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Abstract: The cation exchange capacity (CEC) of the clay fraction (<2 µm), denoted as CECclay, serves
as a crucial indicator for identifying low-activity clay (LAC) soils and is an essential criterion in soil
classification. Traditional methods of estimating CECclay, such as dividing the whole-soil CEC (CECsoil)
by the clay content, can be problematic due to biases introduced by soil organic matter and different
types of clay minerals. To address this issue, we introduced a soil pedotransfer functions (PTFs) approach
to predict CECclay from CECsoil using experimental soil data. We conducted a study on 122 pedons in
South China, focusing on highly weathered and strongly leached soils. Samples from the B horizon were
used, and eight models and PTFs (four machine learning methods, multiple linear regression (MLR) and
three PTFs from publication) were evaluated for their predictive performance. Four covariate datasets
were combined based on available soil data and environmental variables and various parameters for
machine learning techniques including an artificial neural network, a deep belief network, support
vector regression and random forest were optimized. The results, based on 10-fold cross-validation,
showed that the simple division of CECsoil by clay content led to significant overestimation of CECclay,
with a mean error of 14.42 cmol(+) kg−1. MLR produced the most accurate predictions, with an R2

of 0.63–0.71 and root mean squared errors (RMSE) of 3.21–3.64 cmol(+) kg−1. The incorporation of
environmental variables improved the accuracy by 2–10%. A linear model was fitted to enhance the
current calculation method, resulting in the equation: CECclay = 15.31 + 15.90 × (CECsoil/Clay), with an
R2 of 0.41 and RMSE of 4.48 cmol(+) kg−1. Therefore, given limited soil data, the MLR PTFs with explicit
equations were recommended for predicting the CECclay of B horizons in humid subtropical regions.

Keywords: pedotransfer function; modeling techniques; machine learning; multiple linear regression;
deep learning

1. Introduction

The cation exchange capacity (CEC) of the clay fraction (<2 µm) (CECclay) has been
employed to indicate the activity of the clay fraction [1,2]. Soil with a CECclay value greater
or less than 24 cmol(+) kg−1 is referred to as high-activity clay (HAC) or low-activity clay
(LAC) [1], respectively, of which the threshold value was set according to substantial soil
survey and laboratory analysis for purpose of soil classification [3–6] and can be used to
indicate the ability of soil to adsorb and retain cations. From the perspective of pedogenesis,
LAC reflects the weathering degree of the mineral portion of the pedons [1]. LAC soils
may be characterized as having high contents of kaolinite in the clay fraction and can be
regarded as an advanced stage of soil formation in subtropical and tropical areas [7]. Due
to extensive leaching over time, the soil nutrient contents in LAC soils are generally lower
than those in HAC soils, which can result in a rapid acidification and depletion. Identifying
LAC soils is beneficial for precision agriculture, especially for secondary food crops [8].

The value of CECclay not only can be used to indicate the soil quality and productivity
but also provides important input for soil classification purposes, such as the USDA Soil
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Taxonomy (ST) [3] (Table S1), World Reference Base for Soil Resources (WRB) [4] (Table S2)
and Chinese Soil Taxonomy (CST) [5,6] (Table S3). Taking the ST as an example, the
CECclay is a required characteristic for determining the kandic and oxic horizons and
other subgroups (Table S1). In the CST, the LAC ferric horizons and ferralic horizons are
employed to indicate medium and high ferrallitization degrees (Table S3), respectively.
LAC ferric and ferralic horizons are defined as the diagnostic subsurface horizons for
the orders of Ferrosols and Ferralosols, respectively, which are widely distributed across
subtropical and tropical regions [9,10].

Clay extraction measurement is very time-consuming and costly. Thus, the CECclay
is usually calculated as the ratio of the CEC of the fine earth fraction (<2 mm) (CECsoil)
to the clay percentage for simplicity [4,5,11]. This method assumes that the CECsoil for
genetic B horizons is mainly contributed by clays [12,13]. The clay content does not always
contribute significantly to the CECsoil in soils in subtropical and tropical regions [14,15],
as well as in other regions [16–18]. Other factors, such as silts and the soil organic matter
(SOM) also contribute to the CECsoil [19,20]. For example, SOM may account for 20–60%
of the CECsoil in Spodosols (Podzols in WRB) according to laboratory tests in Russia and
Canada [16]. It is therefore understandable that between the CECsoil and CECclay, there is
no simple transformation equation that applies to different soils. The ratios of the CECsoil
and clay percentages may introduce biases when allocating soils to a classification system
(Tables S1–S3), even if the soils have clear morphological evidence. However, little attention
has been paid to this overestimation or to updating the CECclay calculation method so far.

The pedotransfer function (PTF) is an effective alternative for estimating the CECclay
based on the relationships between the CECclay and easily-measured soil properties and
other possible soil-forming factors. The predictive techniques range from multiple lin-
ear regression (MLR) [21], multiple nonlinear regression [22], and principal component
regression [18] to machine learning [23] and ensemble models [24]. The most important
covariates can be identified [19]. In recent years, machine learning techniques have been
widely adopted for the soil quality assessment [25], digital soil mapping [26–29], predic-
tion of soil properties that are difficult to measure (e.g., hydraulic conductivity) [30,31],
and the estimate of changes in soil properties [32,33]. However, much attention has been
paid to CECsoil PTF fitting [23,24,34], soil mapping [35] and CECsoil determination using
proximal soil sensing techniques, such as visible and near-infrared spectroscopy [36] and
electromagnetic instrumentation [37]. Nevertheless, few CECclay PTFs have been presented
in the literature.

In this study, two hypotheses were examined: (1) nonlinear relationships between
CECclay and predictors that were captured by machine learning techniques may generate
more accurate predictions than those obtained by MLR, and (2) the performance of PTFs
that only use measured soil properties as covariates can be enhanced by incorporating en-
vironmental variables as auxiliary predictors (e.g., terrain attributes and climatic variables).
Eight models and PTFs were evaluated to establish an optimal predictive model for CECclay,
including an artificial neural network (ANN), a deep belief network (DBN), support vector
regression (SVR), random forest (RF), MLR and three published PTFs [3,38,39]. Thus, this
study could be considered as one attempt to investigate the prediction of CECclay based
on advanced machine learning and environmental variables in which soil samples were
collected from soil profiles in South China. The comparison of PTFs and machine learning
techniques contributes to the prediction of soil properties that are laborious, difficult or
time-consuming to measure.

2. Methods and Materials
2.1. Study Areas

This study was conducted in South China, mainly south of the Yangtze River (Figure 1)
(17◦30′ N to 34◦29′ N and 95◦24′ E to 124◦11′ E), covering approximately 1.7 million km2.
The climate is predominantly subtropical, characterized by hot and humid summers and
mild winters. The mean annual precipitation (MAP) is 1415 mm, with a mean annual
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air temperature (MAT) of 17.9 ◦C [40]. The soil temperature and moisture regimes are
mainly thermic and udic and perudic, respectively. The most widely distributed land
cover in this area is forest (51.2%), followed by grassland (26.3%) and cropland (18.9%) [41].
This area is rarely affected by dust deposits from northwestern regions [42], and the main
soil types are Ferrosols (48.7%), Argosols (22.9%) and Cambosols (20.6%) according to
CST [6]. The statistics of main soil types based on soil maps [41] are shown in Table 1.
Ferrosols are mainly referred to as Ultisols, Alfisols and Inceptisols in ST and as Acrisols,
Lixisols, Plinthosols and Nitisols in WRB. Argosols can be mainly referred to as Alfisols
or Ultisols in ST and as Luvisols, Lixisols, Acrisols or Alisols in WRB, and Cambosols
can be mainly referred to as Inceptisols in ST and as Cambisols in WRB. The main parent
materials in this area are clastic (42.0%) and calcareous sedimentary rocks (29.4%). The
values of the aforementioned environmental variables were obtained from a national
dataset in [32,41]. The soil-forming environments may lead to notable changes in soil
physicochemical properties in acidic soils, which makes this area ideal for investigating the
CECsoil and CECclay relationship.
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Figure 1. Spatial distribution of the sampled pedons in this study (n = 122). Argosols are soils with
an argillic horizon and a CECclay of more than 24 cmol(+) kg−1, while Ferralosols and Ferrosols are
soils with CECclay values of less than 16 and 24 cmol(+) kg−1, respectively [6]. Ferrosols are mainly
referred to as Ultisols, Alfisols and Inceptisols in ST and as Acrisols, Lixisols, Plinthosols and Nitisols
in WRB. Ferralosols are mainly referred to as Oxisols in ST and as Ferralsols, Plinthosols, Acrisols
and Lixisols in WRB.
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Table 1. Statistics of the soil properties (0–20 cm) regarding main soil types in the study area.

Soil
Property

Argosols Cambosols Ferrosols

Min a Mean Max Standard
Deviation Min Mean Max Standard

Deviation Min Mean Max Standard
Deviation

BS (%) 6.02 56.32 143.33 26.62 6.27 42.05 104.83 20.29 4.09 34.12 171.49 22.82
CaCO3 (g/kg) 0.62 24.44 149.87 17.99 1.23 25.12 121.09 15.76 0.20 30.86 166.62 21.19

CEC (cmol(+) kg−1) 4.84 15.64 32.16 2.09 2.71 14.50 36.56 2.05 0.82 12.50 36.38 2.43
Clay (%) 8.29 26.52 56.41 4.48 5.46 24.42 52.32 4.81 2.95 25.97 56.41 4.61
Silt (%) 17.04 41.88 68.81 4.69 3.58 40.59 70.17 5.03 4.89 36.68 67.44 5.59

Fed (g kg−1) 1.63 21.62 63.22 6.32 4.26 19.02 63.22 4.23 0.61 20.00 63.22 5.33
pH 4.08 5.80 8.59 0.77 4.13 5.51 8.70 0.70 3.69 5.16 8.63 0.55

SOC (g kg−1) 4.91 17.57 75.71 4.92 3.69 15.85 58.88 3.52 1.68 16.61 75.71 3.36
TK (g kg−1) 3.58 16.42 40.16 3.31 4.54 16.53 43.55 2.70 0.60 14.98 43.55 3.24
TN (g kg−1) 0.38 1.66 6.02 0.33 0.18 1.41 4.12 0.27 0.10 1.37 6.78 0.28
TP (g kg−1) 0.10 0.56 2.77 0.13 0.07 0.48 2.79 0.11 0.04 0.47 2.75 0.09

a Min: minimum; Max: maximum; BS: base saturation; Fed: concentration of free iron oxides; SOC: soil organic
carbon; TK: total potassium; TN: total nitrogen; TP: total phosphorus.

2.2. Soil Sampling and Measurement

From 2009–2019, the National Soil Series Survey (NSSS) was carried out to investigate
the spatial pattern of soil types across China. The soil sampling sites were chosen according
to the strata of land uses, parent materials and soil types. A detailed description of this
survey can be found in [32,41]. A total of 122 samples of genetic B horizons were selected
from the NSSS database [41], in which clear evidence of clay eluviation and illuviation
can be found according to the detailed soil profile description. These horizons satisfied all
the required characteristics of the LAC ferric horizon (i.e., the soil texture, soil color and
concentration of free iron oxides (Fed)) except the value of the CECclay [6].

The silt (0.002–0.05 mm) and clay contents (<0.002 mm), soil organic carbon (SOC),
pH, Fed and CECsoil were recorded, as was a detailed description of the pedogenetic
characteristics of each layer. These profiles were classified as Ferralosols, Ferrosols and
Argosols according to the CST [6] (Figure 1). The main reason why we selected the samples
of the B horizons was that CECclay values were required to determine the soil types of these
profiles. The soil textures mainly included clay, silty clay, silty clay loam, sandy clay loam,
clay loam and loam (Figure 2) [43].
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loam; Si: silt; SiLo: silt loam; Lo: loam; Sa: sand; LoSa: loamy sand; SaLo: sandy loam. This figure is
produced with R package soiltexture [44].
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Various methods have been developed for CEC determination [45,46]. Many of these
methods entail practical difficulties and are experimentally tedious and time-consuming [46].
The most common determination method might be the ammonium acetate (pH 7) dis-
placement method, which has been widely used in different soil classification systems
(Tables S1–S3). Measurement of the effective cation exchange capacity (ECEC) is required if the
soil pH is less than 5.5, as significant quantities of exchangeable Al3+ may be present [11,46].
The ECEC values might be less than the CECsoil [1], and both the CEC and ECEC might
be required for acidic soil classification (Tables S1 and S3). In this study, the CECsoil was
determined by the ammonium acetate method (1 M NH4OAc) at a pH of 7.0 [47]. Specifically,
the CEC of clay (CECclay) and silt (CECsilt) were analyzed based on the clay (<2 µm) and silt
(2–50 µm) fractions, respectively. The carbonate, iron and SOM were removed for the clay and
silt fractions by using NaOAc, Na2S2O4-Na3C6H5O7 and H2O2 solutions [11], respectively. A
detailed introduction of the analytical procedure is provided by [11]. The clay and silt contents
were determined by the pipette method [3]. The SOC, pH and Fed were measured by the
Walkley-Black wet oxidation method [48], the potentiometer method (soil:water = 1:2.5) and
the phenanthroline colorimetry method [47], respectively.

SOM contributes the major portion to the negative variable charge [1,49,50]. Therefore,
to quantify the effects of negative variable charges on CECsoil and CECclay measurements,
the CEC of mineral fractions (<2 mm) was also analyzed by removing the SOM, and this
value was referred to as the CECMin.

2.3. Environmental Variables

Recent PTF studies have suggested that the combination of environmental variables
and soil data can improve PTFs [34,51]. Therefore, ten environmental variables were
collected from [41] and considered as covariates. Terrain attributes were generated from the
Shuttle Radar Topography Mission digital elevation model (SRTM DEM) [52] using SAGA-
8 GIS software (http://saga-gis.org/; accessed on 11 April 2023), including elevation, slope,
multiresolution ridge top flatness index (MRRTF), topographic wetness index (TWI) and
stream power index (SPI). Climatic variables (i.e., MAP and MAT) were obtained from the
WorldClim2 [40]. Categorical variables including the land use, parent material and soil
type were based on the field descriptions. If the CECclay values were significantly different
under the categorical variables, these variables were transformed into dummy variables to
indicate the presence or absence of each type.

Four covariate datasets were produced based on the available soil data and environ-
mental variables in this study:

• Dataset 1: Relatively accessible soil data (i.e., clay, silt, pH, SOC, Fed and CECsoil), as
these attributes are commonly available in soil databases and have been frequently
used in modeling the CECsoil [18,21,24,53];

• Dataset 2: All soil data (i.e., dataset 1 and CECsilt and CECMin);
• Dataset 3: Relatively accessible soil data and ten environmental variables; and
• Dataset 4: All soil data and ten environmental variables.

Predictor selection can extract relevant information and important features from
variables and thus benefit prediction accuracy [54]. Therefore, predictors were considered
as potential covariates if they were significantly correlated with soil properties of interest
(p < 0.05) and would not involve multicollinearity [55]. Regarding the number of available
predictors, predictors whose variance inflation factors were greater than 2.5 were removed
to avoid excessive multicollinearity [56].

2.4. Prediction Methods

The advantage of machine learning techniques for CECsoil modeling has been widely
confirmed [18,23,57]. In contrast to PTFs that can be expressed as general equations [24],
machine learning models rely on learning information from data, rather than on prede-
termined equations, and can suitably quantify the nonlinear behaviors of soil data. Eight
predictive models were used to estimate the CECclay based on the four covariate datasets, in-

http://saga-gis.org/
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cluding four machine learning models (ANN, DBN, SVR and RF), MLR and three published
PTFs [3,38,39] (Figure 3).
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Inspired by biological neural networks, an ANN has artificial neurons and can model
the nonlinear relationships between inputs and outputs by weighting these neurons. The
resilient backpropagation algorithm with or without weight backtracking was considered
to optimize the ANN model training, in which three layers were included, namely, the
input, hidden and output layers. To pursue a robust prediction, the hyperbolic tangent and
logistic sigmoid activation functions were applied for the ANN algorithms.

Deep learning models with multiple neural networks have been proposed by [58] and
are receiving ever-growing attention in the field of machine learning. DBN techniques
can extract deep features of samples through the training of several restricted Boltzmann
machines and may achieve the accurate mapping of nonlinear features. This technique has
not been attempted for CECclay PTF fitting to the best of our knowledge. In this study, a
DBN with four hidden layers was trained due to limited soil data, in which the number
of neurons ranged from 1 to 30. For each covariate dataset, a total of 10,000 DBN models
was calibrated.

As an ensemble learning algorithm, an RF can create a large number of decision
trees for classification or regression [59]. Based on bootstrap sampling, an RF is robust
and less sensitive to overfitting. This method is usually adopted as a predictive tool
but not a descriptive tool for quantifying the relationships between a variable of interest
and covariates.

An SVR may generate a reliable estimate for regression analysis by minimizing the
upper-bound generalization errors. This technique has been frequently considered for
PTF fitting [23,60]. In this study, four kernel functions (i.e., linear, polynomial, radial basis
and sigmoid) were calibrated for SVR model training, and the most accurate function
was adopted.

The conventional estimation method based on the division of the CECsoil by the clay
content was adopted for comparison and was referred to as PTFa. The second CECclay PTF
(PTFb) was published in the Brazilian soil classification system [38] based on soil data from
a national soil survey. PTFb was calculated from the CECsoil by subtracting the contribution
of the SOC as follows:

CECclay = CECsoil −
(4.5 × SOC)× 10

Clay
(1)
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where the SOC and Clay are the soil organic carbon concentration (g kg−1) and clay content
(%), respectively.

A nonlinear CECsoil PTF (PTFc) was considered [39], which was based on a dataset
with clay contents ranging from 2% to 78% that was consistent with our dataset (Figure 2).
PTFc could account for the interactions between clay and SOC:

CECclay = a + b × Clay + c × Clay × SOC (2)

where a, b and c are regression coefficients, and Clay and SOC are clay content (%) and soil
organic carbon concentration (g kg−1), respectively.

2.5. Variable Importance Measurement

The mean decrease in accuracy (MDA) of the RF models and the regression coefficients
of the MLR models were utilized to measure the relative importance of the adopted
predictors. The MDA was calculated by permuting the out-of-bag samples generated by
the trees of the RF models [59]. The predictors for the MLR models were normalized by
the Z-score method, of which the mean and standard deviation were 0 and 1, respectively.
Therefore, the predictors were on the same magnitude, and their regression coefficients
could be used to indicate the relative importance [61,62]. The greater the magnitude of the
MDAs and regression coefficients, the more important the examined variable.

2.6. Statistical Analysis

A one-way analysis of variance (ANOVA) was performed to identify the effects of
the land use, parent material and soil type on the CECclay, followed by a least-significant-
difference (LSD) test (p < 0.05), which were implemented with R packages stats [63] and
agricolae [64], respectively. The extraction of environmental variables at sampling sites
was achieved with ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA). A Pearson correlation was
performed to depict the linear relationships between the soil properties and environmental
variables. A paired t-test analysis will be performed to examine the difference of predictions
from two methods with almost same prediction accuracy. The Pearson correlation and
paired t-test analysis were conducted with R package stats [63]. Data processing, descriptive
analysis, correlation analysis between the soil properties and PTF fitting were carried out
with R (version 3.6.0, https://cran.r-project.org/, accessed on 14 May 2022). The nonlinear
regression was fitted by the Levenberg-Marquardt nonlinear least squares method with the
minpack.lm R package (version 1.2-1) [65]. The predictive methods, MLR, ANN, DBN, SVR
and RF, were implemented with the R packages stats [63], RSNNS [66], h2o [67], e1071 [68]
and randomForest [69], respectively.

2.7. Model Validation

Regarding the limited number of soil samples, a 10-fold cross validation was used
to evaluate the predictive models in terms of the root mean squared error (RMSE) and
coefficient of determination (R2). The 10-fold cross validation was performed 1000 times
for the 8 models and PTFs, and the mean values of the validation results were used.
The standard deviations of the RMSE and R2 values were calculated to account for the
uncertainty involved in the random sample splitting and model training. The 1000 iterations
of model training were enough, as the mean values of the validation indices did not change
if the models or PTFs were trained further.

3. Results
3.1. Soil Properties

The descriptive statistics of the soil properties are shown in Table 2.

https://cran.r-project.org/
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Table 2. Descriptive statistics of the soil properties of the B horizons.

Soil Property Min 25th
Percentile Mean Median 75th

Percentile Max Standard
Deviation Skewness Coefficient

of Variation

CECclay

(cmol(+) kg−1)
7.51 17.17 20.93 20.76 25.08 32.79 5.67 0.11 27.09

CECsilt
(cmol(+) kg−1) 0.48 2.25 4.96 3.59 6.66 21.25 3.85 1.65 77.62

CECsoil
(cmol(+) kg−1) 5.12 9.16 12.44 11.61 14.84 27.13 4.50 1.02 36.17

CECMin
(cmol(+) kg−1) 6.88 10.85 14.55 14.09 17.31 29.83 4.89 0.84 33.61

pH 3.73 4.69 5.23 5.00 5.58 7.65 0.78 1.11 14.91
SOC (g kg−1) 1.40 2.72 4.72 3.80 5.49 14.05 2.88 1.56 61.02
Fed (g kg−1) 9.11 42.59 62.72 56.36 83.96 142.56 26.36 0.51 42.03

Clay (%) 9.48 30.80 40.96 39.90 49.75 71.92 14.82 0.35 36.18
Silt (%) 8.36 21.89 31.22 31.00 39.70 66.10 11.62 0.35 37.22

In general, the values of the coefficient of variation revealed moderate variation. The
mean value of the silt content (31.22%) was less than that of the clay content (40.96%),
while the mean value of the CECclay (20.93 cmol(+) kg−1) was much greater than that of
the CECsilt (4.96 cmol(+) kg−1). The B horizons in this study area were characterized by
low SOC concentrations (4.72 g kg−1) and CECsoil values (12.44 cmol(+) kg−1) but high
Fed levels (62.72 g kg−1). The paired t-test analysis showed that CECsoil was significantly
differed with CECMin (p < 0.001). The mean value of the CECsoil (12.44 cmol(+) kg−1) was
slightly less than that of the CECMin (14.55 cmol(+) kg−1).

The CECclay was significantly correlated with the CECsoil (r = 0.580) and CECMin
(r = 0.525), while the CECsoil was strongly positively correlated with the CECMin (r = 0.920)
(Tables 3 and S4). The clay content was positively correlated with the CECMin (r = 0.237)
but was negatively correlated with the CECclay (r = −0.263) and CECsilt (r = −0.337). These
correlations were generally consistent with the results of previous studies on humid soils [53],
whereas the correlation between the clay and CECsoil was weaker than those of a global soil
dataset [18].

Table 3. Pearson correlation coefficients between soil properties.

CECsilt CECsoil CECMin pH SOC Fed Silt Clay

CECclay 0.272 ** 0.580 ** 0.525 ** 0.121 * −0.067 −0.283 ** 0.424 ** −0.263 **
CECsilt 1 0.600 ** 0.459 ** 0.068 0.073 0.140 0.108 −0.337 **
CECsoil 1 0.920 ** 0.279 ** 0.048 0.258 ** 0.160 0.065
CECMin 1 0.238 ** 0.004 0.298 ** 0.085 0.237 **

pH 1 −0.001 0.048 0.225 * −0.067
SOC 1 0.188 * 0.032 −0.171
Fed 1 −0.130 0.541 **
Silt 1 −0.352 **

* Significant at the 0.05 level. ** Significant at the 0.01 level.

3.2. Model Training

ANOVA analysis showed that the CECclay was significantly different under agroecosys-
tem (i.e., upland) and natural ecosystems (i.e., grassland and forest). CECclay did not signifi-
cantly differ relative to the soil type and parent material type. Therefore, the land use was
considered as the covariate, in which grassland and forest were combined together. Four ANN
algorithms with one hidden layer were compared for the four datasets (Figures 4 and S1). The
logistic sigmoid activation function-based networks (ANN2 and ANN4) yielded less errors
than did the other functions (Figure 4). We also evaluated the neural networks with two
hidden layers (Figures 5 and S2). However, the prediction accuracy was not improved, and
thus, the ANN model with one hidden layer was adopted.
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Figure 4. R2 values of ANN models with one hidden layer for dataset 1 (a), 2 (b), 3 (c) and 4 (d),
of which the number of neurons of hidden layer ranged from 1 to 30. ANN1 and ANN2 refer to
the resilient backpropagation algorithm with weight backtracking using the hyperbolic tangent
and logistic sigmoid activation functions, respectively. ANN3 and ANN4 refer to the resilient
backpropagation algorithm without weight backtracking using the hyperbolic tangent and logistic
sigmoid activation functions, respectively.

The prediction accuracy of the DBN with one hidden layer increased with the increase
of the number of neurons and became stable when the number of neurons was about 30
(Figure S3). Regarding the high computation cost, the DBN model was trained with four
hidden layers for dataset 1 (Figure 6), in which the number of neurons of each hidden
layer ranged from 1 to 30. After the comparison of the prediction accuracy, a deep neural
network with the structure of (30, 24, 27, 12) was selected.

SVR models based on the linear kernel function outperformed SVR models based on
the other three kernel types in terms of greater R2 and lower RMSE values (Figure 7), which
suggested that a linear decision boundary benefited the separation of feature points. It was
inferred that the relationships between the CECclay and covariates could well be quantified
by linear regression.

The mean squared errors of RF models rapidly decreased with increasing numbers
of trees from 1 to 50 (Figure 8). The errors became relatively stable from 50 to 300, even if
some fluctuations could be observed when the number of trees was greater than 300. Thus,
the number of trees in the RF models was set to 300.

For MLR, we conducted a residual analysis for homogeneity of variance (Figures S4–S7).
The residuals were normally distributed via Q-Q plots. There was no obvious distinct pattern
of the residuals versus the fitted values, indicating a linear relationship between the CECclay
and the employed predictors. Exceptions were the single cases that were outside of Cook’s
distance (Figures S6 and S7) when using environmental variables as covariates.
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3.3. Variable Importance

The relative importance of the considered covariates was measured by a nonlinear
model (i.e., RF) and linear regression (i.e., MLR) in terms of the MDA and regression
coefficients, respectively (Figure 9). The magnitude of a regression coefficient accounted
for the importance of a variable, regardless of the positive and negative values. Overall,
the relative importance of different covariates was similar in both modeling cases. The
CECsoil was the most important variable, except for dataset 2, for which the most important
variable was the CECMin. Environmental variables played moderate roles in PTF fitting,
and the land use was more important than were most of the soil properties (Figure 9g,h).
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Figure 9. Relative importance of the employed covariates for datasets 1 (a,e), 2 (b,f), 3 (c,g) and
4 (d,h). The values of the mean decrease in accuracy (MDA) (a–d) were derived from RF models. The
regression coefficients (e–h) were calculated by MLR models. Bars in sea green and red denote the
soil properties and environmental variables, respectively. Land use is a dummy variable representing
the presence or absence of upland. CECMin: CEC of mineral fractions (<2 mm); CECsilt: CEC of the
silt fraction; CECsoil: CEC of the fine earth fraction (<2 mm); Fed: concentration of free iron oxides;
MAP: mean annual precipitation; MAT: mean annual air temperature; SPI: stream power index.

3.4. Performance Comparison

Based on the optimized parameters above and selected predictors (Figure 9), eight
models and PTFs were executed 1000 times and evaluated in terms of the R2 and RMSE
(Table 4).

Table 4. Performance assessment (R2 and RMSE) of eight considered models and PTFs. For each
prediction case, the mean values and standard deviations of R2 and RMSE based on 1000 runs
are shown.

Dataset ANN DBN SVR RF MLR PTFa PTFb PTFc

R2

Dataset 1 0.63 ± 0.03 0.63 ± 0.02 0.57 ± 0.02 0.59 ± 0.02 0.65 ± 0.02 0.41 ± 0.03 0.24 ± 0.03 0.15 ± 0.04
Dataset 2 0.59 ± 0.03 0.58 ± 0.03 0.52 ± 0.02 0.55 ± 0.02 0.63 ± 0.02 0.41 ± 0.02 0.25 ± 0.04 0.14 ± 0.02
Dataset 3 0.54 ± 0.06 0.64 ± 0.04 0.61 ± 0.02 0.62 ± 0.02 0.70 ± 0.02 0.41 ± 0.03 0.25 ± 0.04 0.15 ± 0.03
Dataset 4 0.64 ± 0.04 0.64 ± 0.03 0.61 ± 0.02 0.63 ± 0.02 0.71 ± 0.02 0.41 ± 0.02 0.25 ± 0.05 0.14 ± 0.03

RMSE
Dataset 1 3.56 ± 0.15 3.90 ± 0.20 3.87 ± 0.06 3.87 ± 0.07 3.46 ± 0.05 22.78 ± 0.41 16.75 ± 0.08 5.50 ± 0.04
Dataset 2 3.74 ± 0.12 4.07 ± 0.19 4.65 ± 0.07 4.00 ± 0.07 3.64 ± 0.06 22.62 ± 0.43 16.75 ± 0.08 5.48 ± 0.04
Dataset 3 5.06 ± 1.67 3.75 ± 0.22 3.64 ± 0.10 3.78 ± 0.06 3.29 ± 0.06 22.64 ± 0.44 16.74 ± 0.08 5.49 ± 0.03
Dataset 4 3.55 ± 0.20 3.75 ± 0.16 3.61 ± 0.09 3.73 ± 0.05 3.21 ± 0.08 22.64 ± 0.34 16.74 ± 0.08 5.48 ± 0.04

The predictive accuracy of machine learning models and MLR was far superior to
those of existing PTFs, i.e., PTFa, PTFb and PTFc. Meanwhile, the performance was
generally improved when using environmental variables as covariates (Figure 10 and
Table 4), in which the RMSEs approximately decreased by 2–10%. MLR models produced
more accurate results than those of other methods, with R2 values ranging from 0.63 to
0.71. The prediction accuracy of the SVR was same as that of MLR when not using the
environmental variables. A paired t-test analysis showed that predictions based on the
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SVR significantly differed from those based on MLR (p < 0.05). Four fitted equations of
MLR using all observations were expressed as follows, in which the predictors were not
normalized:

Dataset 1 : CECclay = 16.108 + 0.881 × CECsoil − 0.086 × Fed − 1.019 × pH + 0.147 × Silt
Dataset 2 : CECclay = 9.798 + 0.862 × CECMin − 0.166 × CECsilt − 0.069 × Fed − 0.977 × pH + 0.07 × Sand + 0.221 × Silt
Dataset 3 : CECclay = 26.10 + 0.804 × CECsoil − 0.083 × Fed + 2.662 × Landuse − 0.0003 × MAP − 0.002 × MAT

−1.523 × pH + 0.139 × Silt + 0.00005 × SPI
Dataset 4 : CECclay = 27.575 − 0.337 × CECsilt + 0.978 × CECsoil − 0.054 × Clay − 0.067 × Fed + 2.805 × Landuse

−0.0003 × MAP − 0.002 × MAT − 1.7 × pH + 0.127 × Silt + 0.00005 × SPI

(3)

where CECsoil is CEC of the fine earth fraction (cmol(+) kg−1), CECsilt is CEC of the silt
fraction (cmol(+) kg−1), CECMin is CEC of mineral fractions (cmol(+) kg−1), Fed is the
concentration of free iron oxides (g kg−1), pH is soil acidity, Silt and Sand are clay content
and sand content (%), respectively, Landuse is a dummy variable representing the presence
or absence of upland, MAP is mean annual precipitation (mm), MAT is mean annual air
temperature (◦C), and SPI is stream power index.
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Notably, both the PTFs defined in ST [3] (i.e., PTFa) and the Brazilian soil classification
system [38] (i.e., PTFb) performed worse than did other methods. R2 values suggested that
PTFa and PTFb were inferior, and the simply dividing of CECsoil by clay content (PTFa)
greatly overestimated the CECclay (Figure 11a). Furthermore, we fitted a linear model to
improve the current calculation method: CECclay = 15.31 + 15.90 × (CECsoil/Clay) with R2
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of 0.38 (Figure 11). This equation was recommended for B horizons in subtropical regions
for simplification when soil variables in Equation (3) were limited.
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4. Discussion
4.1. Performance of PTF Models

The machine learning techniques achieved promising accuracy in CECclay prediction
(Table 4). However, explicit equations were unavailable, and these models should be trained
by certain observations for other areas, which may limit the application of machine learning
techniques for PTF fitting in practice. We found that RF outperformed SVR for all datasets
(Table 4), which was in agreement with similar study [70]. Overall, the MLR outperformed
other considered machine learning techniques and nonlinear models (Table 4), which did
not concur with related studies [22,23]. This could be possibly ascribed to the limited soil
samples in this study (n = 122). These results not only raised concerns regarding these
published PTFs’ limitations but also implied that a linear regression might be sufficient for
modeling the CECclay of the B horizon in humid subtropical regions, which accounted for
56–65% of the variation. Therefore, the first hypothesis should be rejected. The accuracy
was in agreement with the proposed CECsoil PTFs, such as the fitted PTFs in Iran, with R2

values of 0.59–0.60 [71] and 0.48–0.60 [20]. Furthermore, the PTFs for CECsilt, CECsoil and
CECMin were also fitted (Supplementary Results), of which R2 ranged from 0.21 to 0.86
(Table S5).

In contrast to the machine learning and MLR techniques, the published PTFs (PTFa
and PTFb) failed to accurately predict the CECclay. This suggested that the contributions
of other soil properties (i.e., Fed and silt) to the CECsoil were far from negligible in South
China, as well as in semiarid regions [72]. As a new remarkable technique, deep learning
failed to improve accuracy (Table 4). This result could be attributed to the heterogeneous
features of the soil properties, and a hybrid modeling technique should be explored by
extracting the multi-scale features from a larger dataset [73].

Compared with PTF fitting at fixed sampling depth increments [19,21,24], the soil
samples used in this study were collected from genetic horizons with variable thicknesses,
which concurred with other studies conducted at the national scale [18,61,74]. The soil
properties in genetic horizons are normally homogeneous compared to those collected at
fixed depth increments [75].

There are several limitations of the PTFs training. More soil properties and environ-
mental variables should be collected to pursue a PTF with higher accuracy than current
methods (Tables 2 and 4). Furthermore, PTFs and machine learning models might be reliant
on land use types, especially for study area at a large scale [70]. Due to data limitations,
the performance of PTFs regarding land use types was not tested in this study, in which
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only 122 samples were analyzed from genetic B horizons rather than from the whole soil
profiles. Future works should focus on the CEC of the sand fraction, the ECEC of the clay
fraction (<2 µm) and the assessment of the accompanying uncertainty of PTF fitting. These
shortcomings should be considered in the near future when extra experimental soil data
are collected. We also conducted additional experiments by partitioning the soil dataset
at the SOC break of 3 g kg−1 [74]. Due to the limited soil points, a leave-one-out cross
validation was performed. Overall, the stratification did not improve the estimate accuracy.
CECclay data based on laboratory measurements are usually very limited. An independent
validation will be required to evaluate the generalization of the proposed PTFs at various
geographical locations (Equation (3)).

4.2. Importance of Predictors

Different from the CECsoil PTFs fitted in the United States [74], Denmark [61] and
Spain [72], the clay and SOC were not selected as effective predictors in this case (Figure 9).
The clay contents were significantly negatively correlated with the CECclay (r = −0.263),
but the correlation was less than that between the silt and CECclay (r = 0.352). Therefore, silt
was frequently selected as the covariate (Figure 9). The CECsoil exhibited a high correlation
with the CECclay (r = 0.58), which could be ascribed to the main contribution of the clay
minerals to the CECsoil in humid soils, as vermiculite, kaolinite and hematite were the
main clay minerals from north to south in the current study area [15]. The Fed played a
vital role in the prediction scenarios based on soil properties (Figure 9). In general, iron
oxides usually exist in the clay fraction or are strongly cemented with clays [76,77] and
thus greatly affect the stabilization of the soil structure in terms of the aggregate stability
and clay dispersion. Notably, some soil properties that are not readily obtainable, that is,
the CECsilt and CECMin, were also selected as helpful predictors (Figure 9b,f).

The warm and moist climate in South China strengthens the soil weathering and base
cation leaching. Thus, in addition to the soil properties, climatic variables (i.e., MAP and
MAT) were included in the models as important predictors, suggesting that the second
hypothesis can be accepted. Specifically, terrain attributes were dispensable in predicting
the CECclay due to the low correlations (Table S4). This could be explained by the slight
effect of the topography on deep soil evolution.

Significant differences were found in the CECclay regarding land use. The inclusion
of land use as predictor obviously benefited the prediction (Table 4 and Figure 9). It was
suggested that soil variability under uplands was different from that under other land
uses. Interestingly, the relative importance of land use was more evident with the MLR
model than with the RF model (Figure 9), which may imply that the CECclay could be well
described as a linear function based on the soil properties and soil-forming factors (Table 4
and Equation (3)).

4.3. Determination of the CECclay

Our study area was mainly characterized by acidic soils (Table 2). Thus, the effects
of variable charges (or pH-dependent charges) on the CECsoil and CECclay should be
discussed, as variable charges might be neutralized by the standard method, that is, the
ammonium acetate method (1 M NH4OAc) at a pH of 7.0 [11]. It is well known that organic
matter materials and iron and aluminum oxides account for major portions of the negative
and positive variable charges, respectively [49]. The CECsoil is a measure of the quantity
of negative charges that indicates the cations retained by electrostatic forces. The CEC
of iron oxide concentrates is very low [78], even though iron oxides have relatively large
surface areas [1]. Therefore, the contribution of negative variable charges to the CECsoil or
CECclay can be quantified by analyzing the correlation between the CECsoil and CECMin,
which was referred to as the CEC of the fine earth fraction (<2 mm) after removing the SOM
(Figure 12). SOM removal led to a slight increase of the CEC (Table 2), which concurred
with the results of [49,78]. This suggested that variable charges of SOM did not make a
major contribution to the CEC, possibly due to the low SOC concentrations of subsoils
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(Table 2). It was also suggested that some charges could be blocked by the interaction of
the SOM with the clay [49]. The high correlation (r = 0.92) showed evidence that variable
charges did not greatly affect the measurement, and thus, the information on the CECsoil
and CECclay was credible.
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4.4. Implications of Using the CECclay for Soil Identification

PTFa overestimated the CECclay with a mean error of 14.42 cmol(+) kg−1, and PTFb

produced a negative CECclay with a mean error of −14.91 cmol(+) kg−1. The CECclay is
usually adopted as a diagnostic criterion for soil taxonomy purposes (Tables S1–S3). It
could be concluded that the ratio-based method (PTFa) may affect the accuracy of the soil
type allocation, especially when a pedon satisfies all required diagnostic characteristics
except the CECclay [3–5].

With the aid of the developed PTF (Equation (3)), the value of the CECclay could
be corrected to update the soil types of the NSSS database across China in turn [41]. We
examined the CECclay and its influence on the soil taxonomy in Guangdong Province [79], in
which many soil profiles were classified as Ferralosols. Argosols (which are mainly referred
to as Alfisols in ST) and Cambosols (which are referred to as Inceptisols in ST) [3] with hues
of 5YR or that were more intensely red and had Fed ≥ 14 g kg−1 or DCB-extractable iron
≥ 40% of the total iron were mainly considered (Table 5).

Here, four profiles that were classified as Argosols (the Liangtian and Jinji series)
and Cambosols (the Datuo and Dengta series) are illustrated (Figure S8). Their diagnostic
surface horizons were ochric epipedons. The diagnostic subsurface horizons of the Argosols
and Cambosols were argic and cambic horizons, respectively. After updating the CECclay,
5 Argosols soil series and 4 Cambosols soil series satisfied the requirement of LAC ferric
horizons (CECclay < 24 cmol(+) kg−1) and were classified as Ferrosols. The use of the
proposed equations improved the CST and seemed to be promising for soil classification in
other areas. The fitted equation for dataset 1 (Equation (3)) might be helpful when other
predictors are unavailable.
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Table 5. Information on the soil series in Guangdong Province, of which the soil type could be
classified as Ferrosols.

Original Soil
Suborder

(CST)
Soil Series Location Layer

(cm) Hue Fed
(g kg−1)

Fe Freeness
(%)

CECclay Based
on PTFa

(cmol(+) kg−1)

Revised CECclay
(cmol(+) kg−1)

Udic
Argosols

Dingbao 22◦19′25′′ N,
111◦01′44′′ E 32–96 7.5YR 55.0 53.5 28.1 22.15

Jinji 22◦11′43′′ N,
12◦28′41′′ E 31–120 2.5Y 24.7 65.7 27.2 16.30

Liangtian 23◦33′21′′ N,
115◦50′49′′ E 13–57 7.5YR 64.3 61.2 28.1 23.67

Shangzhongben 25◦06′20′′ N,
113◦31′54′′ E 10–40 7.5YR 75.6 70.7 27.2 22.50

Wenfu 24◦42′40′′ N,
116◦11′19′′ E 16–22 2.5YR 40.2 61.3 26.6 14.54

Udic
Cambosols

Beidou 23◦49′43′′ N,
116◦07′43′′ E 15–55 5Y 46.3 68.3 28.1 23.50

Dengta 24◦00′37′′ N,
114◦46′57′′ E 11–23 2.5YR 42.2 62.9 25.2 21.55

Datuo 24◦33′35′′ N,
115◦55′42′′ E 14–29 10YR 52.0 72.7 27.9 23.33

Xiajiashan 23◦15′41′′ N,
116◦11′13′′ E 9–25 10YR 27.8 47.3 25.5 19.55

5. Conclusions

Eight models and PTFs were evaluated for CECclay prediction based on a 10-fold cross
validation. The simply dividing CECsoil by clay content greatly overestimated the CECclay,
with a mean error of 14.42 cmol(+) kg−1. MLR outperformed the other methods, with R2 of
0.63–0.71 and RMSE of 3.21–3.64 cmol(+) kg−1. The prediction accuracy of the SVR was the
same as that of MLR when not using the environmental variables. The use of environmental
variables obviously improved the model fit. Given certain calibration samples, machine
learning techniques are promising for use in establishing an accurate model through fitting.
For simplification, the MLR PTFs are recommended in practice, as an explicit equation and
an enhanced prediction performance can be attained. We propose using the new PTFs to
generate more accurate CECclay values with acceptable time and cost investments. Notably,
the proposed PTFs should be validated further if they are used for taxonomic classification
in other regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14112671/s1, Supplementary Results; Figure S1: RMSE
values of ANN models with 1 hidden layer for datasets 1 (a), 2 (a), 3 (c) and 4 (d), in which the
number of neurons in the hidden layer ranged from 1 to 30. ANN1 and ANN2 refer to the resilient
backpropagation algorithm with weight backtracking using hyperbolic tangent and logistic sigmoid
activation functions, respectively. ANN3 and ANN4 refer to the resilient backpropagation algorithm
without weight backtracking using hyperbolic tangent and logistic sigmoid activation functions,
respectively; Figure S2: RMSE values of ANN models with 2 hidden layers for datasets 1 (a), 2 (b),
3 (c) and 4 (d), in which the number of neurons in the first and second hidden layer ranged from 1 to
30; Figure S3: R2 (a) and RMSE (b) values of DBN models with 1 hidden layer for dataset 1; Figure
S4: Residuals distribution check of dataset 1; Figure S5: Residuals distribution check of dataset 2;
Figure S6: Residuals distribution check of dataset 3; Figure S7: Residuals distribution check of
dataset 4; Figure S8: Representative pedons of four soil series, of which the soil type should be
referenced to Ferrosols: Liangtian (a), Jinji (b), Datuo (c), and Dengta (d). The land use type of
Liangtian and Datuo is forest, and that of Jinji and Dengta is upland; Table S1: Main soil types and
diagnostic horizons with the Soil Taxonomy, in which the values of the CECclay (by NH4OAc pH 7)
and ECEC are required; Table S2: Reference soil groups and qualifiers in the World Reference Base for
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Soil Resources (WRB), in which the values of the CECclay (by NH4OAc pH 7) are required; Table S3:
Diagnostic subsurface horizons and diagnostic characteristics in the Chinese Soil Taxonomy (CST), in
which the values of the CECclay (by NH4OAc pH 7) and ECEC are required; Table S4: Correlation
coefficients between soil properties and environmental variables; Table S5: Performance assessment
(R2 and RMSE) of multiple linear regression for the PTFs of CEC of silt (CECsilt), CEC of the fine
earth fraction (<2 mm) (CECsoil) and the CEC of mineral fractions (CECMin). For each prediction
case, the mean values and standard deviations of R2 and RMSE based on 100 runs are shown.
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