past five
years, and expounds the advantages and disadvantages of found in each research study.
The results show that the accuracy of machine vision technology in fruit and vegetable
size grading is 70% to 99.8%. The accuracy with respect to external defects is 88–95%. The
accuracy of near-infrared light technology and hyperspectral technology in the detection
and grading of internal content of fruits and vegetables is 80.56% to 100%, which is a
high accuracy.

The machine vision technology, near-infrared light technology and hyperspectral
technology are applied to the grading of fruits and vegetables, which realizes accurate
and efficient sorting, and solves the problem of inconsistent quality. Further research
on hyperspectral-based grading devices can facilitate online detection and grading of
fruits and vegetables, compensating for the limitations of manual inspection and grading
processes. Ultimately, this will lead to automated, unmanned, and mechanized operations.
In the future, extensive efforts should be dedicated to studying non-destructive testing
methods and theories for fruits and vegetables, as well as designing more advanced
algorithms and software solutions. Integration of various beneficial advanced technologies
is crucial in developing grading equipment suitable for diverse environmental conditions.
This will ensure automation, safety, environmental friendliness, and advanced portability
capabilities, among others advantages, while enhancing the quality, not only within fruit
and vegetable grading, but also across other industries. Reliable support, along with
technological advancements, are essential for fostering a healthy development within the
fruit and vegetable industry chain.
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