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Abstract: The post-harvest process is important to increasing the market value of limes and requires
focus. During this process, limes are graded and categorized based on size, weight, and volume.
Therefore, identifying efficient means of estimating these properties is very important and remains an
open research area. This study applies the concept of computer vision based on traditional machine
learning algorithms (partial least square regression (PLS), epsilon-support vector regression (ε-SVR),
decision tree (DT), random forest (RF), adaptive boosting (AB), gradient boosting (GB), Bagging meta-
estimator (BME), and extremely randomized trees (ERTs)) and pre-trained deep learning (InceptionV3,
MoblieNetV2, ResNet50, and VGG-16) for estimating the weight and volume of limes. Our findings
showed that the BME and ResNet50 could yield the highest performance for estimating the weight
and volume of limes. The BME produced R2

test values of 0.954 and 0.882 for weight and volume,
respectively, while the R2

test values of ResNet50 models were between 0.951 and 0.957 for weight
and volume, respectively. This study concluded that computer vision based on both traditional
machine learning and deep learning could be used to estimate the weight and volume of limes. The
approach proposed in this study can be adopted for applications related to computer vision in the
post-harvest process.

Keywords: lime; weight; volume; computer vision; machine learning; deep learning

1. Introduction

Citrus fruits are sources of essential nutrients, namely glycemic and nonglycemic
carbohydrates (sugars and fiber), potassium, folate, calcium, thiamin, niacin, vitamin B6,
phosphorus, magnesium, copper, riboflavin, pantothenic acid, and a variety of phytochemi-
cals [1]. The citrus fruit lime (Citrus aurantifolia (Christm.) Swingle) is a high-priority crop
in many countries around the world. Although the fruit originated in Southeast Asia, it is
now found in tropical and subtropical regions worldwide [2]. The physical properties of
limes, including shape, size, weight, and volume, are important for determining juice yield,
fruit consistency, the regulation of wholesale and retail prices, and consumer acceptance.
These properties are the most essential indicators for designing and optimizing post-harvest
machinery, including equipment used for cleaning, grading, conveying, processing, pack-
aging, and transportation. Currently, limes are graded based on their size so that the
process can be carried out using various methods, including manual labor and sorting
machinery. Nevertheless, manual labor is not efficient; it is time-consuming, inefficient,
and labor-intensive, and traditional sorting machinery is limited in its ability to accom-
modate various lime standards in different regions [3]. Typically, the size, weight, and
volume of lime have shown some degree of correlation [4]. The weight and volume of fruits
are important indicators for developing applications for quality evaluation, packaging,
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transportation, and marketing. Currently, weight measurements are performed manually
by weighing each individual lime. To measure volume, the water displacement method
(WDM), in which a product is fully immersed in water and the increase in water level is
taken as the volume of the product, is the most conventional approach [5]; however, these
procedures are also time-consuming, inefficient, labor-intensive, and susceptible to error
and therefore unsuitable for adoption on an industrial scale. Therefore, an effective, rapid,
non-destructive, and reliable method for estimating size, weight, and volume is critical for
enhancing automation in the post-harvest process and the commercial value of limes.

In recent years, computer vision (CV) has been widely adopted in agriculture, par-
ticularly in the post-harvest process, to decrease both machine costs and human errors.
CV is a robust, powerful, and non-destructive method for assessing physical properties,
including color, size, shape, weight, volume, and so on, which requires image analyses,
image processing, and machine learning (ML) procedures. In previous research, several
feature extraction methods with traditional ML regression algorithms, namely linear re-
gression (LR), multiple linear regression (MLR), support vector regression (SVR), and
artificial neural networks (ANNs), were applied to estimate the weight and volume of
fruit. A traditional algorithmic system is highly mature, and it can be applied to estimate
the weight and volume of fruit. Calixto et al. (2019) reported the application of an LR
model to predict the weight of yellow melon [6]. The LR model was created using an
area of yellow melon fruit which was extracted from an image using the Otsu threshold
algorithm. The result showed that the LR model could predict the weight of yellow melon
with a Pearson’s correlation of 0.989. The estimation of the volume and weight of tomatoes
using computer vision and machine learning algorithms was studied by Nyalala et al.
(2019) [7]. SVR with various kernel functions (linear, quadratic cubic, and radial basis
function (RBF)) and ANN algorithms was established using 2D (area, perimeter, major and
minor axis lengths, eccentricity, and radial distance), and 3D (surface area and volume)
shape indicator forms. The RBF-SVR outperformed all the explored models, with R2 values
of 0.9706 and 0.9694 for predicting weight and volume, respectively. Continuous research
on estimating the weight and volume of single and occluded tomatoes using machine
vision was proposed by Nyalala et al. (2021) [5]. Seven ML techniques, including SVR
with different kernel functions (i.e., linear, cubic, quadratic, and RBF) and ANNs with three
weight optimization algorithms (i.e., Levenberg–Marquardt, Bayesian regularization, and
scaled conjugate gradient training algorithms), were adopted for developing models. The
Bayesian regularization ANN was the highest-performance model, which could predict the
weight and volume of tomato with R2 values of 0.971 and 0.982, respectively. The study
focused on estimating the weight and volume of Thai apple berries via computer vision,
in which MLR and linear SVR algorithms were developed based on model predictions of
physical properties (length, diameter, perimeter, or projected area) from fruit images [8].
The linear SVM model showed that the R2 values for estimating the weight and volume of
Thai apple berries were 0.955 and 0.965, respectively, while the MLR model provided R2

values of 0.967 and 0.972 for weight and volume, respectively. All the above information
revealed that CV based on a combination of image processing and traditional ML could
estimate the weight and volume of fruit with high performance. This proposed technique
might also be used for predicting the weight and volume of lime. Nevertheless, param-
eter optimization in the ML algorithm is necessary to generate a robust ML model. The
learning process is regulated by a parameter called a hyperparameter, whose value must
be adjusted to achieve optimal results [9]. Hyperparameters’ adjustment of each machine
learning algorithm needs to be internally performed and assessed based on the existing
dataset. The values of hyperparameters can significantly impact the performance of a
model; however, the selection of hyperparameters requires expertise and is time- as well
as labor-intensive in the manual iterations. In practice, the automatic optimization of hy-
perparameters (AOH) is efficiently applied to ML models. Following the AOH procedure,
the optimal architecture for an ML model is anticipated [10]. Therefore, the AOH is an
important procedure for training ML models; however, when traditional ML techniques
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are employed in computer vision, there are some limitations. Traditional ML methods can
only deal with one-dimensional data, whereas the images are in a two-dimensional format.
In contrast, digital images can be directly utilized as inputs for deep learning (DL).

Recent advances in the post-harvest process, the combination of CV and DL, have been
adopted in the quantitative and qualitative evaluation of fruit and vegetable quality. DL
is a subset of machine learning in which image data are used as inputs and the algorithm
learns to recognize patterns within their spatial dimensions [11]. Convolutional neural
networks (CNNs), which consist of numerous processing layers, are some of the most
popular DL architectures for CV. CNNs can automatically recognize patterns in image
data without using feature extraction techniques. In the long run, CNNs can simplify
model construction and preprocessing, which reduces the complexity of the process and
enhances the performance of the model. Previous studies have reported the utilization of
CNNs for CV, especially in regression tasks for agricultural and food products, such as the
estimation of Harumanis mango weight [12], the on-plant size and weight evaluation of
tomato fruits [13], and the prediction of the firmness and sugar content of peach [14]. Ismail
et al. (2020) developed a new CNN architecture (MangoMassNet) for estimating the mass
of Harumanis mangoes from RGB images [12]. The results presented CNN architectures
capable of predicting mango mass estimation with a mean squared error (MSE) value
of 0.00227 and a mean average error (MAE) value of 0.03697. The size and weight of
tomato fruits were studied by Hong et al. (2024) using deep neural networks and RGB-D
imaging [13]. The prediction model estimated the tomato fruit weight with an RMSE of
19.69 g and a MAPE of 9.44%. The application of deep learning to RGB images of peaches
for predicting firmness and sugar content was investigated by Masuda et al. (2023) [14].
The CNN regression models revealed the prediction results of skin color, flesh firmness,
and sugar content with r = 0.91, 0.77, and 0.64, respectively. These studies showed the
possibility of applying a CNN algorithm for the quantitative analysis of agricultural and
food products; however, it is time-consuming to develop new CNNs for specific tasks,
define the optimal architecture, and train the network. Transfer learning can solve these
issues by training the pre-trained network and adjusting the input and output layers to
learn a new dataset [15]. Several well-known pre-trained networks were developed for
various analysis purposes, such as ResNet, VGG, Inception, and MobileNet. In addition,
the pre-trained network can be employed when the size of the dataset is not suitable for
training the model [15].

The literature review reveals that there is no report on the application of CV based on
traditional ML and DL for estimating the weight and volume of lime fruit (Citrus aurantifolia
(Christm.) Swingle). Therefore, this work focuses on developing a rapid essential protocol
for evaluating lime weight and volume. Eight traditional ML algorithms, including PLS,
ε-SVR, DT, RF, AB, GB, BME, and ERTs, were applied to train prediction models, and
the optimal hyperparameters of each algorithm were automatically tuned to provide
robust models. The geometric shape features (i.e., projected area, perimeter, major axis
length, minor axis length, eccentricity, and radial distance) were extracted from images
of limes to develop traditional ML models. In addition, four popular pre-trained DL
architectures, including InceptionV3, MoblieNetV2, Resnet50, and VGG-16, were adapted
for regression tasks and trained models for predicting the weight and volume of lime fruit.
This study makes several key contributions to literature by introducing a novel approach
that has not been widely explored in prior research. First, it also provides a comprehensive
comparison between traditional ML algorithms and DL models, offering insights into
the relative strengths of each approach in agricultural applications. Importantly, this
research fills a gap in the literature by applying a diverse range of models, including
tree-based (DT) and ensemble learning techniques (RF, AB, GB, BME, and ERTs), alongside
deep learning methods. Furthermore, a significant contribution of this work lies in the
automatic fine-tuning of hyperparameters in traditional ML algorithms, optimizing their
performance in estimation tasks. This process enhances the accuracy and robustness of
traditional models, making them competitive with deep learning architectures, thereby
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offering practical solutions for agricultural applications that require fewer computational
resources. Additionally, this study addresses limitations in traditional ML by incorporating
advanced deep learning methods which allow for better feature extraction and pattern
recognition. The findings highlight the potential for these methods to be integrated into
automated agricultural systems for fruit sorting and grading, addressing key industry needs
for scalability and efficiency. The scalable nature of the methodology makes it adaptable
for other fruit types and broader agricultural settings, contributing to the advancement of
digital agriculture and precision farming.

2. Materials and Methods
2.1. Sample Collection of Limes

The experiment was carried out in August 2023, which is the main harvest season for
limes in Thailand. A total of 126 fresh limes of various sizes were gathered from a local
market in Bangkok, Thailand. The lime samples were normal shapes and free from any
visible injuries and defects. Before the experiment, the fruit samples were cleansed with
distilled water, drained, and then wiped with paper towels to remove excess water from
their surfaces. The samples were kept at room temperature (25 ◦C) until image acquisition.

2.2. Image Acquisition of Limes

Each image of limes was captured in a photo box studio (with a length, width, and
height of about 45 cm, 45 cm, and 45 cm, respectively) with LED lighting. Dual light-
emitting diode (LED) strips were installed in the photo box studio, and the light-emitting
capability of each lump strip was 10 W. The camera and lens used were a Basler ACA2500-
14UC and Basler C125-0818-5M F-1.8, F-8mm (Basler AG, Ahrensburg, Germany) respec-
tively. A white surface was used on the bottom surface of the photo box studio to generate
a uniform background. Figure 1 presents a schematic diagram of the image acquisition
system for limes, and Table 1 provides a summary of this image sensor’s characteristics.
The tuning capture type uses continuous capture with a sample distance with a camera of
about 150 mm, using Pylon Viewer 7.2.0.11624 software. Each lime was acquired at four
different orientations images, including the top, left, right, and bottom sides of the fruit.
During the image acquisition period, all 126 lime samples were subjected to an identical
procedure. Therefore, the total number of images was 504 images.

Table 1. Specifications of the camera and lens used in this study.

Basler
ACA2500-14UC

Sensor type CMOS
Sensor size 5.7′4.3 mm
Resolution (H′V) 2590′1942 px
Resolution 5 MP
Pixel size (H′V) 2.2′2.2 µm
Frame rate 14 fps
Pixel bit depth 12 bits
Housing size (L′W′ H) 29.3′29′29 mm
Operating Temperature 0–50 ◦C
Weight 80 g

Basler Lens
C125-0818-5M-P f8mm

Focal length 8.0 mm
Lens mount C-mount
Iris F1.8–F22.0
Iris type Manual
IR cut filter No
Pixel pitch 2.20 µm
Sensor format 1/2.5”
Min. working distance 100 mm
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2.3. Measurement of the Weight and Volume of Limes

The lime samples were weighed using an electronic balance (ML104T/00 model,
Mettler-Toledo Ltd., Melbourne, Australia) with an accuracy of ±0.1 mg. After weighing,
the volume of fruit was determined by WDM, which is one of the most common and
straightforward methods for measuring the volumes of fruits and vegetables [4,16]. The
volume of fruit was calculated using the following equation [4,16]:

Volume (cm3) =
weight of displaced water (g)

water density (
g

cm3 )
(1)

where water density is 1000 g/cm3. Though it is highly accurate, this methodology may be
deemed intrusive or damaging for certain products, and it is not recommended for objects
that absorb water [3].

2.4. Development of Traditional Machine Learning Models
2.4.1. Image Processing and Feature Extraction

Image processing and feature extraction were conducted using Python (version 3.9.7,
Python Software Foundation, Wilmington, DE, USA) with the OpenCV (version 4.6.0.66)
package for computer vision. The raw images were pre-processed before feature extraction,
with the following procedure: (1) grayscale image conversion, (2) background removal
using Otsu’s method [17] with binarization, and (3) the detection of the contour of a lime’s
shape. Figure 2 presents raw image, grayscale image, binary image, and contour line image
of lime. After pre-processing, the geometric shape features, including the projected area,
perimeter, major axis length, minor axis length, eccentricity, and radial distance, were
extracted from each image of lime. These features were used to develop traditional ML.
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2.4.2. Statistical Analysis

The maximum (Max), minimum (Min), mean, and standard deviation (SD) of the
weight and volume were calculated. The Pearson’s correlation coefficients (r) among
features from image, weight, and volume were calculated with a confidence level of 95%.
Principal component analysis (PCA) was performed on the data of weight, volume, and
the six features from lime images. The score plot was created from the first two principal
components (PCs) for understanding the data’s underlying patterns and outliers. The 95%
confidence ellipse is based on Hotelling T2 statistics. In addition, outliers were detected
by the plots of residuals and leverages. The residuals define the degree to which samples
or variables fit PCA, as determined by PCs. The samples with high residuals are poorly
represented by PCA, although they are well described by other samples. These samples
are strangers to the well-described samples, i.e., outliers. The leverages define the distance
from the projected sample (i.e., its PCA approximation) to the center (mean point). The
samples with high leverage have a stronger influence on the model than other samples; they
may or may not be outliers, but they are influential. An influential outlier (high residual +
high leverage) is the worst case; it can, however, easily be detected by using an influence
plot. A sample with high residual was specified to be an outlier.

2.4.3. Machine Learning Modeling

Estimation models for weight and volume were developed using partial least square
regression (PLS), epsilon-support vector regression (ε-SVR), decision tree (DT), random
forest (RF), adaptive boosting (AB), gradient boosting (GB), Bagging meta-estimator (BME),
and extremely randomized trees (ERTs). Six geometric shape features were used to train the
ML estimators. The dataset was randomly split into 2 groups, including the training set (80%
of all samples) and the testing set (20% of all samples). Therefore, the number of images
in the training set and the testing set was 404 and 100 images, respectively. The splitting
train and test set was performed using the train_test_split function of the Scikit-learn
package with the number of random_state of 100. The modeling process was carried out in
Python (version 3.9.7, Python Software Foundation, Wilmington, DE, USA) using Scikit-
learn ML packages (Version 1.1.3) and the Jupyter Notebook programming tool (Version
6.5.2). The training set was adopted to fine-tune the optimum hyperparameter of each ML
algorithm with the GridSearchCV command of the Scikit-learn module. Figure 3 presents
the algorithmic flow diagram of the proposed traditional ML system. The predefined
parameter for searching for the optimum hyperparameter is shown in Table 2. According to
the lowest root mean square error of cross-validation (RMSECV), the best hyperparameter
was revealed by performing 10-fold cross-validation. The coefficient of determination of
the training and testing sets (R2

train and R2
test), the root mean square error of the training and

testing sets (RMSEtrain and RMSEtest), the mean absolute percentage error of the training
and testing sets (MAPEtrain and MAPEtest), and the ratio of prediction to deviation (RPD)
were used for the assessment of model performance.

Table 2. Predefined parameter for performing the GridSearchCV command on 10-fold cross-
validation.

Algorithm Hyper-Parameter Turning Range

PLS n_components 1–20

ε-SVR

kernel linear, poly, rbf, sigmoid
C 100–1000
degree 2–5
gamma 0.001–0.09
coef0 0.001–0.09

DT
min_samples_leaf 1–10
min_samples_split 2–20
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Table 2. Cont.

Algorithm Hyper-Parameter Turning Range

RF
n_estimators 100–1000
max_depth 2–11

AB
n_estimators 20–500
learning_rate 0–0.2

BME
n_estimators 20–100
max_samples 1–100
max_features 1–20

ERT
n_estimators 20–100
min_samples_leaf 1–10
min_samples_split 2–20

GB

n_estimators 20–100
learning_rate 0–0.2
min_samples_leaf 1–10
min_samples_split 2–20
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2.5. Development of Deep Learning Models

Generally, CNNs’ learning procedures need sufficient training image sets to develop
high-performance models. Due to overfitting, an insufficient dataset produces inaccurate
outcomes which are difficult to apply in practice [18]. Data augmentation is a popular
approach to overcoming the limitations of image datasets [19]. In this study, three image
augmentation techniques, including flipping, rotation, and brightness enhancement, were
randomly applied 10 times to each lime sample image. Flipping was performed on an
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image around its vertical axis, horizontal axis, or both the vertical and horizontal axes.
The rotation process was carried out in the right direction or the left direction via the
randomization of angles between −45 and 45 on an image around an axis. The brightness
adjustment was applied with a randomization of the brightness factor between 0.5 and
1.5. The number of images after the image augmentation process was 5040 pieces of data.
All image data were resized into 128 × 128 pixels, and a normalization procedure was
then applied to scale pixel values to a standard range between 0 and 1. The dataset of
images was defined for the training set and testing set with a ratio of 80:20 (using 4032
and 1008 samples, respectively) with the same procedure in Section 2.4.3. The raw and
augmented images are shown in Figure 4.
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Figure 4. Raw image (a) and augmented images with flipping (b), rotation (c), and brightness
adjustment (d).

For DL training, the four proposed pre-trained structures for estimating the weight
and volume of limes were applied, including InceptionV3, MobileNetV2, ResNet50, and
VGG-16. Each pre-trained model was connected to two dense layers activated by the
rectified linear unit (ReLU) function. The final output layer employed the linear activation
function for the regression task. Model optimization was performed using the Adam
optimizer. The batch size, epochs per running, and validation split were 32, 100, and
10%, respectively. The MSE against epochs from training all pre-trained DL architectures
was plotted to assess the training speed. The R2

train, R2
test, RMSEtrain, RMSEtest, MAPEtrain,

MAPEtest, and RPD were used for the assessment of model performance. In this study,
Google Colab Pro was utilized with an NVIDIA A100 Tensor Core GPU. The DL process in
this project was carried out with an open-source library (TensorFlow Version 2.17.0). The
algorithmic flow diagram of the proposed DL system is presented in Figure 5.
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3. Results and Discussions
3.1. Descriptive Statistic of Dataset

The statistical data of the weight and volume of fresh limes are shown in Table 3. The
weight ranges of limes for the training and testing sets are about 23.80 to 46.02 g and 24.44
to 46.02 g, respectively. For the volume, the range of the training set was 20 to 45 cm3,
and that of the testing set was 24 to 45 cm3. The range of the training set of weights was
narrower compared to the volume. The range and standard deviations of the dataset have
an impact on the performance of the ML model. The inefficiency model was caused by the
extremely narrow ranges of the target variable and very low standard deviations, while a
wide range and high standard deviations lead to a more efficient model [20]. Specifically,
a large dataset representing wide variability (fruit size, variety, and harvest time) could
increase the range and standard deviations of the dataset.

Table 3. The statistical data of the weight and volume of fresh lime.

Property of Lime
Training Set Testing Set

Minimum Maximum Mean SD Minimum Maximum Mean SD

Weight (g) 23.80 46.02 36.43 5.53 24.44 46.02 38.87 5.66
Volume (cm3) 20.00 45.00 35.68 5.77 24.00 45.00 36.43 5.77

3.2. Correlation Among Feature, Weight, and Volume

In this research, the relationship between variables is examined with the Pearson
correlation method. The Pearson correlation method is the most common method to use
for numerical variables when studying the relationship between two variables. Pearson’s
correlation matrix is presented in Table 4, showing the relationships between various lime
features, weight, and volume. Among all measured features, the major axis length exhibits
the strongest positive correlation with weight (r = 0.835). Similarly, the major axis length
also displays a robust positive association with volume (r = 0.867). This suggests that
major axis length is the most important feature of lime images. Furthermore, the area
feature seems to be the second most important feature after the major axis length, with
positive correlation coefficients of 0.817 for weight and 0.845 for volume. The Pearson
correlation method assigns a value of r between −1 and 1, where 0 indicates no correlation,
1 indicates a total positive correlation, and −1 indicates a total negative correlation [21].
Most of the features are area, perimeter, major axis length, and minor axis length. These
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features are related to the weight and volume of lime, with r values greater than 0.718.
A correlation value of more than 0.718 for two variables indicates that a significant and
positive relationship exists between them. A positive correlation signifies that if the variable
features increase, then the weight and volume will also increase. Therefore, it is possible to
evaluate the weight and volume of lime from an image based on the above relationship;
however, the features of eccentricity and radial distance had a less pronounced effect on
the weight and volume of lime.

Table 4. A Pearson’s correlation matrix of the features, weight, and volume of lime.

Weight Volume Area Perimeter Major Axis
Length

Minor Axis
Length Eccentricity Radial

Distance

Weight 1

Volume 0.772 1

Area 0.817 0.845 1

Perimeter 0.798 0.826 0.950 1

Major Axis Length 0.835 0.867 0.914 0.903 1

Minor Axis Length 0.718 0.744 0.957 0.890 0.761 1

Eccentricity −0.099 −0.103 −0.367 −0.278 0.036 −0.619 1

Radial Distance 0.048 0.057 0.039 0.033 0.048 0.029 0.013 1

3.3. Principal Component Analysis

In Figure 6a, the score plot between PC1 and PC2 was used to show the relationship
variables in a dataset, with the PC1 axis showing the direction with the highest variance
(100%) in the data. The PC2 axis shows the direction with the lowest variance (0%). The
circled green points distributed outside of the blue triangle were considered outliers of
lime samples with 95% confidence based on Hotelling T2. For Figure 6b, the plot between
the residual and leverage was observed as the outliers on top of the plot, which has a
high value for the residual (circle red points). This can be noticed in the downward pull
of the model. The outliers with a high residual were removed. In this research, outliers
can be caused by incorrect measurements or the incorrect recording of weight and volume.
Therefore, all outliners were removed before the development of the model to improve the
precision in estimation. The number of remaining samples was about 466.
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3.4. Performance of Traditional Machine Learning Algorithms

The optimal hyperparameters for weight and volume are obtained from the following
algorithms: PLS, ε-SVR, DT, RF, AB, BME, ERT, and GB. These algorithms were used
to evaluate the weight and volume of limes. The details of the configuration of the hy-
perparameters are shown in Table 5. The choice of algorithms and hyperparameters for
developing computer vision models using traditional ML approaches depends on an analy-
sis of dataset characteristics. This study chose the optimal algorithm and hyperparameters
to develop the best calibration models.

Table 5. The optimal hyperparameters for weight and volume.

Algorithm
Optimal Hyperparameter

Weight Volume

PLS n_components = 6 n_components = 5

ε-SVR
degree = 2 degree = 2
kernel = ‘poly’ kernel = ‘poly’

DT

ccp_alpha = 0.1 ccp_alpha = 0.2
max_features = 5 max_features = 4
min_impurity_decrease = 0.1 min_impurity_decrease = 0.1
min_samples_leaf = 0.1 min_samples_leaf = 0.1
min_samples_split = 0.1 min_samples_split = 0.1

RF

ccp_alpha = 0.4 ccp_alpha = 0.1
max_features = 4 max_features = 5
min_impurity_decrease = 0.2 min_impurity_decrease = 0.1
min_samples_leaf = 0.1 min_samples_leaf = 0.1
min_samples_split = 0.2 min_samples_split = 0.2
n_estimators = 110 n_estimators = 30

AB
learning_rate = 0.32 learning_rate = 0.04
n_estimators = 120 n_estimators = 90

BME
max_features = 4 max_features = 5
max_samples = 160 max_samples = 110
n_estimators = 80 n_estimators = 130

ERTs

max_features = 6 max_features = 6
min_samples_leaf = 0.1 min_samples_leaf = 0.1
min_samples_split = 0.1 min_samples_split = 0.2
n_estimators = 140 n_estimators = 60

GB

max_features = 2 max_features = 2
min_samples_leaf = 0.1 min_samples_leaf = 0.1
min_samples_split = 0.1 min_samples_split = 0.2
n_estimators = 60 n_estimators = 110

The results of different traditional ML algorithms for predicting the weight and
volume of limes are represented in Table 6. The results showed that all models had good
performance values (i.e., R2

train, R2
test, RMSEtrain, RMSEtest, MAPEtrain, MAPEtest, and RPD)

with slightly different performances. For weight prediction, the best model, the BME model,
achieved the following performance metrics: the highest R2 for both training and testing
(0.983 and 0.954), the lowest RMSEtrain, RMSEtest, MAPEtrain, and MAPEtest (0.723, 1.205,
1.526, and 2.530, respectively), and the highest RPD (4.697). A model R2 value in the range
of 0.92–0.96 is usable in most applications, including quality assurance [22]. For volume
prediction, the best model achieved the following performance metrics: the highest R2 for
both training and testing (0.907 and 0.882), the lowest RMSEtrain, RMSEtest, MAPEtrain, and
MAPEtest (1.760, 1.971, 3.842, and 4.151, respectively), and the highest RPD (2.927) (the
BME model). A model with an R2 range from 0.83 to 0.90 is usable with caution for most
applications, including research [22]. A high RPD indicates efficient prediction because the
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standard error of prediction should be lower than the standard deviation. Figures 7 and 8
illustrate the relationship between the estimated and real values of weight and volume of
the PLS, ε-SVR, DT, RF, AB, BME, ERTs, and GB algorithms. Scatter plots of the estimated
values versus the real weight and volume are present in Figures 7 and 8, respectively. This
research proposes novel models for predicting the weight and volume of limes with high
accuracy. These models can be valuable tools for future research and applications. The
shape of the lime was found to be an important factor in predicting its weight and volume.
Several studies have investigated ML algorithms for predicting the weight and volume
of various fruits using computer vision techniques. An applied LR model combined with
image processing techniques to predict strawberry weight was proposed. That model
achieved a maximum R2 of 96.3% and 89.6 for the training and testing stages, respectively,
in predicting the relationship between pixel numbers and fruit weight [23]. Research on
the volume estimation of strawberries using a combination of image processing techniques
and LR is reported, and the result shows that the high correlation between estimated and
actual volumes was the most suitable, with an R2 of 0.866 [24]. A study on estimating
the weight parameters of selected wheat refractions using image processing is proposed.
The result shows a linear relationship between the volume of refractions derived from
measured dimensions and calculated from images, with R2 values ranging from 0.845 to
0.945 [25]. Calixto et al. (2019) [6] reported a LR model capable of predicting the weight
of yellow melon by using the area of fruit as an independent variable with a Pearson’s
correlation of 0.989. While strong predictive performance was revealed with high Pearson’s
correlation in these previous studies, the use of a simple linear model may limit the model’s
flexibility when applied to more complex datasets or fruits with irregular shapes. In
addition, LR might not fully capture the complex, non-linear relationships between a fruit’s
area and its weight. In our study, the use of multiple features, such as projected area,
perimeter, major axis length, minor axis length, eccentricity, and radial distance, provides a
more comprehensive representation of the fruit’s geometry compared to the single-area
feature used in their studies. This richer set of features allows our ML models to capture
more complex relationships between a fruit’s shape and its weight and volume, leading
to potentially higher prediction accuracy and better generalization across different fruit
samples. By incorporating these additional geometric properties, our models are less
likely to be affected by the limitations of using a single feature, offering more robustness
and precision in real-world applications. The use of multiple geometric properties in ML
modeling has been studied by Nyalala et al. (2021), Nyalala et al. (2019), and Mansuri et al.
(2022) [5,7,8]. These studies achieved high accuracy in the estimation of the weight and
volume of fruit by using MLR, SVR, and ANNs. In contrast, our research utilized a more
diverse range of models, incorporating traditional ML algorithms, such as DT, and ensemble
learning methods, like RF, AB, GB, BME, and ERTs. This broader range of models allowed
for a more comprehensive analysis and comparison of techniques, leading to improved
model performance and robustness. By exploring diverse traditional ML methods, our
research offers a more versatile solution for predicting weight and volume, achieving high
accuracy across different algorithms while ensuring flexibility and adaptability in practical
applications. A potato grading system of weight and shape using image processing that
uses the PCA algorithm is proposed. The accuracy of classification was 90%, 100%, and 90%
for large, medium, and small sizes, respectively [26]. Our study extends beyond simple
classification by utilizing various ML models for precise continuous predictions of weight
and volume in lime fruit. This distinction highlights a key difference: while the potato
grading system uses dimensionality reduction for discrete classification, our approach
employs comprehensive models for regression tasks, predicting exact values, which could
be adapted for a broader range of applications in various fruits.
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Table 6. Prediction results of the determination of the weight and volume of fresh limes via traditional
machine learning.

Algorithm R2
train R2

test RMSEtrain RMSEtest MAPEtrain (%) MAPEtest (%) RPD

Weight (g) PLS 0.952 0.940 1.210 1.400 2.604 2.866 4.043
ε-SVR 0.850 0.855 2.160 2.144 5.087 4.919 2.640
DT 0.924 0.910 1.524 1.690 3.356 3.385 3.349
RF 0.935 0.914 1.413 1.651 3.098 3.429 3.428
AB 0.959 0.933 1.117 1.463 2.551 3.215 3.869
BME 0.983 0.954 0.723 1.205 1.526 2.530 4.697
ERT 0.927 0.917 1.489 1.625 3.376 3.482 3.483
GB 0.972 0.942 0.922 1.356 1.916 2.721 4.174

Volume (cm3) PLS 0.830 0.880 2.380 1.981 5.432 4.333 2.857
ε-SVR 0.724 0.810 3.026 2.500 6.855 5.572 2.308
DT 0.830 0.845 2.380 2.260 5.373 5.023 2.553
RF 0.824 0.858 2.423 2.159 5.691 4.936 2.673
AB 0.860 0.867 2.155 2.090 4.866 4.609 2.761
BME 0.907 0.882 1.760 1.971 3.842 4.151 2.927
ERT 0.800 0.850 2.596 2.225 6.108 4.989 2.593
GB 0.892 0.880 1.892 1.986 3.690 4.614 2.905

To identify the most important features influencing the weight and volume of limes,
PLS was used to calculate regression coefficients. The principle of the regression coeffi-
cients could be investigated to explore the relationship between predictor variables and
responses [27]. The regression coefficient values from PLS for predicting the weight and
volume of limes are presented in Table 7. The major axis length was the highest regression
coefficient among area, perimeter, minor axis length, eccentricity, and radial distance in
terms of both weight and volume. It showed that the major axis length feature estimates
may significantly impact the model’s performance in predicting the weight and volume
of limes. The strong correlation between the major axis length and both the weight and
volume of limes, as shown by Pearson’s correlation matrix, supports these findings. This
aligns with reports that fruit and vegetable volume is strongly related to shape, as demon-
strated in studies on cabbage [28], peach [29], and peppers [30]. Additionally, the regression
coefficient for the weight of the minor axis length is the second highest after that of the
major axis. This finding suggests that both the major and minor axes play crucial roles
in predicting the weight of limes; however, the analysis revealed that in cases where the
regression coefficient for volume was the second most important area feature after the
major axis length, suggesting that the major axis length and area of limes are the two most
significant features for volume prediction. Hence, the result of this study indicated that
these computer vision and machine learning algorithms can predict the volume and weight
of limes from geometric and shape features in a non-destructive manner.

Table 7. The regression coefficient of the weight and volume of lime.

Geometric and Shape Features
Regression Coefficient

Weight Volume

Area 3.073258 −1.162733
Perimeter 1.332884 0.409460
Major axis length 5.077340 5.978942
Minor axis length −4.852905 −0.013067
Eccentricity −2.330182 −0.992423
Radial distance 0.054030 0.214718
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3.5. Performance of Deep Learning

The MSE against epochs of four pre-trained models (i.e., InceptionV3, MoblieNetV2,
ResNet50, and VGG-16) for estimating weight and volume are shown in Figures 9 and 10,
respectively. Because every model was trained from the beginning, its MSE for both training
and validation began at a significantly higher value, and then subsequently decreased to
a lower value, and then rather stabilized for the remaining epochs. The training speed
of a DL model is an important evaluation characteristic of a loss function. A good loss
function leads to a DNN with a lower estimation error for a fixed number of epochs [31].
The MSE for both the training and validation sets of the eight DL prediction models for
the weight and volume decreased rapidly during the first 10 epochs which can indicate
that all models are quickly learning to minimize errors; however, the validation error
fluctuates throughout the training process, especially for the MoblieNetV2 model, for
estimating weight. This erratic behavior could stem from the fact that the four pre-trained
architectures are primarily designed for image classification tasks. While they can be
adapted for regression, the unstable pattern observed in the validation error graph may
arise from the continuous nature of the predicted values, where slight fluctuations in the
input data lead to disproportionate variations in the model’s predictions, resulting in
instability during training. Therefore, careful modification of the output layer and loss
function is necessary to ensure proper performance in predicting continuous values. If
this adaptation is fine-tuned, it could lead to stability in learning, causing the model to
be consistent between regions of the loss function. This point is an interesting issue for
future study.
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The results of four pre-trained models predicting the weight and volume of limes are
represented in Table 8. All models presented high performance values (i.e., R2

train, R2
test,

RMSEtrain, RMSEtest, and RPD). The ResNet50 model produced the best weight prediction
performance metrics: the highest R2 for both training and testing (0.998 and 0.951), the lowest
RMSE for training and testing (0.292 and 1.455), and the highest RPD (4.510). For volume
prediction, the ResNet50 model also provides the best prediction with the highest R2 for both
training and testing (0.998 and 0.957), the lowest RMSE for training and testing (0.284 and
1.259), and the highest RPD (4.747). Williams et al. (2019) suggested that a model with a high
R2 (between 0.83 and 0.90) is usable with caution for most applications [22]. These points



Agronomy 2024, 14, 2434 17 of 21

indicate that the ResNet50 model can estimate the weight and volume of limes with high
accuracy. In other words, this study may organize the performance of regressor analysis
order according to its R2 as MoblieNetV2 < VGG-16 < InceptionV3 < ResNet50 for weight
and VGG-16 < InceptionV3 < MoblieNetV2 < ResNet50 for volume. Figures 11 and 12
demonstrate the relationship between the estimated values and real values for weight
and volume of the InceptionV3, MoblieNetV2, ResNet50, and VGG-16 models. Ismail
et al. (2020) [12] developed a custom CNN architecture (MangoMassNet) specifically
designed to estimate the mass of Harumanis mangoes from RGB images, achieving a MSE
value of 0.00227 and a MAE value of 0.03697. In contrast, our research utilizes established
DL architectures, including InceptionV3, MobileNetV2, ResNet50, and VGG-16, which
have been pre-trained on large datasets and are known for their robust feature extraction
capabilities. While Ismail et al. focused on a tailored CNN model for a specific fruit, our
approach leverages multiple proven architectures, allowing for a more comprehensive
evaluation of performance and potentially improving the accuracy and generalizability of
weight and volume estimations. These findings could serve as a valuable framework for
applying similar techniques to estimate the weight and volume of other fruits.
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Table 8. Prediction results of the determination of the weight and volume of fresh limes via deep
learning.

Pre-Trained Model R2
train R2

test RMSEtrain RMSEtest MAPEtrain (%) MAPEtest (%) RPD

Weight (g) InceptionV3 0.983 0.853 0.878 2.540 1.703 2.862 2.605
MoblieNetV2 0.601 0.567 6.909 1.195 27.345 19.532 1.195
Resnet50 0.998 0.951 0.292 1.455 0.620 1.572 4.510
VGG-16 0.866 0.769 2.495 3.252 3.875 4.748 2.081

Volume (cm3) InceptionV3 0.972 0.892 1.211 2.076 3.049 3.946 3.010
MoblieNetV2 0.979 0.947 0.969 1.432 1.700 2.837 4.269
Resnet50 0.998 0.957 0.284 1.259 0.691 1.532 4.748
VGG-16 0.938 0.878 1.533 2.095 3.440 4.118 2.853

When comparing the best model from traditional ML (BME) and DL (ResNet50),
it was found that the performance of the BME was as good as that of the ResNet50 in
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predicting the weight of lime. On the contrary, the ResNet50 model outperformed the
BME in estimating the volume of lime. In this study, BME is used as an ensemble learning
technique that constructs multiple decision trees on various random subsets of the original
dataset and then calculates the result by averaging their predictions. In various real-world
application areas, the effectiveness of standard machine learning techniques, especially
logic rule or tree-based methods, can vary greatly depending on the specific nature of
the application [32]. In another way, the key benefit of DL compared to traditional ML is
that it automatically learns features, eliminating the need for manual feature extraction.
Deep learning independently extracts features from raw data, processes them, and makes
predictions based on the extracted information [33,34]; however, DL models require large
datasets for effective training, whereas traditional ML can achieve high performance with
smaller datasets. From a selection perspective, DL models like ResNet50 are advantageous
for tasks involving complex patterns and large datasets, such as estimating lime volume,
due to their automatic feature extraction capabilities. In contrast, traditional ML models,
like BME, can be more effective for smaller datasets and simpler tasks, such as predicting
lime weight, where manual feature engineering is less critical. Therefore, the choice between
DL and traditional ML should be guided by the dataset size and the complexity of the task
at hand.
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4. Conclusions

In this study, we successfully developed and applied computer vision techniques
combined with both traditional ML and DL models to estimate the weight and volume of
lime fruit (Citrus aurantifolia (Christm.) Swingle). For traditional ML, optimal performance
in terms of predicting the weight and volume of limes was obtained by BME algorithms.
The R2 values for the weight and volume of limes were 0.954 and 0.882, respectively. The
automatic fine-tuning of hyperparameters in traditional ML models could significantly
enhance accuracy and robustness without needing extensive computational power, offering
practical alternatives for resource-constrained applications. On the contrary, ResNet50
pre-trained DL models predicted weight and volume with R2 values of 0.951 and 0.957,
respectively. The crucial advantage of DL is that the model can automatically learn and
extract features from the data without requiring manual intervention, making it highly
efficient for tasks with intricate patterns. The study improves the accuracy of weight and
volume estimation for lime fruit, setting a new benchmark for precision in this domain.
Furthermore, this study confirms that lime-packing warehouses can utilize this technique
as a guideline for sizing and grading; however, these models may not yet be applicable
in practice for assessing limes different (e.g., in geographic origin, harvest period, and
harvest year) to those included in this study. In future studies, more robust models should
be developed and validated with a large dataset representing wide variability, which
would further improve the model’s generalizability and practical application in real-world
agricultural scenarios.
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