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Abstract: Accurately identifying the distribution of vineyard cultivation is of great significance for the
development of the grape industry and the optimization of planting structures. Traditional remote
sensing techniques for vineyard identification primarily depend on machine learning algorithms
based on spectral features. However, the spectral reflectance similarities between grapevines and
other orchard vegetation lead to persistent misclassification and omission errors across various
machine learning algorithms. As a perennial vine plant, grapes are cultivated using trellis systems,
displaying regular row spacing and distinctive strip-like texture patterns in high-resolution satellite
imagery. This study selected the main oasis area of Turpan City in Xinjiang, China, as the research
area. First, this study extracted both spectral and texture features based on GF-6 satellite imagery, sub-
sequently employing the Boruta algorithm to discern the relative significance of these remote sensing
features. Then, this study constructed vineyard information extraction models by integrating spectral
and texture features, using machine learning algorithms including Naive Bayes (NB), Support Vector
Machines (SVMs), and Random Forests (RFs). The efficacy of various machine learning algorithms
and remote sensing features in extracting vineyard information was subsequently evaluated and
compared. The results indicate that three spectral features and five texture features undera7 x 7
window have significant sensitivity to vineyard recognition. These spectral features include the
Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized
Difference Water Index (NDWI), while texture features include contrast statistics in the near-infrared
band (B4_CO) and the variance statistic, contrast statistic, heterogeneity statistic, and correlation
statistic derived from NDVI images (NDVI_VA, NDVI_CO, NDVI_DI, and NDVI_COR). The RF
algorithm significantly outperforms both the NB and SVM models in extracting vineyard information,
boasting an impressive accuracy of 93.89% and a Kappa coefficient of 0.89. This marks a 12.25% in-
crease in accuracy and a 0.11 increment in the Kappa coefficient over the NB model, as well as an
8.02% enhancement in accuracy and a 0.06 rise in the Kappa coefficient compared to the SVM model.
Moreover, the RF model, which amalgamates spectral and texture features, exhibits a notable 13.59%
increase in accuracy versus the spectral-only model and a 14.92% improvement over the texture-
only model. This underscores the efficacy of the RF model in harnessing the spectral and textural
attributes of GF-6 imagery for the precise extraction of vineyard data, offering valuable theoretical
and methodological insights for future vineyard identification and information retrieval efforts.
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1. Introduction

China is a major producer of grapes, accounting for 46% of the global total grape
production as of 2022, and consistently holds the top position worldwide. Turpan City in
the Xinjiang Uygur Autonomous Region accounts for 21% of China’s grape production and
52% of Xinjiang's total production [1]. Accurately understanding the distribution of grape
cultivation is crucial for promoting the development of the grape industry and optimizing
planting structures [2-4]. However, the complexity of vineyard planting structures, the
variation in sizes, and the extended growth cycles present challenges for effectively moni-
toring and managing the cultivated areas [5,6]. Traditional manual survey methods were
inefficient and costly, while remote sensing technology, with its advantages of objectivity,
timeliness, and large-area coverage, was widely applied in estimating vineyard cultivation
areas and extracting planting regions [7,8]. The acquisition of remote sensing information
for vineyards primarily relies on technologies such as satellite remote sensing and UAV
(unmanned aerial vehicle) remote sensing. Compared to UAV remote sensing, satellite
remote sensing can cover a much larger monitoring area and demonstrates greater stability
when dealing with classification issues between the canopy and other objects, such as
canopy shadow projections or the background between vineyard rows [9]. Additionally,
the larger field of view and relatively lower resolution of satellite imagery help reduce
classification confusion caused by shadows and background interference that often oc-
cur in high-resolution images, making it uniquely advantageous for large-scale vineyard
management [9-11].

High-resolution satellite remote sensing imagery is highly valued for its richness of
information. Since the launch of the High-Resolution Earth Observation System Major
Project in China, the Gaofen series of Earth observation satellites has provided a wealth
of high-quality data resources for agricultural remote sensing applications [12]. The GF-6
satellite, successfully launched in 2018, is China’s first high-resolution satellite dedicated to
precision agriculture observation [13,14]. It has a spatial resolution of 16 m and a revisit
cycle of 4 days. Equipped with multispectral and hyperspectral cameras covering visible
and near-infrared bands, it provides richer spectral and texture information for regional-
scale agricultural remote sensing monitoring [12,15]. However, few researchers utilize GF-6
imagery for vineyard information extraction studies.

Currently, the remote sensing extraction of information related to tree fruit culti-
vation primarily relies on spectral features. For example, Zhu et al. [16] extracted the
spatiotemporal changes in apple orchards from 2000 to 2017 based on the NDVI (Normal-
ized Difference Vegetation Index) and phenological information, combining Sentinel-2,
Landsat, and MODIS remote sensing data, and achieved an identification accuracy (R?) of
0.747. Similarly, the extraction of vineyard planting information, vegetation health status,
and growth conditions is also achieved by analyzing spectral features [9,17]. Arab et al. [18]
obtained distribution maps of grape growth stages and yield predictions based on Landsat
8 imagery, utilizing the NDVI, the LAI (Leaf Area Index), and the NDWI (Normalized
Difference Water Index), and employed moving average and exponential smoothing meth-
ods. The results indicated that among all vegetation indices, the accuracy of NDVI in 2017
and 2019 was the highest (R? = 0.79). In the study by Ferro et al. [19], different computer
vision methods for canopy detection in vineyards using UAV multispectral images were
compared. The results indicated that the coefficient of determination for Total Leaf Area
(TLA) and NDVI data significantly improved for Mask R-CNN and U-Net. The NDVI data
from the GMM (Gaussian Mixture Model) and SVM (Support Vector Machine) algorithms
also showed a positive correlation. Regarding the correlation between leaf chlorophyll
(Chl) and NDVI, both Mask R-CNN and U-Net methods demonstrated better performance.

As the research deepens, texture features, as derivative data from remote sensing
imagery, can reveal the spatial variation patterns and spatial correlations of image grayscale.
Scholars are gradually combining texture features with optical features for application
in orchard extraction studies [20,21]. Song et al. [22] combined wavelet texture with
spectral features to construct classification features based on QuickBird imagery. They
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utilized the Random Forest classification algorithm to achieve land-use classification and
extract the spatial distribution of kiwi orchards. The results indicated that the classification
performance that integrated wavelet texture was the best, achieving an accuracy of 95.30%,
which was significantly better than the results obtained using spectral features alone. Pu
et al. [23] and Dian et al. [24] classified tree species and began to incorporate texture
features to improve the accuracy of tree species classification. Yao et al. [25] used two
scenes of high-resolution GF-2 remote sensing imagery from winter and summer as data
sources. They combined NDVI and NDWI with texture features to construct a decision
tree model based on spectral indices and texture features, successfully extracting the
spatial distribution information of fruit trees in the study area for the year 2017. The
overall classification accuracy was 89.57%, which represented improvements of 10.65% and
12.04% compared to the single spectral and texture models, respectively. The introduction
of texture features can effectively capture the arrangement and density of leaves, thereby
better distinguishing fruit-bearing plants from surrounding vegetation [24]. In complex
forest and orchard environments, the overlap of vegetation and shadows often leads to
confusion in spectral signals. However, texture features, due to their robustness against
variations in lighting conditions, can mitigate these effects to a certain extent and improve
extraction accuracy [22,25]. Currently, the main challenges in remote sensing identification
of vineyards include the dense canopy structure and vertical growth, which complicate
the acquisition and interpretation of remote sensing signals; additionally, overlapping and
sprawling leaves exacerbate spectral signal confusion, and variations in lighting conditions
lead to shadow interference [19,26]. These factors can result in individual pixels containing
information from multiple ground objects, thereby affecting classification accuracy [27].
Therefore, incorporating texture features into the characteristics of vineyard remote sensing
extraction is both necessary and worthy of further exploration.

Therefore, this study focuses on the main oasis area of Turpan City, utilizing GF-6
imagery to obtain the spectral and texture features of vineyards. First, the Boruta algorithm
is employed to select the spectral and texture features that are sensitive, for vineyard
information extraction. Next, machine learning algorithms, including Naive Bayes (NB),
Support Vector Machine (SVM), and Random Forest (RF), are used to construct vineyard
information extraction models that integrate both spectral and texture features. At the
same time, the impact of different machine learning algorithms and remote sensing features
on the accuracy of vineyard information extraction is compared. Ultimately, the aim is to
provide technical references for remote sensing recognition and information extraction of
vineyards and to offer data support for the development of the grape industry and the
optimization of planting structures.

2. Materials and Methods
2.1. Study Area

The study area is located in Turpan City of Xinjiang Uyghur Autonomous Region,
China (42°57' N, 89°11’ E), as shown in Figure 1. This region lies in an extremely arid
desert zone, with desert areas accounting for 70% of the total area. The climate is extremely
dry, with an average annual rainfall of only 33.8 mm. The soil is predominantly sandy and
loamy, with low organic matter content and poor natural fertility due to the arid conditions.
Therefore, oases have become the main areas for crop cultivation in the region [28,29].
Based on the distribution of oases in Turpan City [30] and considering the imaging quality
of remote sensing data, the study area was selected to cover the main oasis regions of
Turpan City. The primary fruit crop in the study area is grapes, followed by apricots. Other
land cover types include farmland, grassland, and small areas of woodland.
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Figure 1. Geographical Location of the Study Area and Distribution Map of Typical Ground Sample
Points. (a) Geographical Location of the Study Area; (b) Location of Turpan City; (c) Distribution of
Typical Ground Sample Points.

Grapes, as a perennial vine, bud in April and mature from late July to late September.
In this region, grapevines are guided by trellises, with an average height of 3 to 4 m, and
they are planted in rows, typically spaced 3.5 to 4 m apart. There is no natural vegetation or
crop cover in the inter-row area. To maintain a proper distribution of the vines within the
rows, regular pruning is required, resulting in a clearer and more orderly row distribution
with tighter internal texture. In contrast, apricot trees, common perennial woody fruit trees
in the region, bud in March and mature between late June and early August. Although they
are also planted in rows, the spacing between rows is 2.5 to 3 m. The inter-row area does
have natural vegetation or crop cover. Mature apricot trees have an average row height
of 5 to 8 m, but since they rely on a woody trunk and branches to form a fixed tree shape,
they are usually not pruned. This leads to a more diffuse row distribution and a relatively
sparse internal structure.

2.2. Data Acquisition and Preprocessing
2.2.1. GF-6 Satellite Data

Based on the characteristics of vegetation phenology in the study area and the coverage
of the imagery, this study selected GF-6 imagery from 12 to 24 October 2023 as the data
source. At this time, the grapevines were in the EL (Eichhorn-Lorenz) 35-41 stage [31],
while the grasslands had begun to wither, and most farmland was in a fallow state. This
provided favorable conditions for the extraction of vineyards. To ensure the quality of the
imagery, considerations such as the overpass time, weather conditions, and imaging effects
were taken into account, resulting in the selection of five optimal images, with specific
imaging times listed in Table 1.
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Table 1. The specific imaging dates and quantities of the selected GF-6 imagery for the research area.

Imaging Time Number
12 October 2023 2 scenes
16 October 2023 2 scenes
24 October 2023 1 scene

In the GF-6 imagery, the spatial resolution of the panchromatic imagery (PAN) is 2 m,
while the spatial resolution of the multispectral imagery (PMS) is 8 m. The multispectral
data consist of four bands: red, green, blue, and near infrared. The downloaded data were
Level 1A data, which required preliminary processing for the multispectral data involving
radiometric calibration, atmospheric correction, and orthorectification. Panchromatic
images have higher spatial resolution, and by fusing them with multispectral images, higher
resolution multispectral images can be generated, allowing for more precise identification
and classification of land cover. The nearest neighbor interpolation algorithm is used to
fuse panchromatic and multispectral images, resulting in a fused image with a spatial
resolution of 2 m. All processing steps were completed in ENVI 5.6 (https://portal.nv5
geospatialsoftware.com, accessed on 28 October 2024).

2.2.2. Ground Survey Data

The field sample point data were collected during an on-site survey in June-July
2023. To ensure the quality of the sample points despite the different dates of the ground
survey and satellite data collection, we visually inspected all ground samples using high-
resolution imagery from Google Earth. We excluded sample points where land cover types
had changed due to the difference in dates between the ground survey and satellite data
collection, as well as obviously incorrect samples (such as natural vegetation mistakenly
labeled as crops) and samples located on roads or field boundaries. In total, there are
1068 valid sample points (Figure 1c), with the specific number of samples for each class
shown in Table 2, with 70% of the sample points being used for constructing the vineyard
extraction model and 30% being used for accuracy validation of the model. Based on GF-6
imagery, the optical characteristics, texture structures, and tonal variations in various land
types in the study area were visually interpreted, creating a set of interpretation symbols
specific to the land types in the study area (Table 2). This laid the foundation for the
subsequent model construction [25].

Table 2. Information on different sample points and image features within the study area.

Land Type Names

Number of Sample

Image Features and Interpretation Symbols Example Images Under GF-6

Points/Points Imagery
Strap-like distribution with relatively clear
Vineyard 205 texture structure; most areas appear bright green,
while a small portion is brown
The texture structure is clear, with a strong
Apricot orchard 107 grainy feel, exhibiting a regular plate-like

distribution and appearing dark green
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Table 2. Cont.

Land Type Names Numl.)er of S_ample Image Features and Interpretation Symbols Example Images Under GF-6
Points/Points Imagery
Crops 216 The texture structure is clear and appears brown
Grassland 79 Widely distributed and appears yellow
Forest land 61 Irregular shape, densely distributed, and
appears dark green
Construction land 234 Distinct geqmetrlc shap(.es, distributed in patches,
and appearing blue-white
Water area 64 Sparse distribution with clear boundaries
Bare land 102 Widely distributed and appears gray-brown

2.3. Research Methodology
2.3.1. Remote Sensing Feature Extraction Method

1. Spectral Feature Extraction

Based on the latitude and longitude information of the sample plot centers, the sample
points are mapped onto the remote sensing images, allowing for the extraction of the
corresponding pixel remote sensing features. The NDVI is a commonly used important
spectral feature in vineyard remote sensing. By reflecting the photosynthetic capacity and
health status of vegetation, it provides an effective means for monitoring grape growth.
NDVI effectively identifies and quantifies the vitality of the plant canopy by comparing
the reflectance of red and near-infrared light. For grapes, high NDVI values are usually
associated with favorable growing conditions and high photosynthetic efficiency, indicating
healthy plants that help promote grape maturation and enhance yield [32-35]. The EVI s
also an important spectral indicator used in vineyard remote sensing, aimed at improving
the accuracy of monitoring vegetation cover and growth status. EVI effectively corrects
for soil background and aerosol scattering effects by utilizing a combination of red, near-
infrared, and blue wavelengths, thereby providing more accurate vegetation information.
Due to the wide planting rows of grapes, EV1 is particularly suitable for vineyards, which
have complex canopy structures. The NDWI is an important spectral indicator for assessing
water status in vineyards. It provides key information about the grape growth environment
by analyzing the distribution of liquid water molecules within the plant canopy. High
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NDWI values typically indicate sufficient water availability, reflecting healthy grape plants
and favorable growing conditions [36,37]. In addition to the aforementioned spectral
indices, the selected spectral features also included the red, green, blue, and near-infrared
bands from the GF-6 imagery. Detailed information about the spectral features is provided
in Table 3.

Table 3. Summary of selected optical feature information.

Classification
Type Features Bands/Formula Spectral Range
B1 Blue 0.45~0.52 um
B2 Green 0.52~0.60 pm
Spectral Bands B3 Red 0.63~0.69 um
B4 NIR 0.76~0.90 um
NIR—Red
NDVI NIR+Red
Spectral Ind 2.5x (NIR—Red
pectral thdex EVI NIR+6xR(ed—7.5xB%ue+1
Green—NIR
NDWI Creen I NIR

2.  Texture Feature Extraction

Texture features consist of texture statistics and window size. Texture statistics reflect
the spatial differences of objects and quantify the local texture structure of the image from
different perspectives. The window size affects the completeness of the texture feature
information and the performance of the gray-level co-occurrence matrix (GLCM) [38,39].
GLCM is a method for extracting texture features and is currently recognized as the most
widely used texture statistical analysis method and texture measurement technique [40,41].
However, due to the large computational load of the gray-level co-occurrence matrix, this
study only selected the eight texture statistical measures that performed best for remote
sensing image classification for analysis [38—40] (Table 4).

Table 4. Texture features selected in the study.

Texture Statistics Constructed Texture Features

B1_ME *, B2_ME, B3_ME, B4_ME,
NDVI_ME, EVI_ME, NDWI_ME

B1_VA, B2_VA, B3_VA, B4_VA, NDVI_VA,
EVI_VA, NDWI_VA

B1_HO, B2_HO, B3_HO, B4_HO, NDVI_HO,

Mean (ME)

Variance (VA)

Homogeneity (HO)  py1 1365 Npwi_HO The window sizes
Contrast (CO) B1_CO, B2_CO, B3_CO, B4 _CO, are setto 3 x 3,
NDVI_CO, EVI_CO, NDWI_CO 5x5,7x79x09,
o B1_DI, B2_DI, B3_DI, B4 DI, NDVL_ DL, EVL_DI, 11 x 11,13 x 13,
Dissimilarity (D) \pwr_pr and 15 x 15
Entropy (EN) B1_EN, B2_EN, B3_EN, B4_EN,

NDVI_EN, EVI_EN, NDWI_EN
Angular Second B1_ASM, B2_ASM, B3_ASM, B4_ASM,
Moment (ASM) NDVI_ ASM, EVI_ ASM, NDWI_ ASM

Correlation (COR) B1_COR, B2_COR, B3_COR, B4_COR,

NDVI_ COR, EVI_ COR, NDWI_COR

* Examples of abbreviation meanings: B1_ME represents the mean statistic of the B1 band.

The window size directly affects the integrity of texture feature information and the
performance of the GLCM. A window that is too small fails to adequately represent the
features of the object, while a window that is too large may incorporate texture features
from other objects. Therefore, selecting an appropriate window size is also crucial [42,43].
This study set the moving window sizes to commonly used dimensions of 3 x 3,5 x 5,
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7x7,9%9,11 x 11,13 x 13, and 15 x 15 (Table 4). At the same time, the default angle of
0 degrees and a pixel interval of 1 were used for texture calculations.

2.3.2. Remote Sensing Feature Importance Evaluation Method

This study used the Boruta algorithm to analyze the importance of remote sensing
features. Boruta is an effective method specifically designed for selecting key features from
high-dimensional data. It is suitable for handling large datasets and complex features,
significantly improving model performance [44,45]. The working principle of the Boruta
algorithm includes the following steps: First, it copies each real feature and randomly
shuffles it to generate a set of “shadow” features. Then, a model is trained to evaluate
the importance of both the original features and the shadow features. Finally, the score
of each real feature is compared with the highest score among the shadow features to
determine its contribution. If the importance of a real feature is significantly higher than
that of the shadow features, it is considered an effective feature; otherwise, it is deemed
irrelevant [46,47]. By analyzing the importance of remote sensing features, sensitive remote
sensing features for vineyard identification are selected, and the sensitivity of various
texture statistics to vineyard recognition is examined under different window sizes. This
plays a crucial role in constructing the vineyard identification model.

2.3.3. Vineyard Information Extraction Model Construction Approach

Based on the important remote sensing features identified for vineyard recognition,
we constructed three vineyard information extraction models that integrate both spectral
and texture features using Naive Bayes (NB), Support Vector Machine (SVM), and Random
Forest (RF) algorithms. These models are the NB model based on spectral and texture
features (M1), the SVM model based on spectral and texture features (M2), and the RF
model based on spectral and texture features (M3). By evaluating the performance of these
three models, the best algorithm was determined. Subsequently, the impact of different
combinations of remote sensing features on the accuracy of vineyard information extraction
was compared using the selected optimal algorithm.

The classification principle of NB is based on the prior probabilities of an object. It uses
Bayes’ theorem to calculate the posterior probabilities and selects the class with the highest
posterior probability as the class to which the object belongs [48]. The NB classification
not only allows all attributes of the test samples to participate in the classification but also
has a wide applicability for the distribution of sample attributes [49]. SVM is a machine
learning method based on statistical learning theory [50]. It automatically identifies support
vectors that have a significant distinction for classification, thereby constructing a classifier
that maximizes the margin between classes, resulting in good generalization and high
classification accuracy [51]. RF is an ensemble learning method that performs classification
and regression tasks by constructing multiple decision trees [52]. It determines the final
prediction result through voting or averaging the outcomes. RF can handle complex remote
sensing image classification and is suitable for multiple classes and features [53].

2.3.4. Accuracy Verification Method

This study employed a confusion matrix to evaluate the accuracy of the model’s
extraction results. The confusion matrix, also known as the error matrix, is a standard
format for representing accuracy evaluation [54]. This study selected five validation
metrics—Kappa coefficient, classification accuracy (CA), classification Error (CE), and
omission error (OE)—to reflect the accuracy of vineyard classification [54,55].

i

CA = 1/2< iy ”“) % 100%, (1)

i- n.

[ Ty i = X (i x )|
[nz - 2?:1(”1'- X n.,-)}

Kappa = , 2)
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Here, n;; represents the value in the i-th row and i-th column of the confusion matrix,
n;. is the sum of the i-th row of the confusion matrix, #; is the sum of the i-th column of the
confusion matrix, n is the total number of validation samples, and 4 is the number of rows
and columns in the confusion matrix.

3. Results
3.1. Importance Analysis of Remote Sensing Features for Vineyard Extraction

Based on ground survey sample points, optical and texture features were extracted
from the GF-6 data. The Boruta algorithm was then applied to obtain the importance scores
of the features, which were subsequently normalized. The results are illustrated in Figure 2.
The figure only displays the remote sensing features that have p < 0.05 and are greater than
the shadow variable. Among the spectral information, the importance proportion of the
NDVI index is 5.10%, followed by the EVI index at 4.45%, and then the NDWI at 3.96%.
Furthermore, all of them passed the 0.01 significance check.

I <001 I p>001

Spectral Features ~Texture Texture Texture Window Texture Window  Texture Window Texture  Texture
Window Window Size 7x7 Size 9x9 Size 11x11 Window Window
- Size 3x3 Size 5x5 Size 13x13  Size
15x15

5550 PR B HRSSSereSR R B R R B e | SR s MR p=0.01
""““"‘OO<CO<O”‘O<O”M<OM<O<MOOOO”OO
R 2REO00>0>0R80>0R”3CH500F0 00000 R o 0
g (=Tt e I Bt B B U [~ R I« e e [« et st B s et B
FRzrAzzRazzRAdAdAadzERraYE2Aa 2R 22
a % a8 =z 2 a8z 2 M % m R A =
z zZ z zz 75 g z z

Remote Sensing Features

Figure 2. Importance of Various Remote Sensing Features (the figure only displays remote sensing
features that have p < 0.05 and are greater than the shadow variable).

In the texture feature statistics, contrast (CO), variance (VA), correlation (COR), and
dissimilarity (DI) have greater importance for vineyard extraction. Particularly, when the
window size is 7 x 7, the statistical measures NDVI_CO and NDVI_VA reflect the highest
importance for crop extraction, with NDVI_CO showing more stability across different
window sizes. Additionally, the size of the texture window has a significant impact on
importance. As the window size increases, the importance first rises and then declines.
When the window size is 7 x 7, the importance reaches its maximum and passes the 0.01
significance check. The best-performing features at this size include B4_CO, NDVI_VA,
NDVI_CO, NDVI_DJ, and NDVI_COR.

Based on this, a total of eight sensitive features were selected: three spectral features,
including NDVI, EVI, and NDWI; and five texture features, all derived from a7 x 7 window,
including B4_CO, NDVI_VA, NDVI_CO, NDVI_DI, and NDVI_COR.
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3.2. Vineyard Extraction Model Performance Evaluation

The vineyard classification results of the three models (M1, M2, M3) for vineyard in-
formation extraction that integrate both spectral and texture features are shown in Figure 3.
Figure 3a—c shows the overall distribution of vineyards under the three models, all indicat-
ing that the central oasis area of the study region has a higher coverage of vineyards, while
the western and eastern areas have less coverage. However, in the enlarged local images
(Figure 3d-{), it can be observed that there are still differences in the classification results of
each model. The M1 model performs relatively poorly in identifying vineyards, with a scat-
tered distribution of patches, a high number of misclassifications, and a significant presence
of omissions within the vineyard areas, leading to unsatisfactory classification results. The
M2 model improves the recognition effect compared with the M1 model, the wrong score is
obviously reduced, but the omission is still more obvious, and the classification boundary
is slightly fuzzy. The M3 model has the best extraction effect, the classification results are
more continuous and concentrated, the wrong score and omission are minimized, and the
boundary of the vineyard is clear. This is because, compared with other algorithms, RF
performs well in the complex remote sensing image classification task, especially suitable
for multi-category and multi-feature classification situations [52,53].

(@)

Legend

B vincyerd 0 125 25 50 KM
[ Other Land ————————

T e | ek
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Figure 3. Extraction Results of Vineyards from Different Models. (a) M1 Model Extraction Results;
(b) M2 Model Extraction Results; (c) M3 Model Extraction Results; (d) Local Image of M1 Model
Extraction Results; (e) Local Image of M2 Model Extraction Results; (f) Local Image of M3 Model
Extraction Results.
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The accuracy of the three models was also calculated using the confusion matrix, as
shown in Table 5. The results show that the M3 model outperformed the M2 and M1 models,
achieving an accuracy of 93.89% for vineyard identification, with a Kappa coefficient of
0.89, a misclassification error of 8.11%, and an omission error of 4.11%. Compared to the
M1 model, the M3 model improved vineyard identification accuracy by 12.25%, raised
the Kappa coefficient by 0.11, reduced the misclassification error by 6.93%, and decreased
the omission error by 17.57%. In comparison with the M2 model, the M3 model increased
vineyard identification accuracy by 8.02%, enhanced the Kappa coeftficient by 0.06, lowered
the misclassification error by 2.46%, and reduced the omission error by 13.58%. Overall,
the RF algorithm (M3) demonstrated stronger adaptability in the complex environment of
the study area, with significantly higher classification accuracy than the other two models.

Table 5. The extraction accuracy results of vineyards using three different algorithm models con-
structed based on spectral and texture features.

Kappa Vineyard Vineyard Vineyard
Model Name Algorithm Feature Coe ff}i)cpien t Classification  Classification =~ Omission
Accuracy (%) Error (%) Error (%)
The NB Model
M1 Integrating Spectral Naive Bayes  Spectral Features: 0.78 81.64 15.04 21.68
and Texture Features NDVI, EVI, and NDWIL
The SVM Model S Ve Texture Features:
M2 Integrating Spectral ~ >“PBOT FeCtOr B4 CO, NDVLVA, 0.83 85.87 1057 17.69
and Texture Features achine NDVI_CO, NDVI_DI,
The RF Model and NDVI_COR under
M3 Integrating Spectral Random Forest a7 x 7 window 0.89 93.89 8.11 411

and Texture Features

3.3. The Influence of Spectral and Texture Features on Vineyard Extraction Accuracy

From Table 5, it can be seen that the RF model (M3) that integrates spectral and texture
features is optimal for vineyard information extraction. To compare the impact of single
spectral features, single texture features, and the combined spectral and texture features on
vineyard extraction accuracy, an RF model based on single spectral features (M4) and an RF
model based on single texture features (M5) were further constructed based on the optimal
RF algorithm. The accuracy of vineyard information extraction for M3, M4, and M5 was
then compared, and the results are shown in Table 6. It is clear that the M3 model, which
combines spectral and texture features, significantly outperforms the M4 model based on
single spectral features and the M5 model based on single texture features in vineyard
identification. The M3 model shows a 13.59% increase in accuracy compared to the M4
model, with a Kappa coefficient increase of 0.12, a reduction in misclassification error of
6.86%, and a decrease in omission error of 20.2%. When compared to the M5 model, the M3
model demonstrates a 14.92% improvement in classification accuracy, a Kappa coefficient
increase of 0.21, a 17.00% reduction in misclassification error, and a 17.24% decrease in
omission error. In summary, the integration of both spectral and texture features enables
a more comprehensive capture of vineyard characteristics, thereby enhancing overall
classification accuracy and reducing both misclassification and omission errors.
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Table 6. The extraction accuracy results of vineyards using three Random Forest models constructed
based on different remote sensing features.

Kappa Vineyard Vineyard Vineyard
Model Name Feature Coe ffIi’c}:)ient Classification Classification Omission Error
Accuracy (%) Error (%) (%)
Spectral Features: NDVI, EVI,
The RF Model Textureaggalt\t]l?e‘g Ii34 CO
M3 Inte%;a(ﬁﬁi ?:];g;tlrraelsand NDVI_VA, NDVL(_Z 0, 0.89 93.89 8.11 4.11
NDVI_DI, and NDVI_COR
under a 7 x 7 window.
The RF Model with Spectral Features: NDVI, EVI,
Mé Single Spectral Feature and NDWI. 0.77 80.36 14.97 2431
Texture Features: B4_CO,
M5 The RF Model with NDVI_VA, NDVI_CO, 0.68 76.77 2511 21.35

Single Texture Feature

NDVI_DI, and NDVI_COR
under a7 x 7 window.

4. Discussion

This study employed three algorithms for grape extraction, revealing significant
differences among them. The NB algorithm struggles to adequately capture the correlations
between spectral and texture features due to its assumption of independence among
features [56]. This assumption may adversely affect classification performance in vineyard
extraction, leading to decreased accuracy. While the SVM algorithm excels in processing
high-dimensional data, its training complexity is relatively high, particularly when dealing
with large data dimensions or sample sizes [57]. For the complex task of vineyard extraction,
feature selection and parameter optimization (such as kernel function selection) are crucial.
If parameters are improperly selected, SVM may fail to effectively distinguish vineyards
from other vegetation types. Additionally, SVM is sensitive to noise, which can also impact
classification accuracy [58]. The RF algorithm demonstrates outstanding performance in
integrating spectral and texture features, effectively leveraging various remote sensing
characteristics to enhance classification accuracy [59,60]. However, RF may face the risk
of overfitting when applied to high-dimensional datasets. Furthermore, existing studies
have indicated that RF’s classification accuracy may decrease when processing sub-meter
resolution imagery [61]. In contrast, RF has shown greater stability in the 2 m or higher
resolution imagery used in this study. Therefore, future research should further explore
the performance differences of RF across various image resolutions to optimize vineyard
extraction outcomes.

From the analysis of different remote sensing features on vineyard extraction results,
it is evident that models integrating both spectral and texture features significantly outper-
form those using only a single feature. As shown in Figure 4a, for vegetation similar to
grapevines, apricot trees, and forests, similarities in physiological structure, leaf morphol-
ogy, and canopy characteristics often lead to overlapping or closely resembling spectral
reflectance features [62,63]. This indicates that a single spectral feature cannot comprehen-
sively reflect the internal differences among these fruit-bearing objects, making precise
classification challenging. The vineyard’s regular row spacing, strip-like distribution, and
the directional arrangement of plants create a distinct texture pattern, which provides a
strong differentiation compared to other fruit trees or vegetation (Figure 4b). Although
texture features have advantages in capturing the details of vineyards versus other fruit-
bearing vegetation, using texture information alone is insufficient to accurately distinguish
vineyards from other non-vegetated objects, such as bare soil. Therefore, combining spec-
tral and texture features can compensate for each other’s shortcomings and fully leverage
the informational strengths of both dimensions. This conclusion aligns with findings from
previous studies on fruit-bearing crops [23-25].
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Figure 4. Main Remote Sensing Feature Values of the Study Area. (a) Main Spectral Feature Values of
Land Cover; (b) Main Texture Feature Values of Land Cover.

Grapes, as perennial climbing plants, are cultivated using trellises, creating regular
row spacing and strip-like distribution patterns. Low-resolution satellite imagery cannot
clearly capture details such as row spacing and trellis structure in vineyards [64]. With
the advancement of drone technology, sub-centimeter resolution imagery can now be
obtained, allowing researchers to clearly capture these features. However, studies have
shown that drone imagery for vineyard classification is still affected by the projection of
canopy shadows and the background between rows of grapevines, while this impact is
relatively minimal in low-resolution satellite imagery [19]. The 2 m resolution imagery
from GF-6 used in this study can not only capture the fine structural features of vineyards
clearly [12] but also effectively reduce classification errors caused by canopy shadows
and background between rows. Additionally, this study found that incorporating texture
features significantly improves the extraction accuracy of vineyards. Texture features
exhibit strong robustness against variations in lighting, which can help eliminate spectral
signal confusion caused by overlapping vegetation and shadows, thus enhancing extraction
accuracy [22,25]. These findings provide new insights for further research.

The methods employed in this study also have certain limitations. First, in feature
selection, only the Boruta algorithm was used, which is relatively singular. Second, we
generated a 2 m high-resolution multispectral image from fused images. Although this im-
proved the precision of land feature identification and classification, some potential issues
remain. Despite the ability of the fused multispectral image to capture more details, noise
and interference in complex vegetation-covered areas may affect classification accuracy, and
artifacts may be introduced during the fusion process, leading to feature confusion. Finally,
the inconsistency between the satellite data collection date and the ground sampling time
is also an issue. Although Google imagery was used to analyze point changes over time
and delete the changed points, from the perspective of experimental rigor, the satellite data
collection date should align with the ground sampling time. Therefore, in future research,
we will consider using GF-2 satellite imagery, employing more diverse feature selection
methods, and ensuring that the satellite data collection date is as close as possible to the
ground sampling time.

5. Conclusions

This study focused on the main oasis area of Turpan City in Xinjiang, China. Using
high-resolution GF-6 imagery, the research employed machine learning algorithms such as
Naive Bayes (NB), Support Vector Machine (SVM), and Random Forest (RF) to develop
models for the extraction of vineyard information by integrating spectral and texture
features. The results indicate that three spectral features and five texture features under
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a7 x 7 window exhibit significant sensitivity to vineyard recognition following feature
selection via the Boruta algorithm. These spectral features include Normalized Difference
Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Normalized Difference
Water Index (NDWI), while texture features include contrast statistics in the near-infrared
band (B4_CO) and the variance statistic, contrast statistic, heterogeneity statistic, and
correlation statistic derived from NDVI images (NDVI_VA, NDVI_CO, NDVI_D], and
NDVI_COR). The RF algorithm significantly outperforms both the NB and SVM models in
extracting vineyard information, achieving an accuracy of 93.89% and a Kappa coefficient
of 0.89. This represents a notable improvement of 12.25% in accuracy and 0.11 in the Kappa
coefficient over the NB model, and an improvement of 8.02% in accuracy and 0.06 in the
Kappa coefficient compared to the SVM model. Models that incorporate both spectral
and texture features significantly outperform their single-feature counterparts, suggesting
that the fusion of these characteristics more effectively captures the spatial distribution
characteristics of vineyards. This finding would provide an important theoretical basis
and methodological reference for the application of remote sensing technology in the
agricultural field.
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