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Abstract: When monitoring crop growth using top-down images of the plant canopies, leaves in
agricultural fields appear very dense and significantly overlap each other. Moreover, the image can
be affected by external conditions such as background environment and light intensity, impacting the
effectiveness of image segmentation. To address the challenge of segmenting dense and overlapping
plant leaves under natural lighting conditions, this study employed a Bilayer Convolutional Network
(BCNet) method for accurate leaf segmentation across various lighting environments. The major
contributions of this study are as follows: (1) Utilized Fully Convolutional Object Detection (FCOS)
for plant leaf detection, incorporating ResNet-50 with the Convolutional Block Attention Module
(CBAM) and Feature Pyramid Network (FPN) to enhance Region of Interest (RoI) feature extraction
from canopy top-view images. (2) Extracted the sub-region of the RoI based on the position of the
detection box, using this region as input for the BCNet, ensuring precise segmentation. (3) Utilized
instance segmentation of canopy top-view images using BCNet, improving segmentation accuracy.
(4) Applied the Varifocal Loss Function to improve the classification loss function in FCOS, leading to
better performance metrics. The experimental results on cucumber canopy top-view images captured
in glass greenhouse and plastic greenhouse environments show that our method is highly effective.
For cucumber leaves at different growth stages and under various lighting conditions, the Precision,
Recall and Average Precision (AP) metrics for object recognition are 97%, 94% and 96.57%, respectively.
For instance segmentation, the Precision, Recall and Average Precision (AP) metrics are 87%, 83%
and 84.71%, respectively. Our algorithm outperforms commonly used deep learning algorithms such
as Faster R-CNN, Mask R-CNN, YOLOv4 and PANet, showcasing its superior capability in complex
agricultural settings. The results of this study demonstrate the potential of our method for accurate
recognition and segmentation of highly overlapping leaves in diverse agricultural environments,
significantly contributing to the application of deep learning algorithms in smart agriculture.

Keywords: dense target detection; attention mechanism; instance segmentation; canopy; greenhouse

1. Introduction

Plant phenomics has recently been a hot research topic between agriculture and
information science. The rapid and accurate measurement of plant phenotypic traits can
be realized by graphics and image processing, machine vision and other technologies. As
one of the most important organs of plants, leaves have undoubtedly become the object of
extensive research.
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Image analysis in agricultural settings presents numerous challenges, particularly
regarding the segmentation of objects under complex field conditions. Agricultural images
are often affected by factors such as variable lighting, cluttered backgrounds, significant
object overlap and morphological variability. Many scholars have conducted research on
plant leaf image analysis for a wide range of applications, such as identification of leaf
diseases, extraction of leaf phenotypic parameters, leaf segmentation and growth predic-
tion [1–5]. The segmentation of plant images has been studied for decades. Traditional
image segmentation algorithms include threshold segmentation, edge detection, regional
segmentation, segmentation based on mathematical morphology, segmentation based on
clustering, etc. [6–11]. For example, Omrani et al. [12] applied the K-means clustering
method to recognize and segment leaves of various plants. They divided the leaves of
the target region according to the characteristic distribution of the cluster center before
mapping back to the original image to complete segmentation under the condition of field
planting. Hu et al. [13] proposed a segmentation algorithm based on a two-dimensional
histogram to segment weed images. This method enhances the information association
between adjacent pixels in the segmentation algorithm, improves the integrity of the con-
nected area of the blade and reduces the influence of light intensity on the image. This
traditional image segmentation method is generally used in plant image processing with
less background interference and fewer leaves. However, in complex plant leaf groups,
such algorithms cannot achieve ideal segmentation effect and accuracy, because the edge
features of leaf overlap are not obvious [14].

Recent advancements in Convolutional Neural Networks (CNNs) have significantly
propelled research the field of plant phenomics, particularly in the segmentation of plant
leaves [15]. Ferro et al. [16] assessed the performance of different methodologies, including
Mask R-CNN, U-Net, OBIA and unsupervised methods, in identifying pure canopy pixels.
Vayssade [17], based on recent Convolutional Neural Network mechanisms, proposes a
pixelwise instance segmentation to detect leaves in dense foliage environment. It combines
“Deep Contour Aware” (to separate the inner area of big leaves from their edges), “Leaf
Segmentation Through Classification of Edges” (to separate instances with specific inner
edges) and “Pyramid CNN for Dense Leaves” (to consider edges on different scales).

After Mask R-CNN emerged, Xu et al. [18] utilized the model to explore leaf instance
segmentation and counting. Compared with traditional image segmentation methods,
Mask R-CNN greatly improves the segmentation accuracy of plant leaves in complex
backgrounds. The outstanding results for leaf instance segmentation and counting show
that object detection and segmentation algorithms based on deep convolutional networks
may be promising tools for plant phenotype studies. Kuznichov et al. [19] proposed a
method for recording geometric structure information about specific plant leaves to make
the target leaves resemble the leaves in the real scene as closely as possible. Subsequently,
based on Mask R-CNN, they adopted the non-maximum suppression method to solve the
blocking problem in training the full CNN model and improved the accuracy of plant leaf
instance segmentation in dense scenes.

Beyond instance segmentation, other approaches utilizing deep learning have been
explored. Praveen et al. [20] proposed a plant leaf segmentation algorithm based on the
Deep Convolution Neural Network (DCNN) to extract leaf information in the target region
and perform rosette leaf segmentation using orthogonal transformation. Jin et al. [21]
proposed a CNN based on plant voxel clustering for the classification and segmentation of
corn stems and leaves. Lai et al. [22] proposed a 3D point cloud segmentation method for
plant leaves based on deep learning. Lu et al. [23] proposed a fast plant leaf segmentation
method based on CenterNet. By optimizing the network structure and detection loss
function in CenterNet, the network can accurately extract edge information about plant
leaves in dense scenes. However, the model lacks an instance segmentation network, which
increases the workload of subsequent plant phenotypic parameter extraction. Lou et al. [24]
proposed a plant stem and leaf instance segmentation method combining multi-view time-
series images and depth images using Mask R-CNN to solve the difficulty of extracting
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phenotypic parameters caused by the dynamic changes of plants at different time points in
the growth process.

Another innovative approach is the Bilayer Convolutional Network (BCNet), which
aims to tackle the segmentation of dense and overlapping leaves under various lighting con-
ditions. BCNet serves as a central component in the image processing workflow, leveraging
the capabilities of Fully Convolutional Object Detection (FCOS) for plant leaf detection
and incorporating advanced techniques such as the Convolutional Block Attention Module
(CBAM) and Feature Pyramid Network (FPN) [25]. Ke et al. [26] validate the efficacy of bi-
layer decoupling on both one-stage and two-stage object detectors with different backbones
and network layer choices. Despite its simplicity, extensive experiments on COCO and
KINS show that occlusion-aware BCNet achieves significant and consistent performance
gains, especially in heavy occlusion cases.

The segmentation of plant leaves in images holds substantial importance in agricul-
tural research. Although image segmentation technology has a long history, the complexity
of agricultural scenes, characterized by dense distributions and significant overlaps of
plant organs, makes it challenging to establish a universal method for plant images. Conse-
quently, the choice of algorithm must be tailored to specific application scenarios.

This study addresses the significant challenge posed by the incomplete shapes of
organs due to mutual occlusion in complex agricultural production environments, which
greatly hampers segmentation algorithms. To enhance the segmentation accuracy of
densely packed and heavily occluded cucumber leaves in real-world production settings,
we propose the following methods:

(1) Multi-Scale Strategy and Dilated Convolutions: Considering the significant morpho-
logical changes in plant leaves during growth, we employ a multi-scale strategy based
on deep learning to divide the original images into blocks. Subsequently, dilated
convolutions are used for fusion, allowing better extraction of features from leaves of
varying shapes.

(2) Attention Mechanism for Edge Features: The model’s ability to represent the edges
of overlapping plant leaves is often insufficient. By incorporating an attention mech-
anism after the feature maps, the model can more accurately capture critical edge
features of each leaf, facilitating improved leaf segmentation.

(3) Varifocal Loss for Dense Regions: In images with densely distributed plant leaves,
CNNs often overlook many target features. We replace the Focal Loss in BCNet with
the Varifocal Loss from VarifocalNet, which is more effective for detecting dense
targets.

We anticipate that these techniques will enable precise identification and instance
segmentation of cucumber plant leaves in greenhouse conditions. This approach is expected
to lay a solid foundation for subsequent tasks, such as leaf phenotypic parameter extraction
and further advancements in agricultural research.

2. Materials and Methods
2.1. BCNet

BCNet is a two-layer instance segmentation network based on image occlusion percep-
tion. It replaces the traditional single mask prediction branch network with a two-graph
hierarchical associative graph neural network [26]. The main idea is to model the RoI in
the image as two graph convolution network (GCN) layers. The schematic diagram of
two-layer decomposition is shown in Figure 1. The upper GCN is responsible for detecting
occluder objects. The underlying GCN is responsible for estimating the occludee part of
overlapping targets. Most instance segmentation errors arise from the presence of two
overlapping objects within the same region of interest (RoI), which can obscure each other’s
true contours. This issue is particularly pronounced when the overlapping objects belong
to the same class and have similar texture features, leading to increased segmentation
errors. BCNet improves the performance of the instance segmentation model in the face
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of complex overlapping objects in the image by modeling the interfaces of overlapping
regions and improving the effect of mask branch prediction.
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2.2. Algorithm Pipeline

The algorithm structure framework used in this experiment is shown in Figure 2. The
algorithm flow is divided into the following steps:

(1) Image feature extraction and RoI selection: The object detection algorithm based
on FOCS [27] is used to predict the RoI in the image. ResNet-50 [28] is used as the
backbone, and FPN [29] is used to extract the features of the whole image.

(2) According to the position of the target object detection frame, the RoI Align [30]
algorithm is used to obtain the RoI sub-region in the feature map in the image, and
this region is used as the input of BCNet.

(3) Instance segmentation through BCNet: Firstly, the target characteristics of RoI are
inputted through the graph convolution network layer at the top, the appearance of
the upper target is modeled, and the mask and edge of the upper target in the box
of interest are outputted. Secondly, combined with the upper target data extracted
from the convolution network of the top graph and the features of the RoI sub-region
obtained using the RoI Align algorithm, the new features of the occluded target are
obtained by adding and inputting the convolution network layer into the bottom
graph. Finally, according to the above characteristics of the occluder object and the
occludee object in the region, the instance segmentation task of the target is completed.
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2.3. Improved Scheme

Due to problems related to dense targets and serious mutual occlusion in the leaf
images of plant groups in the real planting environment, this experiment has made two
improvements to the algorithm:

(1) In order to accurately extract edge information on the overlapped parts of plant leaves,
this study introduces an attention mechanism module after the last convolution layer
of the ResNet-50 backbone network to allow the model to pay more attention to
key information concerning the edge features of each leaf, to realize the accurate
segmentation of plant leaves.

(2) Due to the presence of numerous densely packed areas of plant leaves in the images,
CNNs often overlook a lot of target feature information. To address this issue, we use
the Varifocal Loss function of VarifocalNet to replace the classification loss function,
Focal Loss, in FCOS, which is conducive to detecting dense targets.

2.3.1. CBAM

In the design of a deep neural network, the function of the attention mechanism is to
reallocate the object’s weight. Cucumber leaves in real planting environments have a large
number of overlaps, and the leaf features in different growth periods are obviously different.
The introduction of an attention mechanism can effectively suppress the non-target features
in the image, enhance the appearance and shape features of the target leaves, and improve
the accuracy of model detection and segmentation. The attention mechanism we use is
CBAM, a lightweight module that combines channel and spatial attention mechanisms [31].

The channel attention module compresses the characteristic graph in the spatial di-
mension and obtains two one-dimensional vectors after being processed by the average
value pooling and maximum value pooling functions. The realization of this module is to
obtain the channel attention characteristic graph by adding a multilayer neural network
and activating the sigmoid function. The specific formula is as follows:

Mc(F) = σ(MLP(AvgPool(F))
+MLP(MaxPool(F)))

= σ(W1(W0(Fc
avg)) + W1(W0(Fc

max)))
(1)

where σ represents sigmoid activation function. F represents the input characteristic
diagram. Fc

avg and Fc
max are the characteristic graphs obtained after global average pooling

and maximum pooling, respectively. W0 and W1 respectively represent two parameters
under the multi-layer sensing mechanism.

Due to the different levels of importance of spatial position information about the
target area in the image, we use the spatial attention module to focus on the key information
when we segment the image. The spatial attention module compresses the channel and
pools the average and maximum values to obtain the spatial attention matrix. It then
determines the target location in the matrix through the semantic information on the
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feature graph. This module divides the feature map of a single dimension channel into
several sub-features. The specific calculation formula is as follows:

Ms(F) = σ(f7×7([AvgPool(F); MaxPool(F)]))
= σ(f7×7([Fs

avg; Fs
max]))

(2)

where the convolution layer indicated by f in this section uses a size of 7 × 7 Convolution
kernel. We added the CBAM module behind the last convolution layer of ResNet-50. We
then weighted the results to obtain the improved feature map.

2.3.2. Loss Function

In the training process of the model, the target detection and instance segmentation
framework are monitored by the multi process loss function, which is defined as follows:

L = aLDetect + LOccluder + LOccludee
LOccluder = a1L’

Occ−B + a2L’
Occ−S

LOccludee = a3L’
Occ−B + a4L’

Occ−S

(3)

LOccluder and LOccludee respectively represent the loss function for each instance seg-
mentation subtask of the occluder object and the occludee object. L’Occ-B and L’Occ-S are
nonlinear transformation functions for modeling occluded objects. They represent bound-
ary detection and mask segmentation loss of the underlying GCN, respectively. The
parameters a, a1, a2, a3 and a4 are used to balance the weight of the loss functions. The
target detection loss function LDetect in FCOS includes the classification loss function branch
LClass, center point offset value branch loss function LCenterness and regression branch loss
function LRegression. LDetect is defined as follows:

LDetect = LClass + LCenterness + LRegression (4)

The classification loss function LClass employs Focal Loss to address the issue of
class imbalance in target prediction indices through a balanced cross-entropy approach.
During the down-sampling process at certain magnifications, dense target pixels can be
lost, diminishing the effectiveness of Focal Loss in extracting features from these targets.
Intersection over Union (IoU) serves as a standard metric for measuring the accuracy of
object detection within a specific data set. To enhance this, Varifocal Loss predicts IoU-
aware classification scores by training dense target detectors on the foundation of Focal
Loss, subsequently sorting the detection results [32]. This approach aims to rectify the
imbalance between foreground and background in dense target detector training, thereby
improving feature extraction for dense targets. In cucumber leaf images captured under real
planting conditions, targets are densely distributed, and many small targets are present. By
replacing the original category branch loss function LClass with Varifocal Loss, the training
process can converge more easily, target information loss during down-sampling can be
mitigated and pixel outliers can be more effectively regressed during the target detection
process. Varifocal Loss is defined as follows:

VFL(p, q) =
{

−q(qlog(p) + (1 − q) log(1 − p)), q > 0
−bpγlog(1 − p), q = 0

(5)

where p is the predicted IoU-aware classification score, pγ is the weight of different samples,
q is the target IoU score and b is the parameter used to balance the sample weight.

2.4. Data Acquisition and Model Training

In order to verify the effectiveness of the improved algorithm described in this paper
for plant leaf segmentation in real planting environments, we observed several different
growth stages of planting observed in glass and plastic greenhouses, and two different
light-intensity cucumber plant leaf images taken on sunny and cloudy days.
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2.4.1. Image Acquisition

The experimental material, cucumber canopy, was grown in both glass and plastic
greenhouses at the experimental base at the Shanghai Academy of Agricultural Sciences,
China from 21 May 2019–4 July 2019. In the glass greenhouse, we cultivated 16 potted
cucumber plants arranged in a 4 × 4 grid. In the plastic greenhouse, we selected 10
continuously arranged cucumber plants planted in soil, arranged in a 2 × 5 grid. The
potted plants in the glass greenhouse were placed on a black background cloth, while
the soil surface in the plastic greenhouse was covered with black plastic film, leaving
the pathways as exposed soil. Image monitoring began at the 5-leaf stage and continued
through three growth stages: the 5-leaf to 8-leaf vining stage (Early Growth Stage), the
8-leaf to 12-leaf flowering stage (Metaphase Growth Stage) and the 12-leaf to 20-leaf fruiting
stage (Terminal Growth Stage).

To capture the images, a network camera(DS-2CD40C5F-AP, Hikvison Co., Ltd.,
Hangzhou, China) was positioned 5 meters above the ground directly over the cucumber
canopy, ensuring a full view of all the cucumber leaves. Photographs were taken every two
hours from 7:50 a.m. to 3:50 p.m. daily. A total of 290 images were collected in the glass
greenhouse and 110 images in the plastic greenhouse, covering the early, middle and late
stages of cucumber plant development. These images included various lighting conditions
such as sunny and cloudy days, as well as strong light at noon and weak light in the
morning. According to the classification of cucumber growth stages and the light intensity
during shooting, the classification of picture data under the two planting environments is
shown in Table 1. We divided the images of cucumber canopy taken in the glass greenhouse
into six datasets, selecting 230, 38 and 22 images as the training set, validation set and test
set, respectively. Similarly, the images of cucumber canopy taken in the plastic greenhouse
were divided into four datasets, with 78, 20 and 12 images selected as the training set,
validation set and test set, respectively.

Table 1. Classification scheme of image data set.

Picture Category Image in Glass Greenhouse Image in Plastic
Greenhouse

Early Growth Stage, Sunny 38 30
Early Growth Stage, Cloudy 34 36

Metaphase Growth Stage, Sunny 50 -
Metaphase Growth Stage, Cloudy 61 -

Terminal Growth Stage, Sunny 41 23
Terminal Growth Stage, Cloudy 66 21

Total 290 110

2.4.2. Image Annotation

VGG Image Annotator (VIA) was used to annotate images. As shown in Figure 3,
according to the approximate estimation of the sheltered area, cucumber leaves are divided
into four categories for marking:

(1) If the covered area of the blade is less than 20%, they are marked as Upper Level.
(2) If the covered area of the blade accounts for about 20–60% of the whole blade area,

they are marked as Middle Level.
(3) If the covered area of leaves exceeds 60%, but the shape characteristics of cucumber

leaves are retained, they are marked as Incomplete.
(4) Targets with an occluded area of more than 60% and no cucumber leaf shape features

will not be marked.
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After completing the data annotation, in order to improve the richness of the exper-
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Figure 4, the specific operations include flipping the image and adjusting the contrast. By
this amplification method, 1150 and 390 images of cucumber plants planted in the glass
greenhouse and the plastic greenhouse were obtained, respectively, which were used as the
data set for model training for subsequent experiments.
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2.4.4. Model Training

The experimental environment for cucumber population leaf segmentation in this
experiment is shown in Table 2. The operating system is Ubuntu 18.04. The CPU is Intel (R)
Xeon(R) gold 6230; the GPU is Tesla V100s-PCIE-32GB, and the basic software environment
is Python 3.7, Pytorch 1.4.0, OpenCV 4.4.0, CUDA 10.1 and CUDNN 7.6.5.
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Table 2. Experimental environment configuration.

Project Configuration

Operating System Ubuntu 18.04

CPU Intel(R) Xeon(R) Gold 6230

GPU Tesla V100S-PCIE-32GB

Video Memory 32 G

Memory 72 G

Programing Language Python 3.7

The data set format used in this experiment is the COCO data set format converted
after VIA annotation. When training the model, it is necessary to generate a double-layer
mask annotation file from the annotation file of the training set through the layer division
dataset conversion script under the network. The annotation file of the verification set
remains unchanged. ResNet-50 is used as the backbone network. Model training and
evaluation using a single GPU. The initial learning rate of the model is set to 0.0005. With
the passage of training time, the learning rate will become half the current value every
20 epochs. In order to compare with Faster R-CNN, Mask R-CNN, YOLOv4, PANet and
other deep learning models [30,33–36], it is necessary to make data sets that meet the
requirements of these algorithms. The structure of data sets and directories is similar to that
of COCO data sets. The detection framework parses COCO annotations into corresponding
formats, avoiding the process of changing scripts.

2.5. Evaluating Indicator

The Precision and Recall evaluation indexes for cucumber leaf recognition and segmen-
tation results are used, while, according to the size of the target in the image, the Average
Precision (AP), the average precision of IoU = 0.50 (AP50) and the average precision of IoU
= 0.75 (AP75) evaluation metric from the COCO dataset are used to evaluate segmentation
precision.

3. Results
3.1. Results and Analysis of Glass Greenhouse Image Segmentation

Segmentation experiments were conducted on cucumber plant population leaves ob-
tained from glass greenhouses under different growth states and different light intensities.

APb and APs represent the average accuracy of detection and the average accuracy
of instance segmentation, respectively. The experimental results are shown in Table 3.
The test results show the average recognition accuracy value of cucumber leaves in glass
greenhouse that APb is 96.57%, APb

50 is 95.05% and APb
75 is 93.96%. The accuracy of leaf

recognition can reach 99% for cucumber plants in the early growth stage under sunny
conditions. The leaf recognition accuracy of cucumber plants at the end of cloudy days can
also reach 92.66%. Regarding the average instance segmentation accuracy, APs is 84.71%,
APs

50 is 95.05% and APs
75 is 93.96%. The model has the highest segmentation accuracy of

87.54% for the leaves of cucumber plants in the early growth stage on sunny days and
81.29% for the leaves of cucumber plants in the late growth stage on cloudy days. The
segmentation result is shown in Figure 5.
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Table 3. Segmentation accuracy of cucumber plant image in glass greenhouse.

Picture Category APb APb
50 APb

75 APs APs
50 APs

75

Early Growth Stage, Sunny 0.9900 0.9900 0.9630 0.8754 0.9304 0.9304
Early Growth Stage, Cloudy 0.9874 0.9871 0.9627 0.8730 0.9307 0.9304

Metaphase Growth Stage, Sunny 0.9857 0.9894 0.9795 0.8653 0.9295 0.9287
Metaphase Growth Stage, Cloudy 0.9831 0.9872 0.9795 0.8579 0.9202 0.9198

Terminal Growth Stage, Sunny 0.9370 0.9208 0.9107 0.8235 0.8908 0.8857
Terminal Growth Stage, Cloudy 0.9266 0.9117 0.9028 0.8129 0.8907 0.8759

Average 0.9657 0.9504 0.9396 0.8431 0.9723 0.9078
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3.2. Results and Analysis of Plastic Greenhouse Image Segmentation

The parameter statistics of the experimental results are shown in Table 4. It can be
seen that the improved algorithm in this study has the same excellent effect on the leaf
segmentation of cucumber plants in different growth environments, in which the best value
of the target recognition accuracy is 98.33% and the average value is 96.86%. The most
accurate instance segmentation is 86.75% and the average is 83.27%. Figure 6 shows the
experimental results of cucumber plant population leaves in plastic greenhouses, including
the images of early growth stage and late growth stage on sunny and cloudy days.

Table 4. Segmentation accuracy of cucumber plant images in plastic greenhouses.

Picture Category APb APb
50 APb

75 APs APs
50 APs

75

Early Growth Stage, Sunny 0.9828 0.9810 0.9550 0.8675 0.9274 0.9170
Early Growth Stage, Cloudy 0.9833 0.9804 0.9527 0.8628 0.9279 0.9185

Terminal Growth Stage, Sunny 0.9616 0.9499 0.9398 0.8123 0.8793 0.8728
Terminal Growth Stage, Cloudy 0.9608 0.9423 0.9418 0.8101 0.8760 0.8721

Average 0.9686 0.9520 0.9423 0.8327 0.8710 0.8708
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3.3. Comparison and Analysis of Different Models

In order to verify the effect of the improved algorithm, we compared it with other
deep learning algorithms. Cucumbers grown in a glass greenhouse were selected as the
experimental subjects. Comparative experiments were performed using detection algo-
rithms, such as Faster R-CNN and YOLOv4, as well as instance segmentation algorithms,
including Mask R-CNN, PANet and the original BCNet. The test effect of each algorithm is
shown in Figure 7, where Figure 7a is the P-R curve of target detection effect and Figure 7b
is the P-R curve of instance segmentation effect.
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The experimental results of each method are shown in Table 5. From the data in
the table, it can be seen that the average detection accuracy of the improved BCNet for
cucumber plant population leaves is improved by nearly 1.5% compared with the original
BCNet [37]. It is 5–15% higher than YOLOv4, PANet, Mask R-CNN and Faster R-CNN. The
average instance segmentation accuracy of our improved algorithm for cucumber leaves is
slightly improved compared with the original BCNet and is 10% and 22% higher than that
of PANet and Mask R-CNN, respectively. This shows that our improved BCNet is better
than other deep learning algorithms in the segmentation of cucumber plant population
leaves. The effect of each method on the identification and example segmentation of
cucumber plant population leaves is shown in Figure 8.
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Table 5. Comparison of parameters of different models.

Model
Object Detection Instance Segmentation

Precision Recall AP Precision Recall AP

Faster R-CNN 0.84 0.81 0.8200 - - -
Mask R-CNN 0.87 0.82 0.8467 0.68 0.64 0.6614

YOLOv4 0.93 0.88 0.9100 - - -
PANet 0.88 0.86 0.8770 0.76 0.73 0.7467
BCNet 0.96 0.92 0.9513 0.87 0.82 0.8389

Improved BCNet 0.97 0.94 0.9657 0.87 0.83 0.8471
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The FLOPs (floating point operations) and detection time for one image are also two
important indicators for evaluating the model. As Table 6 shows, our improved model has
relatively small FLOPs and fast inference speed.

Table 6. Comparison of FLOPs and detection time for one image.

Model FLOPs Detection Time (s)

Faster R-CNN 181 M 3.52
Mask R-CNN 286 M 3.13

YOLOv4 90 M 0.46
BCNet 207 M 3.20

Improved BCNet 155 M 1.72

4. Discussion
4.1. Model Performance Evaluation

Segmenting highly-overlapping objects is challenging, because typically no distinction
is made between real object contours and occlusion boundaries [27]. This difficulty is
particularly pronounced in agricultural monitoring, where significant overlap and occlu-
sion between similarly colored leaves, along with complex backgrounds and boundary
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blurriness caused by leaf movement, present substantial challenges for independent seg-
mentation. BCNet employs a dual-stream architecture that simultaneously learns to identify
object boundaries and context features, enabling it to differentiate between overlapping
leaves more effectively. The data in Table 5 indicate that while detection algorithms such
as YOLOv4, as well as instance segmentation algorithms of the original BCNet, show im-
provements in object detection and instance segmentation, they may not match the overall
robustness of our improved BCNet. This is achieved by incorporating ResNet-50 with
the CBAM and FPN for RoI feature extraction and applying the Varifocal Loss Function
to improve the classification loss function in FCOS. Recent studies have demonstrated
that CBAM enhance the ability of BCNet to dynamically adjust focus to the most informa-
tive spatial regions, leading to more precise delineation of leaf boundaries [38], while the
Varifocal Loss Function has robust performance in dense object detection [33,39].

The high average recognition accuracy of 96.57% underscores the model’s capability
to accurately identify cucumber leaves, achieving peak performance of 99% during early
growth stages under sunny conditions, while still maintaining a commendable accuracy
of 92.66% at the end of cloudy days. The average instance segmentation accuracy shows
a maximum accuracy of 87.54% observed in early growth stages on sunny days, while
accuracy slightly decreased to 81.29% in the later growth stages under cloudy conditions.
In the study by Ferro et al. [16], a higher accuracy during the early stages of crop growth
can also be observed compared to measurements taken in the later stages. Cucumber plants
often have leaves that overlap and occlude one another. While the improved BCNet is adept
at detecting individual leaves, accurately segmenting these overlapping regions remains
challenging. Accurate segmentation relies heavily on precise boundary detection. Ngugi
et al. [40] proposed a modified U-Net model ‘KijaniNet’ for automatic background removal
from tomato leaf images under complex field conditions, which demonstrates superior
performance in leaf segmentation, achieving over 0.96 mwIoU and 0.91 mBFScore on the
test set. Talasila et al. [41] designed a customized deep learning network ‘PLRSNet (Plant
Leaf Region Segmentation Net)’ to accurately segment leaf regions from complex field images,
addressing the challenge of varied morphology and natural artifacts. Despite the promising
results achieved in leaf segmentation by these studies, they, like most segmentation tasks,
primarily focus on images containing a single leaf. Segmenting multiple highly overlapping
leaves at the canopy scale remains a significant challenge in segmentation tasks.

4.2. Further Application of Leaf Segmentation in Phenotypic Data Collection

Leaf segmentation plays a critical role in advancing phenotypic data collection, which
is essential for various agricultural and biological research applications. By accurately
segmenting individual leaves from complex images, researchers can obtain precise mea-
surements of leaf morphology, size and health status [42]. In leaf segmentation, it is easy to
be affected by the surrounding environment, particularly lighting conditions. Shadows cast
on the leaves by lighting can often be mistakenly detected as separate leaves [16]. The study
results by Amean et al. [43] indicate that their segmentation model achieves an accuracy
of 69% under sunny lighting conditions and 71% under shady and cloudy conditions.
However, our results demonstrate no significant difference in accuracy between sunny and
cloudy lighting conditions (Tables 3 and 4). The reason lies in the lighting conditions of
glass and plastic greenhouses, which predominantly feature diffused light, resulting in
more uniform illumination and smaller shadow areas. Additionally, the attention mech-
anism introduced in our method enhances boundary perception, making the shadowed
parts of the boundaries more conducive to accurate segmentation on sunny days.

For corner-type plant structures like tomatoes and cucumbers, there is a noticeable
height difference between the leaves. Segmentation methods that integrate spatial point
cloud information will be more advantageous for separating plant organs. In the future,
to achieve higher segmentation accuracy, efforts could be made to combine depth images
with RGB images.
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5. Conclusions

This study employs a segmentation algorithm based on a bilayer convolutional net-
work to segment the leaves of cucumber plant populations. The experimental results
demonstrate an average detection accuracy of 96.57% for cucumber leaves in a glass green-
house and 96.86% in a plastic greenhouse, with corresponding instance segmentation
accuracies of 84.71% and 83.27%, respectively. Additionally, our improved algorithm out-
performs commonly used deep learning algorithms such as Faster R-CNN, Mask R-CNN,
YOLOv4 and PANet, indicating its capability to accurately segment cucumber leaves under
real planting conditions.

Despite these promising results, certain limitations must be acknowledged. The bilayer
convolutional network may struggle with variability in leaf shapes and sizes, particularly
in diverse crop environments. Moreover, the algorithm’s performance may decline when
applied to other plant species, such as tomatoes or eggplants, which possess different leaf
morphologies. Future work will involve conducting segmentation experiments on plants
with varying leaf shapes and exploring new object detection and instance segmentation
algorithms. By applying these methods in more diverse and realistic planting environments,
we aim to enhance the robustness and applicability of our approach in precision agriculture.
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