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Abstract: In order to solve the problems that existing tomato maturity detection methods struggle to
take into account both common tomato and cherry tomato varieties in complex field environments
(such as light change, occlusion, and fruit overlap) and the model size being too large, this paper
proposes a lightweight tomato maturity detection model based on improved YOLO11, named GFS-
YOLO11. In order to achieve a lightweight network, we propose the C3k2_Ghost module to replace
the C3K2 module in the original network, which can ensure a feature extraction capability and reduce
model computation. In order to compensate for the potential feature loss caused by the light weight,
this paper proposes a feature-refining module (FRM). After embedding each feature extraction
module in the trunk network, it improves the feature expression ability of common tomato and
cherry tomato in complex field environments by means of depth-separable convolution, multi-scale
pooling, and channel attention and spatial attention mechanisms. In addition, in order to further
improve the detection ability of the model for tomatoes of different sizes, the SPPFELAN module
is also proposed in this paper. In combining the advantages of SPPF and ELAN, multiple parallel
SPPF branches are used to extract features of different levels and perform splicing and fusion. To
verify the validity of the method, this study constructed a dataset of 1061 images of common and
cherry tomatoes, covering tomatoes in six ripened categories. The experimental results show that
the performance of the GFS-YOLO11 model is significantly improved compared with the original
model; the P, R, mAP50, and MAP50-95 increased by 5.8%, 4.9%, 6.2%, and 5.5%, respectively, and
the number of parameters and calculation amount were reduced by 35.9% and 22.5%, respectively.
The GFS-YOLO11 model is lightweight while maintaining high precision, can effectively cope with
complex field environments, and more conveniently meet the needs of real-time maturity detection
of common tomatoes and cherry tomatoes.

Keywords: maturity detection; complex field environment; lightweight model; YOLO11; feature
refining; multi-scale feature fusion

1. Introduction

Tomato is one of the most important cash crops in the world [1], and its maturity is
directly related to the taste, nutritional value, and storage time of the fruit. The hardness,
color, flavor, and nutritional content of tomatoes at different ripening stages are signifi-
cantly different, which affects consumers’ purchase intention and market price [2]. Globally,
approximately 20–30% of fruits and vegetables suffer post-harvest losses each year due
to inappropriate ripeness assessments and harvest timing, and this includes a significant
number of tomatoes [3]. The huge production and high post-harvest loss rates highlight the
importance of accurate ripening assessment in the tomato industry. In addition, traditional
tomato ripeness detection mainly relies on manual experience for visual inspection, which
has defects such as low efficiency, strong subjectivity, and easy interference by human
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factors. For example, experienced workers can only inspect a limited number of toma-
toes per day, and assessment criteria vary between workers, resulting in less consistent
inspection results. In addition, manual inspection is time-consuming and increases labor
costs, especially in large-scale tomato production, and it is difficult to meet the needs of
modern agriculture’s fine and large-scale production. Therefore, there is an urgent need to
explore efficient, accurate, and objective detection methods for tomato maturity to over-
come the limitations of traditional approaches and achieve rapid, non-destructive, and
consistent maturity assessments. This will improve tomato quality grading, optimize the
picking timing, reduce post-harvest losses, lower labor costs, and ultimately promote the
healthy development of the tomato industry and provide consumers with higher-quality
tomato products.

In order to overcome the limitations of traditional methods, more and more researchers
have begun to pay attention to automated fruit and vegetable maturity detection technology.
For a long time in the past, researchers explored the use of digital image processing
technology and machine learning algorithms to automatically identify the maturity of
various fruits and vegetables. These methods first use image sensors to collect fruit and
vegetable images; then extract color, shape, texture, and other features through image
processing algorithms; and finally use machine learning algorithms to build maturity
discrimination models. For example, Rahim Azadnia et al. [4] developed an automated
algorithm based on machine learning to improve the automatic assessment of hawthorn
maturity. The geometric attributes, color and texture features of hawthorn were extracted
by image processing technology, and the feature dimension was reduced by quadratic
discriminant analysis (QDA), and then classified by an artificial neural network (ANN) and
support vector machine (SVM). The results showed that the ANN model based on high-
efficiency features reached 99.57%, 99.16%, and 98.16% accuracy in the training, verification,
and testing stages, respectively, which provided a rapid, accurate, and non-destructive
detection method for the maturity assessment of hawthorn. Ferhat Kurtulmus et al. [5]
developed a machine vision algorithm based on color images in order to detect unripe green
citrus in natural outdoor conditions. The algorithm uses color threshold segmentation,
a PCA-based ‘eigenfruit’ method, and circular Gabor texture analysis to identify green
citrus. The result of the subwindow classifier is determined by moving a subwindow
on three different scales to scan the whole image and implementing the majority voting
method. On the verification set, the algorithm successfully detected 75.3% of the actual
fruits, demonstrating the potential of using conventional color images for green citrus
detection under natural conditions. Luiz Fernando Santos Pereira et al. [6] used digital
imaging and random forest methods to predict the ripening of papaya fruit. Physical
and chemical analysis were performed to determine the true ripening stage of the fruit.
They extracted 21 manual color features using image analysis and then implemented a
random decision forest to predict the maturity stage. In the experiment, 114 samples were
used, a classification performance of 94.3% was obtained on the cross-validation set, and
the accuracy of the prediction set was 94.7%. Although these methods have made some
progress in the detection of fruit and vegetable maturity, their limitations are becoming
increasingly prominent. These methods often rely on artificially designed color and texture
features, which are difficult to adapt to the color diversity of fruits and vegetables and the
complex field environment. For example, a fixed color threshold struggles to handle the
color changes caused by changes in light and individual differences in fruits and vegetables.
However, the texture feature extraction method based on an artificial design filter has the
problems of low computational efficiency and insufficient generalization ability, and it is
difficult to deal with a wide variety of fruit and vegetable textures.

In recent years, with the rapid development of deep learning technology, especially
the emergence of convolutional neural networks, fruit and vegetable maturity detection
methods based on deep learning have gradually become a research hotspot [7]. Among
them, target detection technology is widely used in the maturity detection of fruits and
vegetables. For example, to improve the real-time detection efficiency of cherry tomato
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ripening, Congyue Wang et al. [8] developed an improved YOLOv5n model. The model
uses the K-Means ++ algorithm to optimize an anchor frame size, employs a coordinate
attention mechanism to extend the perceptual domain, and adopts a boundary frame
regression loss function (WIoU) with dynamic focusing. The results show that the accuracy
and recall rate of the improved model improved by 1.4%, reaching 95.2% mAP; the average
detection time was 5.3 ms, and the model size was only 4.4 MB, which is suitable for
real-time and lightweight applications. Chenglin Wang et al. [9] designed the YOLO-BLBE
model, which combined I-MSRCR enhanced color features, the GhostNet model, the CA
mechanism module, a BIFPN structure, and the Alpha-EIOU loss function to improve the
recognition efficiency of blueberry maturity. The experimental results showed that the
recognition accuracy of the model was 99.58%, 96.77%, and 98.07%, respectively. The model
size was 12.75 MB, and the average detection speed was 0.009 s. Defang Xu et al. [10]
proposed the YOLO-RFEW model for the intelligent detection of melon maturity under
an artificial greenhouse environment. Based on the improvement of YOLOv8n, RFAConv
was used to enhance feature extraction, the C2f module was optimized, and the C2fFE and
EMA attention mechanisms were combined. The improved WIoU loss function improves
the prediction accuracy. The accuracy, recall rate, F1 score, and mAP of the YOLO-RFEW
model reached 93.16%, 83.22%, 87.91%, and 90.82%, respectively. The model size was 4.75
MB, and the detection time was 1.5 ms. Xiangyang Sun et al. [11] artificially improved
the detection accuracy of greenhouse tomatoes, developed the S-YOLO model, adopted
lightweight a GSConv-SlimNeck structure, improved a-SimSPPF, and enhanced the b-
SIoU algorithm and SE attention module. The detection accuracy of the S-YOLO model
was 96.60%, the mAP was 92.46%, and the detection speed reached 74.05 FPS, which
were, respectively, increased by 5.25%, 2.1%, and 3.49 FPS compared with the original
model. The model parameter was 9.1m, which improved the problems of occlusion and
tomato recognition, and supported the vision system of the tomato-picking robot. Ping Li
et al. [12] proposed a new detection method based on MHSA-YOLOv8 for the automatic
grading of tomato maturity and counting of tomatoes. Through introducing the MHSA
attention mechanism, this method improves the performance of the model in complex
scenarios and provides technical support for uncrewed operation robots in tomato picking.
Despite the presence of occlusion and light interference, the model can still grade tomato
maturity and count tomatoes online. Future research will be dedicated to alleviating these
interferences and further enhancing the performance of the model. Renzhi Li et al. [13]
proposed a tomato maturity recognition model based on the improved YOLOv5 to enhance
the recognition accuracy and speed of greenhouse tomato maturity. This model optimizes
the regression process of the prediction box by adopting Mosaic data enhancement, Focus
and CSPNet network structures, and the EIoU loss function. Experimental results showed
that the model achieved an accuracy of 95.58%, a recall rate of 90.07%, and an average
precision of 97.42% on the test set, which were increased by 0.11% and 0.66%, respectively,
compared to the original YOLOv5s model. The single-image detection speed of the model
was 9.2 milliseconds, and the model size was 23.9 MB, meeting the accuracy and speed
requirements for greenhouse tomato maturity recognition.

As mentioned above, the existing research on fruit and vegetable maturity based on
target detection has made some progress, but there are still some problems to be solved.
For example, most of the existing tomato maturity detection methods are aimed at a single
tomato variety, ignoring the differences in color, shape, size, etc., among different varieties.
When dealing with complex field environments (such as light changes, occlusion, fruit
overlap, etc.) [14] and images of different tomato varieties (such as common tomatoes and
cherry tomatoes), the recognition accuracy and generalization ability need to be improved.
In addition, existing models often have high computational complexity and large numbers
of parameters and are difficult to deploy on mobile or embedded devices with limited
resources, which limits their application in practical scenarios. In order to solve the above
problems, a lightweight tomato maturity detection model GFS-YOLO11 based on improved
YOLO11 is proposed in this paper. The main contributions of this paper are as follows:
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• An efficient lightweight model, GFS-YOLO11, is proposed. In order to meet the
requirements of the real-time maturity detection of common tomato and cherry tomato,
the model not only guarantees the recognition accuracy but also focuses on optimizing
the model structure to reduce the number of parameters and calculations, making it
easier to deploy on mobile devices.

• C3k2_Ghost module: This module generates redundant feature maps through in-
expensive linear transformations, effectively reducing the computational burden of
traditional convolution operations, thus achieving a lightweight model.

• FRM: Considering that lightweight operation may lead to information loss, we propose
a feature-refining module (FRM) to enhance the feature expression ability of the model
and improve the identification accuracy of tomatoes of different sizes and different
ripening stages.

• SPPFELAN module: In combining the advantages of SPPF and ELAN, this module
further improves the detection ability of common tomatoes and cherry tomatoes.

• A diverse dataset containing common tomatoes and cherry tomatoes was constructed
to train and evaluate the model performance and provide data support for
related studies.

2. Materials and Methods
2.1. Production of Datasets
2.1.1. Data Sample Collection

In order to comprehensively evaluate the performance of the GFS-YOLO11 model
proposed in this paper on the maturity detection of common tomatoes and cherry tomatoes,
we established an image dataset of common tomatoes and cherry tomatoes covering
various scenes, named Tomato-Detect. The dataset was derived from the tomato laboratory
greenhouse of Jilin Agricultural University and consisted of 1061 high-resolution color
images after manually screening out low-quality images. The images cover tomatoes of
different ripening stages, shooting angles, lighting conditions, occlusion degrees, and fruit
sizes, striving to truly reflect the complexity of the field environment and improve the
generalization ability of the model. Some images are shown in Figure 1. To ensure the
effectiveness and authenticity of the model training and evaluation, we randomly divided
the dataset into a training set and a validation set in an 8:2 ratio.
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scenarios when capturing images: (1) shooting from above under bright light; (2) the shooting angle
when the object is partially occluded or overlapped; (3) shooting from the side under sufficient
lighting conditions; (4) shooting from the front in a low-light environment.

2.1.2. Dataset Enhancement

In order to enhance the generalization ability of the model and prevent the model from
overfitting specific features in the training data (for example, specific lighting conditions,
shooting angles, or tomato morphology), we performed data enhancement on the training
set of the dataset [15]. Specifically, we used a series of random transformation strategies
to extend the original images, including randomly rotating the image by 15 to 45 degrees,
randomly flipping the image, adding random noise, and randomly shifting the image posi-
tion. These operations effectively simulated the growth posture, lighting conditions, and
shooting angle changes in real scenes of common tomatoes and cherry tomatoes, thereby
increasing the diversity of the training samples. A visualization of the data enhancement is
shown in Figure 2. Through data enhancement, we expanded the training set by 4 times,
and the specific data distribution is shown in Table 1.
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Table 1. This table shows the composition of the dataset, covering the total number of images in the
original training set, the enhanced training set, and the validation set, and the number of samples
in six different categories. Specifically, the six categories correspond to three stages in the ripening
process for regular and cherry tomatoes: full ripeness, semi-ripeness, and under-ripeness.

Train Val

Instances
Images Original (848) Enhance (2544) Original (213)

Large, fully mature 584 1752 128
Large, semi-mature 633 1899 139

Large, immature 1500 4500 354
Small, fully mature 1025 3075 246
Small, semi-mature 854 2562 262

Small, immature 3592 10,776 1006
All 8188 24,564 2135

2.2. Model Improvement

In this study, we chose the YOLO11 [16] model as our infrastructure, and this choice
was based on multiple considerations. Firstly, YOLO11 is an efficient object detection
algorithm newly developed by the Ultralytics team. It inherits the fast and accurate
excellent characteristics of the YOLO series of algorithms. The YOLO series is widely
praised for its outstanding performance in the field of real-time object detection, and
YOLO11, as the latest member of this series, has demonstrated excellent performance
in various complex visual tasks through its advanced neural network architecture and
optimized training strategies. Secondly, the introduction of YOLO11 represents the latest
progress in current object detection technology, providing a strong starting point for our
research direction. We believe that standing on the shoulders of giants can further the
depth and cutting-edge qualities of our research. Moreover, the advancement of YOLO11
also means that it has better adaptability and scalability, which is crucial for us to address
the challenges in specific visual tasks. However, we are also aware of some shortcomings
of the YOLO11 model in practical applications. For example, the model has a large volume,
which makes it difficult to deploy on resource-constrained platforms such as mobile devices.
This challenge is particularly important for our research because our goal was to develop
an efficient and practical object detection system. At the same time, when dealing with
targets with large size differences such as regular tomatoes and cherry tomatoes, there
is still room for improvement in the detection accuracy of YOLO11. This indicates that
although YOLO11 performs well in many aspects, in specific fields, such as the visual
recognition of agricultural products, further optimization and adjustment are still needed.
In order to solve these problems, the GFS-YOLO11 model was improved in the following
three aspects: The C3k2_Ghost module was proposed to replace the C3k2 module in the
original network to reduce the computational complexity and memory consumption of the
model, and improve the reasoning speed of the model. Considering that the lightweight
design may lose part of the feature information, we embedded an FRM after each feature
extraction module (C3k2) in the backbone network to improve the feature expression ability
of common tomatoes and cherry tomatoes in complex field environments and enhance the
detection accuracy of the model for different mature stages and varieties of tomatoes. The
SPPFELAN module was proposed to replace the SPPF module in the original network,
which further improves the detection ability for different sizes of common tomatoes and
cherry tomatoes. The improved algorithm model structure is shown in Figure 3.
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2.2.1. C3K2_Ghost

In the optimization of deep neural network models, being lightweight is a critical goal,
especially when deploying models on resource-constrained devices [17]. In this study, a
lightweight improvement method for the C3k2 feature extraction module was designed.
With the introduction of the GhostBottleneck [18] structure to replace the traditional bottle-
neck structure, the model’s computing cost and memory usage are significantly reduced
without ensuring the model’s performance. The module structure is shown in Figure 4.
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The C3K2 module is a feature extraction module of the latest YOLO11 model. Based
on the CSPNet structure [19], it handles the input feature graph by dividing it into two parts
and using a bottleneck module for multi-scale feature extraction. However, traditional
bottleneck structures usually contain multiple convolution layers and require a lot of com-
putation. The introduction of the GhostBottleneck structure solves this problem effectively.
Compared with the traditional bottleneck structure, GhostBottleneck proposes a more
efficient way for feature extraction, which uses GhostConv operations as its core. Ghost-
Conv generates part of the feature map with fewer convolution cores and then expands
it with inexpensive linear transformation operations to generate more diverse feature
representations, thus significantly reducing the computational effort while maintaining
performance. Finally, the two parts of the feature map are spliced together to obtain the
final output feature map. This design philosophy causes GhostBottleneck to maintain
or even improve the model’s performance while significantly reducing the number of
parameters and computation. By replacing the bottleneck structure in the C3k2 module
with the GhostBottleneck structure, we can greatly reduce the computational cost at the
feature extraction stage of the model, thus achieving a lightweight model.

The immediate benefits of this improvement include faster inference speeds and
smaller model sizes. The faster inference speed allows the model to better meet the needs
of real-time applications.
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2.2.2. FRM

Although a lightweight method can effectively reduce the computational cost, it may
also cause the sensitivity of the model to some features, such as the sensitivity of the
surface texture of the tomato, the color gradient, and other subtle features [20]. To solve
this problem, this paper presents an innovative structure named feature refinement module
(FRM) and embedded it after the C3K2 module of the YOLO11 backbone network. This
module aims to enhance the capturing ability of feature representations by integrating local
features and global context information so as to improve the performance of the model
in the maturity detection of common tomato and cherry tomato. The model structure is
shown in Figure 5.
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The core idea of the FRM is to focus on both local details and global context information.
For local features, the FRM uses efficient depth-separable convolution [21] to extract them.
This method significantly reduces the computational cost while maintaining the sensitivity
to local spatial information, which is conducive to capturing subtle features such as texture
and color changes on the tomato surface, which are crucial for distinguishing the tomato
species and maturity. The acquisition of global context information depends on multi-scale
pooling operations. The FRM uses average pooling and maximum pooling in horizontal
and vertical directions to effectively capture feature information at different scales. The
FRM fuses these multi-scale features in a process that can be described as

X − MSFF = Concat
[

AvgPoolh(x) + AvgPoolv(x), MaxPoolh(x) + MaxPoolv(x)

]
(1)

Here, AvgPoolh and AvgPoolv represent average pooling operations in the horizontal
and vertical directions, respectively; MaxPoolh and MaxPoolv represent maximum pooling
operations in the horizontal and vertical directions, respectively; Concat represents con-
catenation operations; and X-MSFF represents multi-scale features after fusion. Average
pooling can reflect the overall statistical characteristics of feature maps, while maximum
pooling highlights the most significant local features. The combination of horizontal and
vertical pooling results can describe the spatial distribution of features more comprehen-
sively, which helps to understand the overall shape and color distribution of tomatoes and
then judge the tomato species more accurately. In order to further enhance the ability of
feature expression, the FRM introduces channel attention and spatial attention mechanisms.
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The channel attention mechanism focuses on screening important feature channels, and its
calculation process is as follows:

CA − W = Sigmoid(Conv2(ReLU(BN(Conv1(X − MSFF))))) (2)

Here, Conv1 and Conv2 represent two-layer packet convolution operations,BN rep-
resents batch normalization operations, ReLU represents activation functions, and CA-W
represents the channel attention weight. The design of group convolution can effectively re-
duce the computational complexity while maintaining the ability to model the relationship
between channels. Subsequently, batch normalization and ReLU activation functions are
used to enhance the nonlinear representation of the network. Finally, the sigmoid gating
function is used to generate channel attention weights to highlight important feature chan-
nels and suppress irrelevant channel information. The spatial attention mechanism focuses
on the importance of different positions in the feature map. Firstly, the FRM performs
global average pooling on the fused multi-scale features to obtain a global feature vector,
which represents the whole features of the image. Then, through a convolution operation
with a kernel size of 3, the global feature vector is transformed to generate the spatial
attention weight. This process can be expressed by the formula:

SA − W = Sigmoid(Conv(AvgPool(X − MSFF))) (3)

Here, AvgPool represents the global average pooling operation, Conv represents the
convolution operation, and SA − W represents the spatial attention weight. Finally, the
sigmoid activation function is used to normalize the value of the attention diagram to
between 0 and 1, indicating the importance of each location.

The channel attention diagram and space attention diagram are multiplied by elements
to obtain the final attention mask. The mask takes into account the importance of features
in both the channel dimension and spatial dimension to more precisely guide the network
to focus on important areas and features, such as color changes or texture features on
the tomato surface. The application of the attention mask to extracted local features can
effectively enhance key features and suppress background noise, thus improving the
discriminability of feature representation.

Finally, the FRM adopts the residual connection structure. The residual connection
adds the input of the module directly to the output, effectively alleviates the problem of
gradient disappearance, promotes the training of the network, and retains the original
feature information. This design enables the FRM to be better integrated into the backbone
network of YOLO11 and improve the overall detection performance.

2.2.3. SPPFELAN

In target detection tasks, the efficient extraction and fusion of multi-scale features
is essential for the recognition of objects of different sizes and shapes [22]. SPP and its
efficient version SPPF use fixed-size pooling kernels to check the input feature map and
extract multi-scale features, which effectively improves the detection ability of the model
for objects of different sizes. However, SPP and SPPF usually use simple concatenation
operations to integrate features extracted from different pooling layers, which may not
make full use of the complementary information between multi-scale features, limiting
the performance of the model. ELANs (Efficient Layer Aggregation Networks) [23] have
shown unique advantages in feature fusion. Through parallel multiple branches, they
extract different levels of feature information and finally perform efficient aggregation,
which improves performance while maintaining low computing costs.

In order to combine the advantages of SPPF and ELANs and further improve the
model’s ability to detect the maturity of tomatoes of different sizes, a new module named
SPPFELAN was proposed in this paper. Its structure is shown in Figure 6.
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The module borrows from the ELAN’s idea of paralleling multiple branches to extract
multi-scale features and cleverly uses the SPPF module as the concrete implementation of
the branches. Each SPPF module has pooling kernels of different sizes (3, 5, 7), which can
extract different levels of feature information: large-size pooling kernels can capture global
features such as the overall shape and color distribution of the tomato, while small-size
pooling kernels can focus on detailed features such as peel texture and local defects. Finally,
the SPPFELAN module splices and fuses the output of all branches, which is simple and
efficient and can integrate the feature information from different levels to form a more
comprehensive feature expression, thus further improving the model’s ability to detect the
maturity of tomatoes of different sizes.

2.3. Evaluation Indicators

In order to comprehensively evaluate the performance of the model in the detection
tasks of common tomato and cherry tomato maturity, this paper adopted commonly used
evaluation indicators in the field of target detection, including precision (P), recall (R),
mAP50, and MAP50-95.

Precision (P) focuses on measuring the accuracy of the model identification results,
that is, the proportion of samples that the model judges as ripe tomatoes that are really
ripe. In tomato ripeness detection, high accuracy means that the model is able to identify
ripe tomatoes more accurately, reducing the number of cases where immature tomatoes or
other objects are misjudged as ripe tomatoes. Its calculation formula is as follows:

p =
TP

TP + FP
(4)

Here, TP (True Positive) refers to situations in which the model correctly classifies
actual ripe tomatoes as ripe, and FP (False Positive) refers to situations in which the model
incorrectly classifies actual unripe tomatoes or other objects as ripe.

The recall rate (R) represents the proportion of all images that actually contained
ripe tomatoes that were correctly detected by the model. The recall rate measures the
comprehensiveness of the model, i.e., whether ripe tomato targets are missed. In ripened
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tomato detection, a high recall rate means that the model is able to identify as many ripe
tomatoes in the image as possible, avoiding omissions and allowing for more efficient
subsequent processing, such as picking or grading. Its calculation formula is as follows:

R =
TP

TP + FN
(5)

Here, FN (False Negative) refers to a situation in which the model incorrectly classifies
an actual ripe tomato as immature or another object.

The average accuracy mean (mAP) is an index that combines the model accuracy
and recall rate. The average precision (AP) value ranges from 0 to 1, with higher values
indicating better model performance. The mAP is the average of AP values for all categories.
In tomato maturity detection, we usually pay attention to mAP50 (the mAP when the IOU
threshold is 0.5, paying special attention to the accuracy of matching the detection box with
the real box) and mAP50-95 (the average mAP value when the IOU threshold changes from
0.5 to 0.95, with 0.05 as the step, providing the performance under different IOU thresholds
and more comprehensively reflecting the average performance of the model under different
IOU thresholds). The calculation formulas of these two indicators are as follows:

AP =
∫ 1

0
p(r)dr (6)

mAP =
∑N

i=1 APi

N
(7)

In practical applications, we hope that the model will be able to not only identify ripe
tomatoes but also accurately locate the location of the tomato for precise manipulation. The
mAP, as a comprehensive index, can more comprehensively evaluate the comprehensive
performance of the model in different tomato maturity detection tasks. In addition, the
efficiency evaluation indexes of the model include memory occupation, parameters, com-
putational complexity (GFLOPs), and inference time, which are used to comprehensively
evaluate the model’s demand for hardware resources and inference speed.

3. Results
3.1. Experimental Environment and Parameter Setting

This experiment was built on a PyTorch deep learning framework and executed in the
Anaconda environment. Table 2 shows the main experimental equipment environment
configuration, and Table 3 shows the main hyperparameter settings.

Table 2. Experimental environment configuration.

Environment Configuration Parameter

Operating system Linux
CPU Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz
GPU 2 × A100 (80 GB)

Development environment PyCharm 2023.2.5
Language Python 3.8.10

frame PyTorch 2.0.1
Operating platform CUDA 11.8

Table 3. Hyperparameter settings.

Hyperparameter Parameter

Epochs 200
Batch 64

AdamW learning rate 0.000714
Momentum 0.9

Weight decay 0.0005
Input image size 640
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3.2. Experimental Results of GFS-YOLO11 Model

Figure 7 shows the performance of the GFS-YOLO11 model on the Tomato-Detect
dataset. It can be clearly seen from the figure that during the training process, various loss
indicators of the model change with the number of iterations, as well as the precision, recall
rate, and mAP indicators under the boundary box, all of which jointly reflect the overall
performance of the model in the detection task.

Agronomy 2024, 14, x FOR PEER REVIEW 14 of 23 
 

 

Table 3. Hyperparameter settings. 

Hyperparameter Parameter 
Epochs 200 
Batch 64 

AdamW learning rate 0.000714 
Momentum 0.9 

Weight decay 0.0005 
Input image size 640 

3.2. Experimental Results of GFS-YOLO11 Model 
Figure 7 shows the performance of the GFS-YOLO11 model on the Tomato-Detect da-

taset. It can be clearly seen from the figure that during the training process, various loss 
indicators of the model change with the number of iterations, as well as the precision, 
recall rate, and mAP indicators under the boundary box, all of which jointly reflect the 
overall performance of the model in the detection task. 

 
Figure 7. Experimental results of GFS-YOLO11 model. 

To more fully assess the model’s ability to detect maturity for both common and 
cherry tomatoes under different confidence thresholds, Figure 8 shows the F1 score curve 
for each category. The F1 score, as a comprehensive index used to consider the accuracy 
and recall rate of the model, can effectively reflect the overall performance of the model. 

Figure 7. Experimental results of GFS-YOLO11 model.

To more fully assess the model’s ability to detect maturity for both common and cherry
tomatoes under different confidence thresholds, Figure 8 shows the F1 score curve for each
category. The F1 score, as a comprehensive index used to consider the accuracy and recall
rate of the model, can effectively reflect the overall performance of the model.
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Further, Figure 9 depicts the P-R curve of the model, which intuitively shows the
balance between the accuracy and recall rate of the model under different confidence
thresholds. The trend in the curve shows that the model as a whole presents a relatively
smooth P-R curve, and can maintain a good level of accuracy while maintaining a high
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recall rate. This shows that the model can effectively control the false detection rate and
achieve a satisfactory recognition effect while ensuring the comprehensive detection of
tomatoes at each maturity level.
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3.3. Comparative Experiments of Different Models

In order to verify the effectiveness of the proposed method, we selected several
mainstream target detection models for comparative experiments, including the YOLO
series (v3-tiny [24], v5s [25], v6 [26], v7 [23], v8s [16], v9c [27], v9e [27], v10s [28], v11 [16]),
the RT-Detr series [29], and the GFS-YOLO11 model proposed in this paper. Table 4 shows
the comparison results of different target detection models.

Table 4. Performance comparison of 11 mainstream models.

Model P R mAP50 mAP50-95 Memory (MB) Parameters (m) GFLOPs Time (ms)

RT-Detr-l [29] 88.8 88.7 92.6 82.2 63.8 32.970476 108.3 20.9
RT-Detr-resnet50 [29] 91.1 85.4 91.2 83.8 83.7 42.925132 130.8 26.5

YOLOv3-tiny [24] 78.2 71.8 77 60 23.808 9.565872 14.5 4.2
YOLOv5s [25] 83.9 81.6 84.7 71.6 18.092 7.856496 19.1 4.4
YOLOv6s [26] 84.5 78.3 86.2 73.2 32.077 16.019424 43.1 8.7
YOLOv7 [23] 88.6 81.1 88.1 75.6 74.8 37.223526 105.2 20.9
YOLOv8s [16] 87.3 82.2 87.2 77.1 21.996 9.869.904 23.7 4.5
YOLOv9c [27] 89.6 85.5 91.6 81.5 50.395 21.419120 84.4 11.6
YOLOv9e [27] 91.2 87.1 94.0 83.9 114.526 54.034800 173.4 35.5
YOLOv10s [28] 86.0 79.2 86.6 77.3 16.145 8.128256 25.1 4.1
YOLO11 [16] 86.2 81.9 87.2 78.1 18.738 9.458736 21.7 4.2

our 92 86.8 93.4 83.6 12.413 6.162686 16.8 3.8

As can be seen from Table 4, the GFS-YOLO11 model proposed in this paper out-
performs most of the comparison models in multiple indicators and reaches the lowest
level in terms of the number of parameters, FLOPs, and inference speed. Specifically, the
improved model achieved 92%, 86.6%, 93.4%, and 83.6%, respectively, in the P, R, mAP50,
and MAP50-95 indexes, which were 5.8%, 4.9%, 6.2%, and 5.5% higher than those of the
original YOLO11 model. At the same time, the improved model only occupies 12.413 MB,
the number of parameters is 6.16 million, the computation is 16.8 GFLOPs, and the aver-
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age inference time is 3.8 ms. Figure 10 directly shows the comprehensive performance
comparison of different models. Although some models, such as the RT-Detr series and
YOLOv9 series models, also achieved excellent results in mAP50, the GFS-YOLO11 model
was superior in terms of comprehensive performance. Especially in terms of model size
and computational efficiency, the advantages of the proposed method are more prominent,
which is crucial for model deployment and real-time performance in practical applications.
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3.4. Visual Comparison of Test Results

In order to more intuitively demonstrate the superiority of the GFS-YOLO11 model in
tomato maturity detection, we visualized and compared the results of the assay for regular
and cherry tomatoes, as shown in Figures 11 and 12:

Figure 11 shows the detection results of the model on common tomatoes. It can
be seen from the figure that the original YOLO11 model has some missing and false
detection situations when dealing with tomatoes of different maturities. For example, the
original model failed to recognize an occluded ordinary tomato and misjudged a partially
ripe tomato as semi-ripe. Figure 12 shows the detection results of the model on cherry
tomatoes. It can be seen that the improved model is more accurate in detecting cherry
tomato maturity, and no missing detection occurred. The GFS-YOLO11 model shows
higher detection accuracy and stronger robustness. The improved model can effectively
identify blocked or overlapping tomatoes and can more accurately distinguish between
common and cherry tomatoes. In addition, the GFS-YOLO11 model also performed well
in identifying tomatoes with different maturities and was able to predict the maturity of
tomatoes more accurately. These visual results show that the C3k2_Ghost module, FRM,
and SPPFELAN module proposed in this paper can effectively improve the detection
accuracy of the model, enhance the robustness of the model in complex scenarios, and
enable it to better meet the actual demands of tomato maturity detection.



Agronomy 2024, 14, 2644 16 of 21

Agronomy 2024, 14, x FOR PEER REVIEW 17 of 23 
 

 

 
Figure 10. This figure shows a performance comparison of 12 models on multiple evaluation indi-
cators, including the mAP50, MAP50-95, model volume, number of parameters, computational 
complexity, and average inference time. In the radar map, each curve represents a model, and the 
closer the intersection of the curve and the axis is to the edge, the better the model performs on the 
corresponding indicator. The larger the area enclosed by the curve, the stronger the overall perfor-
mance of the model. 

3.4. Visual Comparison of Test Results 
In order to more intuitively demonstrate the superiority of the GFS-YOLO11 model 

in tomato maturity detection, we visualized and compared the results of the assay for 
regular and cherry tomatoes, as shown in Figures 11 and 12: 

 

Figure 11. This figure shows the detection results of the original model and GFS-YOLO11 on common
tomatoes. The first image shows the real labels, the second image shows the detection results of the
original model, and the third image shows the detection results of GFS-YOLO11. The red arrows
indicate false detections, and the yellow arrows indicate missed detections.

Agronomy 2024, 14, x FOR PEER REVIEW 18 of 23 
 

 

Figure 11. This figure shows the detection results of the original model and GFS-YOLO11 on com-
mon tomatoes. The first image shows the real labels, the second image shows the detection results 
of the original model, and the third image shows the detection results of GFS-YOLO11. The red 
arrows indicate false detections, and the yellow arrows indicate missed detections. 

 
Figure 12. This figure shows the detection results of the original model and GFS-YOLO11 on cherry 
tomatoes. The first image shows the real labels, the second image shows the detection results of the 
original model, and the third image shows the detection results of GFS-YOLO11. The red arrows 
indicate false detections, and the yellow arrows indicate missed detections. 

Figure 11 shows the detection results of the model on common tomatoes. It can be 
seen from the figure that the original YOLO11 model has some missing and false detection 
situations when dealing with tomatoes of different maturities. For example, the original 
model failed to recognize an occluded ordinary tomato and misjudged a partially ripe 
tomato as semi-ripe. Figure 12 shows the detection results of the model on cherry tomatoes. 
It can be seen that the improved model is more accurate in detecting cherry tomato ma-
turity, and no missing detection occurred. The GFS-YOLO11 model shows higher detec-
tion accuracy and stronger robustness. The improved model can effectively identify 
blocked or overlapping tomatoes and can more accurately distinguish between common 
and cherry tomatoes. In addition, the GFS-YOLO11 model also performed well in identi-
fying tomatoes with different maturities and was able to predict the maturity of tomatoes 
more accurately. These visual results show that the C3k2_Ghost module, FRM, and 
SPPFELAN module proposed in this paper can effectively improve the detection accuracy 
of the model, enhance the robustness of the model in complex scenarios, and enable it to 
better meet the actual demands of tomato maturity detection. 

  

Figure 12. This figure shows the detection results of the original model and GFS-YOLO11 on cherry
tomatoes. The first image shows the real labels, the second image shows the detection results of the
original model, and the third image shows the detection results of GFS-YOLO11. The red arrows
indicate false detections, and the yellow arrows indicate missed detections.



Agronomy 2024, 14, 2644 17 of 21

3.5. Ablation Experiment

The experiments in Sections 3.2–3.4 demonstrate the performance superiority of the
GFS-YOLO11 model. In order to verify the effectiveness of each improvement module in
the GFS-YOLO11 model, a series of ablation experiments were conducted on the Tomato-
Detect dataset. In the experiment, we took the original YOLO11 model as the baseline,
gradually added the C3k2_Ghost module, FRM, and SPPFELAN module and compared
the performance indicators of different models. The ablation experiment aimed to study
the influence of the innovative modules on the maturity detection of common tomato
and cherry tomato. Table 5 shows the comparison between the model after adding the
improved modules and the original model.

Table 5. Results of ablation experiments.

Number YOLO11 C3k2_Ghost FRM SPPFELAN P R mAP50 mAP50-95

1
√

86.2 81.9 87.2 78.1
2

√ √
84.3 78.5 85.9 77.2

3
√ √

89.1 84.2 90.9 81.4
4

√ √
90.1 85.1 90.1 80.7

5
√ √ √ √

92 86.8 93.4 83.6

As can be seen from Table 5, after the addition of the C3k2_Ghost module, all indicators
of the model exhibit a slight decline, which is due to the loss of feature information caused
by the lightweight processing of the model, but the C3k2_Ghost module greatly reduces
the number of parameters of the model, as shown in Table 6:

Table 6. This table compares the number of parameters of the feature extraction networks (C3K2 and
C3k2_Ghost) of the original model and the improved model.

YOLO11 (C3K2) GFS-YOLO11 (C3k2_Ghost)

Number of layers Params

2 26,080 25,088
4 103,360 99,328
6 346,112 175,840
8 1,380,352 695,744
13 443,776 263,168
16 127,680 82,432
19 345,472 164,864
22 1,511,424 826,816

This is due to the fact that the Ghost structure uses linear transformation operations to
generate redundant feature maps, which significantly reduces the computational cost of
the model while retaining most of the important feature information.

After the addition of the FRM, the P, R, mAP50, and MAP50-95 have improved by
2.9%, 2.3%, 3.7%, and 3.3%, respectively, compared to the benchmark model. To analyze
the impact of the FRM in more depth, we visualized the feature maps for each layer of the
baseline model and the improved model backbone network. Figure 13 shows the feature
visualization results.

As can be seen from Figure 13, the FRM significantly enhances the clarity and richness
of the feature representation because it integrates local features and global context infor-
mation, extracts local detail features through depth-separable convolution, and captures
feature information of different scales through multi-scale pooling. Finally, channel atten-
tion and spatial attention mechanisms are used to guide the model to focus on important
feature areas. Compared to the benchmark model, the FRM model presents clearer con-
tours, finer textures, and greater emphasis on tomato-specific features, especially when
downsampled to 40 × 40.
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Figure 13. The first row is the feature visualizations of the YOLO11 backbone network, and the
second row is the feature visualizations of the GFS-YOLO11 backbone network.

After the addition of the SPPFELAN module, the P, R, mAP50, and MAP50-95 im-
proved by 3.9%, 3.2%, 2.9%, and 2.6%, respectively, compared to the benchmark model. In
order to further analyze the influence of the SPPFELAN module, we generated a thermal
map of the model on the SPPFELAN feature layer and compared it with that of the original
model on the SPPF feature layer, as shown in Figure 14.
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Figure 14. This figure shows the difference between the model with the SPPFELAN module and the
original model in feature extraction.

Each pixel in the thermal map represents the activation degree of the corresponding
position. The higher the activation value, the greater the probability of the target appearing
in the position, which is reflected in the thermal map as brighter and more significant.
It can be observed that after the application of the SPPFELAN module, the heat map
corresponding to the generated feature map is significantly more focused on the region
concerned with tomatoes, which proves the effectiveness of the SPPFELAN module in
enhancing the model’s feature extraction of tomatoes, enabling the model to focus on the
target region more accurately, and thus improving the detection accuracy.

4. Discussion

In this study, a lightweight tomato maturity detection model GFS-YOLO11 based
on improved YOLO11 was proposed, and good results were achieved on the self-built
dataset. Through ablation experiments, we verified the effectiveness of the C3k2_Ghost
module, FRM, and SPPFELAN module on improving the performance of the model.
GFS-YOLO11 can not only accurately identify tomatoes with different maturity but also
effectively distinguish between common tomatoes and cherry tomatoes, and it shows strong
adaptability to complex field environments. This enables GFS-YOLO11 to be applied in
various practical scenarios. For example, GFS-YOLOv8 can be integrated into field robots
to achieve the automatic recognition of tomato maturity, guiding the robots for selective
picking, improving the picking efficiency, and reducing labor costs.
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The GFS-YOLO11 model achieves a good balance in terms of accuracy, speed, and
model size. Compared with the original YOLO11 model, GFS-YOLO11 not only guarantees
a high recognition accuracy but also realizes a lightweight model, reduces the computation
and memory consumption, and improves the inference speed. This is due to the three
improved modules proposed by us: The C3k2_Ghost module reduces the model complexity
through efficient feature extraction. The FRM makes up for the loss of precision caused
by its light weight by enhancing the feature expression ability. The SPPFELAN module
improves the detection ability of different-size targets through multi-scale feature fusion.

Although the GFS-YOLO11 model has achieved good results, it still has some limita-
tions: the training data of the model are mainly from specific regions and specific tomato
varieties, and they may need to be fine-tuned to achieve optimal performance in the face
of more different varieties and different growing environments of tomatoes. In the fu-
ture, it is necessary to construct larger-scale and more diversified datasets to enhance the
robustness of the model. We hope to expand the GFS-YOLO11 model to more tomato
varieties and explore its application in the maturity detection of other fruits or vegetables.
Additionally, we will also study how to improve the robustness of the model in complex
environments such as extreme lighting and severe occlusion and explore its combination
with other technologies by, for instance, combining it with robot technology to achieve
automatic picking.

5. Conclusions

In this paper, a lightweight tomato ripened detection model, GFS-YOLO11, was pro-
posed to solve the accuracy and efficiency problems faced by existing ripening detection
methods when processing common tomatoes and cherry tomatoes in complex field envi-
ronments. In order to achieve a lightweight model, we proposed the C3k2_Ghost module
to replace the C3k2 module in the old network, which uses the GhostBottleneck structure
to guarantee the ability of feature picking and reduce the amount of model computation.
However, lightweight operations may lead to information loss. In order to compensate
for this, we further proposed a feature-refining module (FRM) that enhances the model’s
ability to express the features of tomatoes of different sizes through depth-separable con-
volution, multi-scale pooling, and channel attention and spatial attention mechanisms,
thereby improving the recognition accuracy of tomatoes at different ripening stages and
varieties. Finally, to solve the problem of large size difference between ordinary tomatoes
and cherry tomatoes, we proposed the SPPFELAN module. In combining the advantages of
SPPF and ELANs, multiple parallel SPPF branches were used to extract features of different
levels and perform splicing and fusion, further improving the detection ability of the model
on ordinary tomatoes and cherry tomatoes. The experimental results on the Tomato-Detect
dataset, which contains six categories, show that the proposed method achieves remarkable
performance improvement. The accuracy, recall rate, mAP50, and MAP50-95 reached 92%,
86.8%, 93.4%, and 83.6%, respectively. The number of parameters, calculation amount, and
reasoning speed were 12.2 MB, 6.16 M, and 3.8 ms, respectively. The experimental results
show that GFS-YOLO11 can effectively reduce the parameter number and calculation
amount of the model while maintaining a high recognition accuracy and can better meet
the needs of real-time tomato maturity detection. In particular, the recognition accuracy
of common tomatoes and cherry tomatoes is higher, the model size is smaller, and the
reasoning speed is faster, showing its great potential in practical applications.
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