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Abstract: The quality of sports facilities, especially football pitches, has gained significant attention
due to the growing importance of sports globally. This study examines the effect of two different
cutting systems, a traditional ride-on mower and an autonomous mower, on the quality and functional
parameters of a municipal football field. The analysis includes visual assessments, measurements
of grass height, and evaluations of surface hardness, comparing the performance of the two cutting
systems. Additionally, studies of turfgrass composition and machine learning techniques, particularly
with YOLOv8s and YOLOv8n, are conducted to test the capability of assessing weed and turfgrass
species distribution. The results indicate significant differences in grass color based on the position
(5.36 in the corners and 3.69 in the central area) and surface hardness between areas managed with
a traditional ride-on mower (15.25 Gmax) and an autonomous mower (10.15 Gmax) in the central
region. Higher height values are recorded in the area managed with the ride-on mower (2.94 cm) than
with the autonomous mower (2.61 cm). Weed presence varies significantly between the two cutting
systems, with the autonomous mower demonstrating higher weed coverage in the corners (17.5%).
Higher overall performance metrics were obtained through YOLOv8s. This study underscores the
importance of innovative management practices and monitoring techniques in optimizing the quality
and playability of a football field while minimizing environmental impact and management efforts.

Keywords: autonomous mower; visual quality; cutting performances; machine learning; weed

1. Introduction

In recent years, the importance of sport, such as football, has become very evident
due to the increasing number of sports facilities [1]. Football is one of the most popular
sports in the world, and football-related business plays a key role in international business
trade and the economy [2]. To respond to players, fans, and shareholders, soccer pitch
quality has to be maintained at a suitable level both for the aesthetic side and playability [1].
According to Grossi et al. [3], rapid runs and effective ball control are assured by a high-
quality and homogeneous turfgrass. In this regard, a soccer pitch should consist of a
turfgrass able to adapt to the environment and able to create good coverage on the entire
interested area. Turfgrass areas benefit greatly from strong, dense cover because it keeps
the lower layer of soil loose and prevents compaction [4]. In addition, according to Russo
et al. [5], besides the aesthetic visual quality, turfgrass can create safer conditions for
players by, for example, absorbing sun rays and reducing their effects on the eyes and
by creating a soft ground to reduce the injury effect on players’ bodies. Miller et al. [6]
identify three main characteristics of a soccer pitch surface that play a main role in player
safety and performance and ball response: hardness, evenness, and homogeneity. A bumpy
and bare surface can cause uneven and unpredictable ball rebounding and rolling, and it
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can negatively affect the game [7]. In this regard, according to Puhalla et al. [8], smooth,
consistent turf is necessary for players to pass and shoot with perfect accuracy because it
allows the ball to roll straight and decisively. The field coverage with turfgrass, together
with correct irrigation and water drainage, affects playability and safety: the risk of injuries
from the ground is increased when players are forced to deal with mud on a field with
lacking turfgrass and exposed dirt, particularly on wet days [9]. Turf height affects turf
quality and soccer-playing characteristics [10]. According to Özkan et al. [9], the mowing
height is strictly related to the ball response, and the football pitch needs short and proper
mowing activity; in fact, when a ball rolls across a short-cut turf surface, it encounters less
resistance and can go in the intended direction without bouncing. In addition, mowing,
as the cutting or leveling activity at a certain height at certain intervals according to the
cutting machine employed, helps to keep the turfgrass healthy and also eliminates some
pests [11]. According to Staněk et al. [12], biomass removal which occurs during mowing is
a crucial part of considering having high-quality turfgrass. However, adequate turfgrass
quality depends on the context, where turf species, cultivars, and mowing activity can be
very different [13]. Recently, the demand for sports surfaces has been oriented based on
criteria of constant and standardized quality, resistance to very high volumes of play, and
the absence of almost total susceptibility to environmental conditions [14].

All the necessary management to fulfill the quality and playability standard involves
operating costs and annual maintenance requirements [5]. The LCA analysis conducted
by Russo et al. [5] on natural and artificial turfgrass recognizes weeding and cutting as
periodic and main operations in a natural soccer pitch. Regarding mowing height, the
FIFA standard establishes a standard height of around 25–30 mm, which can be obtained
through different types of machines. Through the traditional one, the cutting activity is
conducted two or three times a week following the “1/3 rule. Instead, through innovative
technologies such as robot mowers, mowing activity is usually conducted every day, and
only a small amount of leaf tissue is cut at a time. In this way, together with grasscycling,
a high degree of photosynthesis and carbohydrate generation for new tissue growth and
higher quality is ensured [13,15]. Innovative technologies such as advanced path planning
algorithms for different mobile robots, including autonomous mowers, could optimize
mowing trajectories to enhance the efficiency and accuracy of path planning [16]. Trajectory
optimization could also avoid unnecessary repeated passes on the turf, which may affect
turf quality in terms of density and resilience [17].

In sport green areas, as in recreational green areas, turfgrass is preferable because it
has homogenous coverage with a very low presence or complete absence of weeds. The
product application could be conducted to stop the proliferation of weeds, but according
to global efforts to minimize chemical input, agronomic techniques, frequent mowing
activity, or innovative ways for early weed detection are preferred [18]. In this regard,
it is also useful to highlight the European Union’s directives, which consist of a strict
synthetic herbicide ban due to exposure causing health and environmental risks. Among
the innovative methods of weed management are image processing, machine learning,
and computer vision techniques [19]. According to Wang et al. [20], the development
of the abovementioned techniques, in particular the computer vision techniques and
deep learning models, has allowed precise target detection and in this way has improved
detection performance for implementation in agricultural production. These techniques are
often focused on detection of the main crop, but many studies are emerging about weed
classification. For example, deep learning algorithms for semantic segmentation assigning
a label or a category to every pixel of an image can be a promising method [21].

Typically, weed detection relies on plant features such as morphology, leaf texture, and
color [22,23]. It is easier to identify weeds in dormant turfgrass than in actively growing
turfgrass. Moreover, detecting large-leaved weeds is easier than detecting small-leaved
ones, and it is simpler to identify broadleaf weeds than grasses or grass-like weeds in
turfgrass [24,25]. However, detecting and classifying weeds can be challenging due to
their similar colors, morphologies, and textures compared to turfgrass [26]. Therefore,
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some problems occur in the detection of weeds, especially on highly similar backgrounds,
but they can be solved thanks to the increasing capability of detection networks, such as
YOLO (You Only Look Once). The recognition of weeds assured by these methods can be
seen as the first step towards field mapping, which can guide the operators in site-specific
weed management, deciding if the presence of weeds can compromise the quality or the
performance (such as for a soccer pitch) of their green areas.

The widespread use of pesticides to control pest populations is one of the most
common and effective practices to ensure high-quality playing surfaces. However, adopting
alternative, pesticide-free methods—such as frequent mowing with autonomous mowers,
precise floristic analysis of the turfgrass, and also the acceptance of turfgrass with diverse
species—can make it more challenging to maintain an adequate playing surface [27].
Additionally, turfgrasses are often established with only one or a few cultivars, which
in many cases creates suboptimal environments where even minor stress can make the
turfgrass more susceptible to disease and pest attacks. For these reasons, the use of
pesticides remains the accepted and necessary paradigm for chemical control; however,
reducing the environmental risks associated with pesticide application is a key priority on
the environmental protection agenda.

This study aims to analyze two different cutting activities (a robot mower with sys-
tematic trajectories vs. an endothermic ride-on mowing machine) that affect the quality
and functional parameters of an amateur municipal football field. This soccer pitch was
characterized by a non-homogenous floristic composition. In this regard, the analysis aims
to verify the differences between a traditional and an automatic cutting system and to see
the correlation of the different species distribution within the soccer pitch and their possible
correlation with the playing surface quality.

In the future perspective of implementing autonomous mowers with real-time weed
recognition capability, YOLOv8s and YOLOv8n have been tested. The purpose of this
investigation was to evaluate the segmentation ability to precisely target and separate
different weed species, possibly displacing the time-consuming field-scanning procedure
that operators typically perform to monitor the spread of weeds. The choice to test the
segmentation capabilities on a turfgrass rich in diverse species was motivated by the need
to address the complexity of feature extraction. Indeed, according to Jin et al. [26], including
a broad range of weed species and ecotypes in the training and testing datasets is essential
to ensure accurate performance in turfgrass management scenarios; this species variety
would help improve the performance of the weed detection system.

2. Materials and Methods

The trial was carried out at the municipal football pitch of Vecchiano-Nodica (Pisa,
43◦47′03′′ N 10◦22′28′′ E). The area consisted of a mature turfgrass stand of bermudagrass
(Cynodon spp.) and clover (Trifolium spp.) severely infested by different species. The area’s
size of 5200 m2 (104 m of length and 50 m of width) corresponds to the standard measures
of a Junior football pitch according to McGeary [28]. The initial species coverage was
visually assessed to be around 45% for bermudagrass, 35% for clover, and 20% for other
weeds. Three soil samples (10 cm of soil) were collected randomly, and each soil sample
consisted of 5 subsamples, which were mixed and collected separately. The samples were
collected outside the playing area in an area not affected by cutting or trampling activity.
Through analysis of these samples, it was established that the turfgrass was established on
sandy loam soil characterized by the following physical–chemical properties: 76% sand,
14 silt, 10 clay, pH of 7.9, and 2.9% organic matter [29].

Before the beginning of the trial, the entire area was managed with an endothermic
ride-on mowing machine with a mowing height of 2.7 cm two times a week. Irrigation
was provided only to supplement rainfall and to avoid any potential turfgrass stress. No
fertilization or weed control was conducted. Data regarding the average temperature and
rainfall during the test period (from July 2023 to January 2024) are reported in Figure 1.
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Main characteristics of the machines employed are shown in Table 1. The two ma-
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was set to work every day from 11:00 p.m. to 11:00 a.m., and the ride-on mower worked 
twice a week in the autumn period and three times a week in the summer one. 
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Figure 1. Weather conditions during the trial period.

2.1. Experimental Field Trials

From July 2023 to January 2024, two areas of 2600 m2 corresponding to two halves
of the same soccer pitch were identified. The experimental layout was a completely
randomized block with three replications for two different machines. The main factors of
the analysis were the management type and the position within the soccer pitch to assess
the turfgrass height, quality, color, the surface hardness, and the turfgrass composition.

The cutting machines employed were a ride-on mower (RM) equipped with a 100 cm
cutting deck characterized by an electric adjustment of cut height and an autonomous
mower (AM); both machines operated with a systematic pattern (Figure 2).
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Figure 2. The two different cutting systems in the selected soccer pitch: (a) the autonomous mower
with systematic trajectories and (b) the ride-on mower.

Main characteristics of the machines employed are shown in Table 1. The two machines
were set to work for a different amount of time in each plot; the autonomous mower was
set to work every day from 11:00 p.m. to 11:00 a.m., and the ride-on mower worked twice a
week in the autumn period and three times a week in the summer one.
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Table 1. Cutting systems’ manufacturing features.

Parameter Unit Autonomous Mower Ride-On Mower

Dimension (Lenght × Height × Width) cm 72 × 32 × 56 104.3 × 30.5 × 107.4
Mass kg 13.8 282 *
Cutting width cm 24 100
Cutting height cm 2.5 2.5

* 230 kg (machine) + 52 kg (cutting disk).

2.2. Assessments

The turf height was measured by a grass height meter once a week before and after the
ride-on mower activity. The quality parameters of the turfgrass were calculated based on the
quality and the color visual assessment, conducted by a skilled and trained turfgrass expert,
and they were also correlated to its composition. Four sub-replications were conducted
to assess the visual parameters of color and quality and the turfgrass composition before
and after each mowing event. The color and quality values were assigned based on a
1–9 colorimetric and quality scale described by Luglio et al. [13].

A Clegg Impact Tester was employed to measure the surface hardness (Gmax) differ-
ences between the areas mowed with the two cutting methods. The measurements were
carried out in specific areas, the same areas of quality and color evaluation. The areas were
chosen based on those that are usually most trampled during football matches according
to Miller et al. [6]. Further analyses were conducted to assess the soil water content, the
electrical conductivity, and the temperature with the time-domain reflectometry (TDR),
and these data were collected to better detect any differences in the soccer pitch and to
better understand the Clegg Impact Tester results.

To complete the data collection on the quality and performance parameters of the turf,
a survey was set up and submitted to the maintenance workers and coaches of the football
field. This survey was set to complete the data collection and understand if any differences
were detected in the two areas cut with two different cutting systems. At the beginning of
the questionnaire, three open questions were asked:

- Have you noticed a difference between the two halves of the field?
- Did the autonomous mower presence disturb matches and training sessions?
- Have you noticed any different mechanical abrasions?

In the second part of the survey, they were asked to give a judgment (high (9), medium
(4,5), low (1)) regarding the qualitative parameters (color, density, uniformity), the athlete–
surface interaction (traction, hardness, slipperiness), and ball–surface interaction (bounce,
slide). Before submitting the survey, the meanings of all the parameters to be evaluated
were explained in detail.

Data on percentage of area mowed and the distance travelled were collected through
two Emlid Reach RTK (Emlid Tech Kft., Budapest, Hungary) devices to assess the total cut-
ting coverage of robot mower. The two Emlid Reach RTK devices employed are described
in detail by Luglio et al. [13]. Data on the actual cutting time were taken from the robot
mower application, which gave us precise information about robot mower position and
status in terms of cutting, parking, charging time, and the number of errors that occurred.
Data regarding the ride-on mower were manually measured and consisted of the average
speed, the time to complete an entire passage along the field, and the time to turn at the
end of the field. All these data were used to assess the operative performances of the
two cutting machines.

Values regarding primary energy consumption were calculated. The robot mower’s
primary energy consumption was calculated according to the weekly consumption of
mowing half of the soccer pitch, the time was recorded by the abovementioned robot
mower application, and the power energy consumption during the mowing activity was
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0.035 kWh · h−1. The ride-on mower’s primary energy was calculated according to the
hourly gasoline consumption (Ch = kg gasoline kWh−1) using Equation (1):

Ch = W × d × h (1)

where the W is the power of the engine (11.82 kW), d is the effort percentage of the cutting
machine (0.5), which was assigned depending on the amount of green biomass present,
and Cs is the energetic efficiency of the ride-on mower engine (0.35 kg fuel kWh−1). The
primary energy consumption estimation also considered the gasoline heating value, which
is 12.22 kWh kg−1. The working schedule considered the working schedule of the football
pitch manager, which was two times a week for 0.5 h.

2.3. Floristic and Species Distribution Analysis Within the Soccer Pitch

In order to analyze the weeds and turfgrass species present in the two halves managed
by the two different cutting systems, an homogenous dataset was collected in specular
zones of the soccer pitch. These photos were analyzed to recognize the different species
located in the soccer pitch, and then, after the data collection described in Section 2.3.1, the
images were annotated and converted into YOLOv8 version format though the Roboflow
API “https://app.roboflow.com, (accessed on 12 March 2024)”.

2.3.1. Dataset Creation

The dataset was created by taking photos using a preliminary image acquisition
system, set up in collaboration with Aitronik team (Figure 3). The main object of this
research activity is to acquire images from an RGBD camera (Realsense D435F, Intel, Santa
Clara, California, USA), catalogue them based on GPS position (NMEA protocol), record
the date and time of acquisition, and finally save them on a USB pen drive. For this purpose,
a Jetson dwarf was chosen. The software used to interface with the various sensors is ROS
1, a system that allows the rapid and efficient exchange of data between sensors. The SW is
initialized by opening the RGBD camera stream and periodically acquiring both an RGB
image, a DEPTH, and finally an infrared one, and only the last available RGB image is
displayed on the screen. There are 2 buttons on the screen, one to set a timer which can
have the following values: 0 s (single photo), 1s, 2 s, 3 s, 4 s, 5 s. At each cycle of the timer,
the 3 images are essentially saved inside the USB pen drive, and finally they are renamed
based on the position given by the GPS at that moment and the current date and time. If
the GPS is not inserted, the name of the photos has the writing NO_FIX, but they will still
be sorted according to the current date and time which are instead acquired via the Jetson
Nano internal clock. Each photo taken is finally cataloged in a csv folder, also present inside
the USB pen drive.
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The photos were taken by setting the time lapse function to 1 s and in equal numbers
in both halves of the football pitch. At the end of the photo acquisition, the images were
selected according to image quality.

The dataset is made up of three classes divided into Cynodon spp., Trifolium spp., and
different weed species, which have been cataloged in the unique class of “weed”. The
class of weeds is made up of species typical of the Mediterranean area. The main botanical
genera were Bellis spp., Plantago spp., Geranium spp., Cirsium spp., and Stellaria spp., and
the main types of habitus in terms of species abundance were the rosette and the creeping
one (Table 2).

Table 2. Main characteristics of the weed flora present in the soccer pitch [30,31].

Family Biological Form Type Leaves Leaves Color Reproduction

Bellis spp. Asteraceae Hemicryptophytes Rosette Spoon-shaped Green Seeds, basal
buds

Plantago spp. Plantaginaceae Hemicryptophytes Rosette
Broadly lance to

egg-shaped leaves
with an acute apex

Green Seeds, basal
buds

Geranium spp. Geranianceae Therophytes Creeping Petiolate,
palmate-partite Green Seeds

Cirsium spp. Asteraceae Geophytes Rosette/erect Spiny and serrated
leaves Dark green Seeds, rhizome

Stellaria spp. Caryophyllaceae Therophytes Creeping Oval-ovate to
broadly elliptic Pale green Seeds

The photos were taken in the same parts of the soccer pitch for the respective type
management, i.e., the areas subject to the most traffic in the playing area (the same area
mentioned in Section 2.2 according to Miller et al. [6]), to evaluate plant distribution after
the cutting activity, and the areas behind the two goals to monitor the plants’ growth
without frequent cutting activity.

2.3.2. Test Dataset and Metrics

A dataset, comprehending turfgrass species and weeds, was used to evaluate the
segmentation task performance using YOLOv8s and YOLOv8n. YOLOv8 was launched
by Ultralytics in May 2023. YOLO is a single shot detector (SSD) which was first released
in 2015. Among the five scaled versions of YOLOv8 (nano, small, medium, large, and
extra-large), the small and nano ones were chosen. These models were selected to have a
high processing speed. According to Yang et al. [32], this aspect is fundamental for real-
time weed detection and treatment, because the actuator would have only a few seconds
between the images processing and weed removal.

The dataset was made up of 735 photos containing both turfgrass species and weed
annotations. The Google Colaboratory Platform was used to train the selected YOLO
models. One 12 GB NVIDIA Tesla K80 GPU is given away for free by Colab, a cloud-based
service built on Jupyter notebooks. Models were trained with a batch size of 16 and for
100 epochs. The resolution of the images was adjusted with pre-processing processes of
auto-orientation and resizing (stretch to 640 × 640). To increase the training success, the
dataset was expanded (2205 total images) with the following augmentation processes:
horizontal and vertical flipping, mosaic, rotation (−15◦ and +15◦), hue (−50◦ and +50◦),
saturation (−50% and +50%), and noise (10% of pixels). A 3-fold cross-validation was
performed obtaining 3 different equal parts (Fold1–Fold 3, with one-fold to create test set
and two folds to form the training test). This methodology was used to avoid the problem
of overfitting and to have a more complete evaluation of the algorithms used [33].

Precision and recall were used to assess the model performances. The precision was
calculated as the ratio between True Positive and the sum of True Positive and False Positive;
the Recall was calculated as the ratio between True Positive and the sum of True Positive



Agronomy 2024, 14, 2645 8 of 19

and False Negative. The precision–recall curve is identified as the average precision, which
consists of a number between 0 and 1, averaging the average precision for each class, and
the mean average precision is calculated. The mean average precision gives information
about the model performances. Two different thresholds were adopted, the first one with
a confidence score between 0 and 0.5 (mAP_0.5) and the second one with a confidence
score between 0.5 and 0.95 (mAP_0.5:0.95). The mean with the abovementioned confidence
scores is referred to as the mean of the average precision.

2.4. Statistical Analysis

The visual parameters of color and quality and the measured values of surface hard-
ness and height were analyzed with analysis of variance (ANOVA). The same analysis was
conducted to evaluate the percentage of empty and covered zones by herbaceous species.
Further analysis through the analysis of variance was conducted to evaluate the presence
of turfgrass (bermudagrass and clover) and weeds in different zones within the two soccer
pitch halves. Analysis of variance was also conducted to evaluate the primary energy
consumption of the two machines employed. One-way ANOVA was conducted to evaluate
the soccer pitch users’ evaluation of turfgrass in function of the type of management. The
Shapiro–Wilk test was used to settle the data normality, and the Bartlett test was used for
homoscedasticity. The data were transformed with a square root transformation, when
necessary, to respect the normality assumption. The least significant difference (LSD) test
at 0.05 of probability was conducted with the package “agricolae”.

The data regarding YOLOv8s and YOLOv8n performances were analyzed with multi-
variate analysis of variance (MANOVA), adopting the following independent variables in
the model: the YOLO version (YOLOv8s and YOLOv8n), box/mask, the class (all, Cynodon
spp., Trifolium spp., and weed), and their interaction. Their effects were analyzed on the
dependent variables, the YOLOv8s and YoloV8n performances: precision, recall, mAP_0.5,
and mAP_0.5:0.95. Data were analyzed using the statistical software SPSS (IBM Corp.
Released 2019, Version 26.0. Armonk, NY, USA: IBM Corp.). Wilks’ lambda, Pillai’s trace,
Hotelling’s trace, and Roy’s largest root were calculated to assess how the model terms
contribute to the overall covariance. At the beginning, a complete factorial analysis was
conducted, and then a simplified model was adopted, excluding everything that was not
significant from the complete factor analysis.

3. Results
3.1. Turfgrass Quality, Performances, and Composition

The analysis of variance revealed that the type of management had a significant
effect on the surface hardness. The position in the soccer pitch had a significant effect on
turfgrass color and surface hardness. Their interaction had a significant effect on the surface
hardness (Table 3). The mean value of surface hardness in the function of the management
and position revealed how the surface hardness increased much more in the central zone
mowed by the ride-on mower (Figure 4).

Table 3. Results of the two-way ANOVA analysis evaluating the effect of management, position, and
their interaction on color, quality, and surface hardness of the turfgrass.

Source Color Quality Surface Hardness

Management ns ns ***
Position ** ns ***
Management × Position ns . ***

LSD 1.71
p < 0.001 “***”; p < 0.01 “**”; p < 0.1 “.”; ns: not significant.
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Figure 4. Effect of the interaction between management (autonomous mower (AM) and ride-on
mower (RM)) and position on the surface hardness. Means denoted by different letters indicate
statistically significant differences at p < 0.05 (LSD test). LCL (Lower Confidence Limit) and UCL
(Upper Confidence Limit) are reported.

To complete the results obtained from the statistical analysis, the average values of
the volumetric water content (VWC), the electrical conductivity (EC), and the temperature
of the soil obtained through TDR measurements in the corner and central zones for the
two different types of management are reported in Table 4.

Table 4. Recorded values of the TDR measurements.

Zone
Autonomous Mower Ride-On Mower

VWC % mS·cm−1 ◦C VMC % mS·cm−1 ◦C

Centre 38.2 0.16 11.7 36.5 0.31 14
Corner 37.9 0.25 13.4 39.5 0.17 11.8

The analysis of variance revealed that the type of management and the position within
the soccer pitch had a significant effect on the turfgrass height. The interaction between the
type of management and the position had a very low significance, the p-value is lower than
0.1 (Table 5).

The analysis of variance revealed that the type of management had a significant effect
on the coverage, the empty areas, and weed percentage. The position within the soccer
pitch had a significant effect only on weeds compared to the interaction between the type
of management and position (Table 6). The mean value of weed percentage in the function
of type of management and position revealed how weed percentage increased much more
in the corner zones managed by the robot mower (Figure 5).
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Table 5. Results of the two-way ANOVA analysis evaluating the effect of management, position, and
their interaction on the turfgrass height.

Source Height

Management ***
Position ***
Management × Zone .

p < 0.001 “***”; p < 0.1 “.”: not significant.

Table 6. Results of the two-way ANOVA analysis evaluating the effect of management, position,
and their interaction on coverage, empty zones, and weed percentage and the turfgrass species
percentage.

Source Coverage Empty Weeds Turfgrass

Management * * ** .
Position ns ns *** ns
Management × Position ns ns ** ns

LSD 4.078
p < 0.001 “***”; p < 0.01 “**”; p < 0.05 “*”; p < 0.1 “.”; ns: not significant.
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Survey Answers

In Table 7, all the answers and the judgments of the turfgrass quality and performance
parameters are reported.
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Table 7. Results of the surveys about turfgrass quality and performance parameters.

Questions Answers

Have you noticed a difference
between the two-mowing
management?

Yes Yes Yes Yes Yes

Did the robot presence disturb
matches and training sessions? No No No No No

Have you noticed any different
mechanical abrasion? No No No No No

Quality parameters Autonomous mower Ride-on mower

Color Medium High High High High Low Medium Medium Medium Medium
Density High High High Medium Medium Medium Medium Medium Low Low
Uniformity High High High High High Low Medium High Medium Medium

Performances parameters Autonomous mower Ride-on mower

Traction High No
answer High Medium Medium Medium No

answer Low Low Medium
Hardness High High High Medium Medium High High Low Low Medium
Slipperiness High Medium High Medium Medium Medium Medium Medium Low Low
Athlete–surface interaction High High high Medium Medium Low High Medium Medium Medium
Ball–surface interaction High Medium High High High Low Medium Medium Medium Medium

High: 9; medium: 4.5; low: 1. To evaluate the survey answers, one-way ANOVA was
conducted for each parameter indagated (Table 8). The analysis revealed that the type of
management has a significative effect on the parameter evaluation only for color, uniformity,
ball–surface interaction, and density. The mean value of the parameter evaluation in the
function of type of management is reported in Figure 6.

Agronomy 2024, 14, x FOR PEER REVIEW 12 of 20 
 

 

 
Figure 6. Mean value of turfgrass parameter evaluation in function of the type of management. LCL 
(Lower Confidence Limit) and UCL (Upper Confidence Limit) are reported. Parameters indagated: 
athlete–surface interaction (athlete surface), ball surface (ball–surface interaction), color, density, 
hardness (Hard.), slipperiness (Slip.), traction, and uniformity. 

3.2. Energy Consumption of Mowing Systems 
The respective energy consumption of the autonomous mower and ride-on mower is 

reported in Table 9. The autonomous mower operational time to mow half a field was 
averaged through different measurements obtaining the value of 51.1 h·week−1. Electric 
energy consumption was 1.8 kWh·week−1. The primary energy consumption estimated as 
the energy from primary sources transformed into electric energy corresponds to 3.49 
kWh·week−1. The ride-on mower operated twice a week, covering 2600 m2, which was the 
same area covered by the autonomous mower. It worked 1 h·week−1 at an average working 
speed of 0.1 km·h1. Gasoline consumption was 1.98 kg·week−1, and the primary energy 
consumption corresponds to 24.27 kWh·week−1. As evident from these results, the auton-
omous mower had a longer working time to cover the same area, but the primary energy 
consumption was extremely lower. Analysis of variance revealed that the type on man-
agement (p < 0.001) had a significant effect on primary energy consumption. The AM al-
lowed a percentage decrease in primary energy of 85.6%. 

  

Figure 6. Mean value of turfgrass parameter evaluation in function of the type of management. LCL
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Table 8. Result of the one-way ANOVA evaluating the effect of the management type on the football
pitch users’ evaluation.

Source Athlete
Surface

Ball
Surface Color Density Hardness Slipperiness Traction Uniformity

Management NS ** ** * NS . . **

p < 0.01 “**”; p < 0.05 “*”; p < 0.1 “.”; NS: not significant.

3.2. Energy Consumption of Mowing Systems

The respective energy consumption of the autonomous mower and ride-on mower
is reported in Table 9. The autonomous mower operational time to mow half a field was
averaged through different measurements obtaining the value of 51.1 h·week−1. Elec-
tric energy consumption was 1.8 kWh·week−1. The primary energy consumption esti-
mated as the energy from primary sources transformed into electric energy corresponds
to 3.49 kWh·week−1. The ride-on mower operated twice a week, covering 2600 m2, which
was the same area covered by the autonomous mower. It worked 1 h·week−1 at an average
working speed of 0.1 km·h1. Gasoline consumption was 1.98 kg·week−1, and the primary
energy consumption corresponds to 24.27 kWh·week−1. As evident from these results, the
autonomous mower had a longer working time to cover the same area, but the primary
energy consumption was extremely lower. Analysis of variance revealed that the type on
management (p < 0.001) had a significant effect on primary energy consumption. The AM
allowed a percentage decrease in primary energy of 85.6%.

Table 9. Operative performances of the cutting systems.

Parameter Unit Value

Autonomous mower

Daily mowing time h day −1 7.3
Electric energy consumption per week kWh·week−1 1.8
Primary energy consumption per week kWh·week−1 3.49

Ride-on mower

Total operative time h·week−1 1.00
Gasoline consumption kg·week−1 1.98

Primary energy consumption per week kWh·week−1 24.27

3.3. YOLOv8 Results
Results for YOLOv8s and YOLOv8n Models

Table 10 shows the training results of the YOLOv8s and YOLOv8n semantic segmen-
tation algorithms for detecting and segmenting main crops (Cynodon spp. and Trifolium
spp.) and weeds. These results refer to the mean and standard deviation of the models’
performance on the 3-fold cross-validation. The results include performance metrics for pre-
cision, recall, mAP_0.5, and mAP_0.5:0.95 for both box and mask detection. Each value is
accompanied by its standard deviation, indicating the variability in performance across dif-
ferent folds. For all classes, YOLOv8s demonstrates an average precision of 0.700 ± 0.105
and a recall of 0.603 ± 0.097 for box detection, with a mAP_0.5 of 0.668 ± 0.143 and
mAP_0.5:0.95 of 0.408 ± 0.119. For mask detection, the model shows an average preci-
sion of 0.696 ± 0.102 and a recall of 0.585 ± 0.099, with a mAP_0.5 of 0.643 ± 0.145 and
mAP_0.5:0.95 of 0.298 ± 0.082. The high standard deviations suggest significant variabil-
ity across the different folds. Analyzing individual classes of weeds achieved the best
overall results.
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Table 10. Results of three-fold cross-validation test of YOLOv8s and YOLOV8n models.

YOLOv8s

Class
Box Mask

Precision Recall mAP_0.5 mAP_0.5:0.95 Precision Recall mAP_0.5 mAP_0.5:0.95

All 0.700 ± 0.105 0.603 ± 0.097 0.668 ± 0.143 0.408 ± 0.119 0.696 ± 0.102 0.585 ± 0.099 0.643 ± 0.145 0.298 ± 0.082
Cynodon spp. 0.654 ± 0.091 0.651 ± 0.107 0.684 ± 0.138 0.429 ± 0.122 0.647 ± 0.091 0.627 ± 0.111 0.651 ± 0.145 0.303 ± 0.083
Trifolium spp. 0.699 ± 0.130 0.500 ± 0.084 0.585 ± 0.150 0.347 ± 0.114 0.689 ± 0.123 0.484 ± 0.084 0.561 ± 0.144 0.246 ± 0.075

Weeds 0.755 ± 0.096 0.658 ± 0.112 0.735 ± 0.143 0.447 ± 0.121 0.753 ± 0.095 0.645 ± 0.11 0.717 ± 0.147 0.344 ± 0.090

YOLOv8n

Class
Box Mask

Precision Recall mAP_0.5 mAP_0.5:0.95 Precision Recall mAP_0.5 mAP_0.5:0.95

All 0.599 ± 0.064 0.506 ± 0.059 0.545 ± 0.085 0.302 ± 0.065 0.591 ± 0.069 0.493 ± 0.251 0.523 ± 0.087 0.231 ± 0.047
Cynodon spp. 0.570 ± 0.050 0.560 ± 0.070 0.570 ± 0.070 0.330 ± 0.060 0.560 ± 0.050 0.530 ± 0.270 0.540 ± 0.080 0.240 ± 0.050
Trifolium spp. 0.580 ± 0.103 0.379 ± 0.051 0.434 ± 0.078 0.233 ± 0.060 0.574 ± 0.105 0.370 ± 0.189 0.412 ± 0.076 0.174 ± 0.040

Weeds 0.642 ± 0.086 0.584 ± 0.100 0.628 ± 0.104 0.346 ± 0.076 0.640 ± 0.088 0.574 ± 0.299 0.614 ± 0.105 0.277 ± 0.060

For all classes, YOLOv8n had an average precision of 0.599 ± 0.064 and a recall of
0.506 ± 0.059 for box detection, with a mAP_0.5 of 0.545 ± 0.085 and mAP_0.5:0.95 of
0.302 ± 0.065. The lower standard deviations compared to YOLOv8s indicate more stable
performance. For mask detection, the model shows an average precision of 0.591 ± 0.069
and a recall of 0.493 ± 0.251, with a mAP_0.5 of 0.523 ± 0.087 and mAP_0.5:0.95 of
0.231 ± 0.047. Similar to YOLOv8s, weeds achieved the best overall performance. The
higher overall performance metrics of YOLOv8s compared to YOLOv8n are also charac-
terized by higher standard deviation values, indicating greater instability. In addition,
YOLOv8s (102.4 ms) was demonstrated to be slower than YOLOV8n (45.9 ms).

The multivariate analysis of variance conducted on the performance parameters re-
vealed significant differences (p < 0.001) between YOLO versions for every performance
parameter, box and mask revealed significant differences for mAP_0.5 (p < 0.05) and
mAP_0.5:0.95 (p < 0.001), class revealed significant differences (p < 0.001) for every perfor-
mance parameter (Table 11). A significant difference was obtained from the interaction
between the YOLO version (YOLOv) and box/mask for the mAP_0.5:0.95 (p < 0.05). From
Tables 12 and 13, it is evident that higher mean values of performances were obtained with
YOLOv8s and for the box, respectively.

Table 11. Mean square, F-value, and p-value of MANOVA conducted on YOLO performances.

Source Performance Mean Square F p

YOLOv Precision 0.127 94.954 ***
Recall 0.108 78.083 ***

mAP_0.5 0.178 178.413 ***
mAP_0.5:0.95 0.09 122.994 ***

Box/Mask Precision 2.803 × 10−4 0.210 0.649
Recall 0.003 2.093 0.156

mAP_0.5 0.007 6.818 *
mAP_0.5:0.95 0.099 135.881 ***

Class Precision 0.017 12.440 ***
Recall 0.079 57.087 ***

mAP_0.5 0.064 63.896 ***
mAP_0.5:0.95 0.023 31.351 ***

YOLOv × Box/Mask Precision 6.075 × 10−5 0.046 0.832
Recall 5.633 × 10−5 0.041 0.841

mAP_0.5 9.188 × 10−6 0.009 0.924
mAP_0.5:0.95 0.005 6.391 *

p < 0.001 “***”; p < 0.05 “*”.



Agronomy 2024, 14, 2645 14 of 19

Table 12. Comparison between the average values of performances in the two versions of YOLO.

Performance YOLOv Mean Std Error
95% Confidence Interval

Lower Limit Upper Limit

Precision
8n 0.595 0.007 0.58 0.61
8s 0.698 0.007 0.683 0.713

Recall
8n 0.499 0.008 0.484 0.515
8s 0.594 0.008 0.579 0.609

mAP_0.5
8n 0.534 0.006 0.521 0.547
8s 0.656 0.006 0.643 0.669

mAP_0.5:0.95
8n 0.266 0.006 0.255 0.278
8s 0.353 0.006 0.342 0.364

8n – YOLO version 8n; 8s – YOLO version 8s.

Table 13. Comparison between the average values of YOLO performances of box and mask.

Performance Box/Mask Mean Std Error
95% Confidence Interval

Lower Limit Upper Limit

Precision
Box 0.649 0.007 0.634 0.664

Mask 0.644 0.007 0.629 0.659

Recall
Box 0.555 0.008 0.539 0.570

Mask 0.539 0.008 0.524 0.554

mAP_0.5
Box 0.607 0.006 0.594 0.620

Mask 0.583 0.006 0.570 0.596

mAP_0.5:0.95
Box 0.355 0.006 0.344 0.366

Mask 0.264 0.006 0.253 0.275

From Table 14, it is evident how weeds obtained the highest performance parameters
for precision and mAP_0.5. Regarding recall and mAP_0.5:0.95, the weed class showed no
differences compared to the Cynodon spp. class.

Table 14. Comparison between the average values of YOLO performances in 4 different classes.

Performance Class Mean 1 Std Error
95% Confidence Interval

Lower Limit Upper Limit

Precision

All 0.647 b 0.011 0.625 0.668
Cynodon spp. 0.609 b 0.011 0.588 0.631
Trifolium spp. 0.633 b 0.011 0.612 0.655

Weed 0.697a 0.011 0.676 0.719

Recall

All 0.547 b 0.011 0.525 0.568
Cynodon spp. 0.592 a 0.011 0.570 0.614
Trifolium spp. 0.433 c 0.011 0.411 0.455

Weed 0.615 a 0.011 0.593 0.637

mAP_0.5

All 0.595 b 0.009 0.576 0.613
Cynodon spp. 0.612 b 0.009 0.594 0.631
Trifolium spp. 0.498 c 0.009 0.480 0.517

Weed 0.674 a 0.009 0.656 0.692

mAP_0.5:0.95

All 0.310 b 0.008 0.294 0.326
Cynodon spp. 0.325 ab 0.008 0.309 0.341
Trifolium spp. 0.250 c 0.008 0.234 0.266

Weed 0.354 a 0.008 0.338 0.370
1 Means denoted by different letters indicate statistically significant differences.
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The interaction between the two different YOLO versions and box/mask obtained
higher mean values for the box in both cases, with the highest value (0.408) for the box of
YOLOv8s (Table 15).

Table 15. Mean value of mAP_0.5:0.95 in the interaction between YOLOv and box/mask.

Performance YOLOv Box/Mask Mean Std. Error
95% Confidence Interval

Lower Limit Lower Limit

mAP_0.5:0.95
8n

Box 0.302 0.008 0.286 0.318
Mask 0.231 0.008 0.215 0.247

8s
Box 0.408 0.008 0.392 0.424

Mask 0.298 0.008 0.282 0.313

8n – YOLO version 8n; 8s – YOLO version 8s.

4. Discussion
Mowing Activity Effect on Turgrass Quality and Performance

The analysis of the cutting activity of two different mowing systems, a ride-on mower
and an autonomous mower with systematic trajectories, did not give significant results in
terms of quality, but the position demonstrated to have an effect on the color rate. These
results could be directly correlated to the height results; the value of height was strongly
affected by the type of management and the position, even if their correlation did not give
significant results. The mean color value was higher in the corner position (5.36) with
respect to the central one (3.69), and these results are in line with the height one. In fact,
the height measures correspond to 2.99 in the corner and 2.52 in the central zone. This
value can indicate the higher value of color, because of the presence of major green mass.
This result is in line with [34], which highlights how the lower mowing height significantly
affects the loss of green cover. In addition, according to Youngner et al. [35], lower heights
can result in reduced traffic tolerance. According to Luglio et al. [13], the trampling level
of the cutting activity can affect the quality parameters of turfgrass. At this stage, it is
useful to underline the surface hardness results; this parameter is significantly affected by
management, position, and their interaction. The soil hardness increased significantly in
the central position (15.25 Gmax) mowed by the ride-on mower with respect to the corner
position managed in the same way, which together with the specular zones mowed by the
autonomous mower have an overall mean value of 10.14 Gmax. The lower color results in
the central area could be explained by the surface hardness; in fact, the soil compaction
in the first cm of soils due to the action of machine weight can have a strong effect on the
turf quality because the plant shoots become less dense and more susceptible to direct and
indirect temperature stress [12,36].

The results of the turfgrass composition show the slight effect of the type of manage-
ment on the coverage and the empty space. The area mowed by the robot mower had a
coverage percentage of 97% compared to the other one, which had 70% coverage. This
result directly influenced the weed results. According to Pirchio et al. [37], autonomous
mowing can increase the percentage of weed cover. However, it is important to underline
the different types of weed species, which influenced this finding; the creeper-type plants
favor a constant mowing height [37]. In the soccer pitch analyzed, most of the weeds do not
have the creeper habitus, so they should have been affected by the autonomous mower’s
constant mowing activity according to the results of Pirchio et al. [37] on Manila grass. The
major incidence of weeds in the half mowed by the robot mower is also directly connected
to the coverage percentage cited before and to the major percentage of empty space in the
half mowed by the ride-on mower (29.5% vs. 2.5% of empty space in the half mowed by
the autonomous mower). This substantial lack of green cover in the half cut by the ride-on
mower makes it difficult to have a real comparison on the actual incidence of weeds. These
results could also be linked to the results on the surface hardness mentioned above, which
makes the growth not only of the turf but also of other plants more difficult. Another aspect
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which contributes to the major incidence of weeds in the robot mower’s half is the low
turfgrass height. In fact, in turfgrass mowing with less frequency, weeds have to grow
taller to survive, and when they grow above the mowing height, they become easier to cut.

The answers collected through the survey are not generally in accordance with the
statistical analysis results. This could be explained by the people’s perception of the au-
tonomous mower’s cutting work. Pedersen et al.’s [38] findings highlight that autonomous
systems demonstrate more flexibility than the conventional cutting machine, and they may
be able to reduce the labor costs and the number of daily working hours in a significant
way. The survey results may be also connected to the many perceived advantages provided
by autonomous mowers such as saving human labor and preventing exposure to dust,
allergens, and potential injury [39]. The results from Pedersen et al. [38] also demonstrate
that one of the major concerns was the repetitiveness of the operation and the dependence
on the climatic conditions; these aspects can be easily avoided through automatic cutting
machines. In light of all these aspects, it can be hypothesized that the results of the survey
were guided by these common perceptions of users.

The findings about energy consumption align with the previous literature, which has
already observed the reduction in primary energy consumption using autonomous mowers,
and they are also in line with the global need to reduce the environmental footprint of
many activities, including lawn maintenance. According to Pirchio et al. [37], the adoption
of electric power machines, such as the autonomous mower, can contribute to mitigating
the environmental impact of garden equipment, with lower global warming potential.
The daily mowing time results align with Pirchio et al.’s [37] findings, and the weekly
management of an autonomous mower is longer than the conventional cutting system, but
the energy consumption is lower. This could be due to the optimal robot path planning
and to the lower autonomous mower power requirements.

The working efficiency in terms of weekly working time (51.1 h) can increase through
the adoption of a larger working width [17]. This overall lower energy consumption is also
due to the lower power consumption (0.035 kWh·h−1) needed to perform cutting activity; in
addition, the small amount of grass to cut everyday affects the power consumption amount.
Cutting every day, it only cuts small clippings [13,23]. The integration of an innovative
approach for monitoring green areas represents a promising way for enhancing their
management and conservation. This approach studied by Angelini et al. [40] as a natural
intelligence approach for monitoring habitats is based on different information about
environmental status, comparing them to a reference status. In the specific case of our study,
the key aspect of the turfgrass ecosystem in sports fields is the qualitative and performance
parameters. These two aspects are strongly correlated to the weed encroachment within
the turfgrass. According to Luglio et al. [13], the presence of weeds is correlated to a
functional quality and aesthetic perception loss. The estimated vegetation cover, as one of
the parameters considered to evaluate turf composition, could be considered a key indicator
of conservation status. This estimation is usually conducted on the field, distinguishing
main crop species from the different weeds, which sometimes can be very similar to each
other, requiring a skilled plant scientist [40]. For this reason, different experiments could
be carried out to automate the monitoring of habitats, such as the turfgrass one. The
experiment conducted with YOLOv8s and YOLOv8n, assuming hypothetically that the
number of instances may coincide with the number of turfgrass species and weeds in
the soccer pitch, had the main scope of moving the first steps towards the creation of
distribution mapping to understand if weed management interventions are necessary.
The training results demonstrate how the average precision of segmentation is inversely
proportional to the inference speed. The major inference speed of YOLOv8n results in a
lower value of metrics results; however, they have proven to have greater stability thanks to
standard deviation values that are generally lower than those of YOLOv8s. In this regard,
Sampurno et al. [41] assessed the efficiency and accuracy of YOLOv8n-seg in recognizing
the uncut weeds within tree rows with different herbaceous species. From the statistical
analysis, it is evident how the two different YOLO versions and the types of plant (class)
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are the most significant factors for all analyzed parameters. In particular, YOLOv8s was
confirmed to have higher mean values. In addition, the data in Table 14 confirmed the
highest mean values for the weed class; these results are in accordance with Sampurno
et al. [41], which confirm the potential of YOLOv8-based weed detection.

5. Conclusions

This trial highlights the impact of two different cutting systems—ride-on mower and
autonomous mower—on a football field.

A higher value of average height was detected in the half mowed by the ride-on
mower (2.95 cm) compared to the one mowed by the autonomous mover (2.60 cm). In
terms of surface hardness, the central zone showed notable variation: 15.25 Gmax for the
ride-on mower versus 10.15 Gmax for the autonomous mower. These findings suggest
that the autonomous mower effectively maintains the turfgrass height constant at around
25 mm and with a higher percentage of coverage (97.5%); it has a minor effect on the
surface hardness in the central zone, which is a fundamental aspect both for the plants’
growth and the playability. However, the autonomous mower activity was associated with
a higher weed incidence in the corner zones (17.5%) compared to the ride-on mower (7.5%).
Weed coverage remains a significant challenge, particularly in high-level sports contexts,
but in lower-level contexts this can be managed with less rigor based on the extent of
their coverage.

Monitoring the floristic composition of turfgrass is essential, and automating this
process could be beneficial. YOLOv8s performed better for weed detection. Future studies
should explore playability differences between the two cutting systems and further investi-
gate YOLO’s effectiveness by testing new versions and adjusting parameters like epochs
and image quantities to further evaluate the performance of the model in the segmentation
of weeds within green plant cover, such as turfgrass.
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