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Abstract: The leaf area index (LAI) is a direct indicator of crop canopy growth and serves as an indirect
measure of crop yield. Unmanned aerial vehicles (UAVs) offer rapid collection of crop phenotypic
data across multiple time points, providing crucial insights into the evolving dynamics of the LAI
essential for crop breeding. In this study, the variation process of the maize LAI was investigated
across two locations (XD and KZ) using a multispectral sensor mounted on a UAV. During a field
trial involving 399 maize inbred lines, LAI measurements were obtained at both locations using a
random forest model based on 28 variables extracted from multispectral imagery. These findings
indicate that the vegetation index computed by the near-infrared band and red edge significantly
influences the accuracy of the LAI prediction. However, a prediction model relying solely on data
from a single observation period exhibits instability (R2 = 0.34–0.94, RMSE = 0.02–0.25). When applied
to the entire growth period, the models trained using all data achieved a robust prediction of the
LAI (R2 = 0.79–0.86, RMSE = 0.12–0.18). Although the primary variation patterns of the maize LAI
were similar across the two fields, environmental disparities changed the variation categories of the
maize LAI. The primary factor contributing to the difference in the LAI between KZ and XD lies in
soil nutrients associated with carbon and nitrogen in the upper soil. Overall, this study demonstrated
that UAV-based time-series phenotypic data offers valuable insight into phenotypic variation, thereby
enhancing the application of UAVs in crop breeding.

Keywords: unmanned aerial vehicle; leaf area index; time-series data; maize

1. Introduction

Maize, with an annual production exceeding 1 billion tons, has become a crucial global
resource for food, fodder, and fuel [1,2]. Although the process of developing, testing, and
releasing improved cultivars in crops such as maize is time-consuming, advancements in
modern crop breeding technologies have substantially enhanced the selection efficiency
for maize and numerous other crops [3,4]. The effectiveness of a crop breeding technique
depends on the accurate and rapid collection of crop phenotype data [4,5]. Conventional
methods for collecting quantitative plant traits have been relatively slow and costly. There-
fore, there is a need for a cost-effective high-throughput approach for collecting quantitative
maize traits.

The leaf area index (LAI) is a crucial phenotypic trait that significantly influences
the photosynthesis, respiration, and evapotranspiration of a canopy [6,7]. The LAI is a
primary descriptor of vegetation function and structure, and it has been utilized to assess
biological changes within ecosystems [7,8]. Changes in the LAI not only indicate variations
in leaf quantity within a canopy but also respond to plant physiological and phenology
characteristics [8]. For example, the LAI offers estimations regarding crop yield and
dry matter content, which indirectly indicate soil moisture and fertility conditions [9,10].
Early reports demonstrated that time-series data provided additional information on
phenotypic changes and gene expression during crop growth for breeding work [11].
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Furthermore, exploring changes in time-series phenotypes can assist in predicting potential
yield fluctuations and evaluating the adaptability of crop phenotypes to environmental
changes [11,12]. The accurate quantification of temporal changes in the LAI is indispensable
for comprehending the physiological and ecological dynamics of plants at the canopy
level. However, conventional approaches are constrained by factors such as destructive
sampling, capacity, accuracy, and subjectivity, rendering them unsuitable for continuous
observation [6,7]. Obtaining time-series LAI data on thousands of maize plots at multiple
time points throughout the growing season presents a considerable challenge. Therefore,
variability in the growth dynamics of the maize LAI remains unclear.

Optical sensors combined with deep learning algorithms have demonstrated their
effectiveness as reliable high-throughput phenotyping tools for accurately estimating phe-
notype data with a high temporal resolution without the need for destructive methods [13].
The unmanned aerial system (UAS) is one of the most extensively employed technology
platforms for high-throughput phenotyping. As technology advances, unmanned aerial
vehicles (UAVs) are equipped with various sensors to create a UAS. These sensors include
red–green–blue (RGB) sensors [14], multispectral sensors [15], hyperspectral sensors [16],
and 3D point cloud sensors [17,18]. Three-dimensional point cloud sensors are primarily
employed for measuring crop sizes [17]. Among them, multispectral sensors provide
a quick and accurate reflection of sufficient spectral information for analysis, rendering
multispectral imaging a promising technology for crop phenotype measurement [19]. In
addition, machine learning techniques have been employed to establish a correlation be-
tween target traits and derived vegetation indices (VIs). Zhou et al. [20] compared the
random forest (RF) model, support vector machine (SVM) model, and multivariate linear
regression model (MLR) for estimating multiple traits of the maize canopy. Their findings
revealed that the RF model demonstrated the most superior performance for trait prediction
(R2 values were 0.91–0.96). In the RF models, many classification and regression trees are
constructed using randomly selected training datasets and random subsets of predictor
variables for modeling outcomes. Therefore, RF often provides higher accuracy while
maintaining some of the beneficial qualities of tree models [21]. Numerous studies have
employed the RF model in different environments to estimate phenotypic traits in diverse
crops, including wheat [22], quinoa [19], and sugarcane [23]. These findings demonstrate
the adaptability of RF models to variable conditions, thereby enhancing their suitability for
the development of predictive models applicable to diverse environments. Nevertheless,
the VI used in prediction models is typically specific to particular observation periods,
and the results of previous studies have not evaluated VIs applied in time-series models
from field locations with varying environmental conditions. The incorporation of multiple
types of VIs in prediction models at different field locations enables the analysis of the
sensitivity of target traits to the VI type while minimizing confounding factors such as soil
background reflectance, directional viewing angles, and atmospheric effects [19]. This will
further optimize VI selection in predictive model development.

To do this, our main objectives were (i) to assess the sensitivity of multiple types
of variables in LAI estimation across diverse environments, (ii) to assess the feasibility
of using multispectral sensors and the RF model for estimating the LAI in large-scale
maize breeding trials across various growth stages, and (iii) to investigate the dynamic
changes and primary variations in the maize LAI. Acquiring time-series phenotypic data
on crop performance can offer valuable insights into significant phenotypic changes and
environmental effects during the breeding process. Such data have potential application
value in modern crop breeding.

2. Materials and Methods
2.1. Experimental Site and Design

The maize experiment was performed from May to September 2023 at two locations
in Qitai County, Xinjiang Uygur Autonomous Region, China: Wheat Experiment Station of
Xinjiang Academy of Agricultural Sciences (89◦12′ E, 44◦13′ N) in Kanerz Township (KZ)
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and Join Hope Seed Company Experiment Station (89◦76′ E, 44◦08′ N) in Xidi Township
(XD) (Figure 1a). These sites experience a temperate continental climate, with an annual
rainfall of 270 mm and predominantly gray desert soils. The maize experiment conducted
at XD and KZ employed different fertilizer management strategies: (i) At XD, fertilizer
management was the same as that in local practices. Nitrogen (N) fertilization was applied
once, whereas Zinc (Zn) and potassium (K) fertilizers were applied four times during maize
growth. The fertilizers used at XD were urea (800 kg ha−1), zinc sulfate (133 kg ha−1), and
potassium sulfate (133 kg ha−1). (ii) In KZ, N fertilizer was applied several times. The
fertilizer used in KZ included urea (583 kg ha−1), monopotassium phosphate (83 kg ha−1),
monoammonium phosphate (83 kg ha−1), diammonium phosphate (83 kg ha−1), and zinc
sulfate (150 kg ha−1).

Figure 1. Location and design of study area. (a) Location of the study area; (b) DJI Matrice 300 RTK
quadcopter; (c) MicaSense RedEdge-P multispectral sensor; (d) RGB map and design of KZ shows the
100 selected plots (red squares) for situ measurements, nine ground control points (green squares),
and two replications (red and blue borders); (e) RGB map and design of XD, display content is the
same as (c); (f) removed soil background from maize plot.

A natural population panel consisting of 399 diverse maize inbred lines was employed
as the research material. This panel included several exceptional backbone elite inbred
lines from China and some high-quality inbred lines imported from abroad. The trials
were conducted using a randomized complete block design with two replications for each
inbred line (Figure 1d,e). Each environmental treatment (XD and KZ) comprised 816 plots
measuring 0.5 m × 1 m and spaced 0.5 m apart. In each plot, 10 seeds were planted with a
spacing of 0.25 m between them.

2.2. Data Acquisition

Data collection occurred at eight time points starting in June. Two types of maize data
were gathered: (i) manually collected LAI in situ and (ii) image data derived from UAS.
In situ, LAI data were obtained by measuring the primary dimensions of all maize leaves.
Representative plants of the two environmental treatments were randomly chosen for LAI
measurements on the same date. To ensure the assessment of replicated accessions across
various plots, sampling was conducted on 100 plots from each of the two fields. These
measurements were performed five times at each survey plot, and the resulting average
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LAI was considered the value for that particular plot (Figure 1d,e). For each maize plot and
measurement date, LAI was computed as follows:

LAI =
PLA

(
m2)

PS(m2)
, (1)

where PLA represents the total plant leaf area computed by summing the individual leaf
area of all obtained plant leaves. PS is the crop spacing (estimated as the inverse of the
plant density). The measured LAI values were employed as truth data for the RF model
training and to evaluate the accuracy of the indirect LAI estimates.

The UAV platform used for collecting MicaSense RedEdge-P (MicaSense, Seattle, WA,
USA) multispectral image data was a DJI Matrice 300 RTK quadcopter (DJI Innovations,
Shenzhen, China) (Figure 1b,c). A multispectral sensor, with a resolution of 1456 × 1088
pixels, captured image data comprising blue (B; 459–491 nm), green (G; 546.5–573.5 nm),
red (R; 660–676 nm), red edge (RE; 711–723 nm), and near-infrared (NIR; 813.5–870.5 nm)
bands. Throughout the growing season, this study conducted eight UAV overflights. These
overflights occurred at intervals of 7 days, corresponding to various growth stages of maize,
including the six-leaf (V6), eight-leaf (V8), ten-leaf (V10), fourteen-leaf (V14), tasseling
stage (VT), silking stage (R1), blister stage (R2), and milk stage (R3). To ensure accurate
geometric correction, 10 ground control points (GCPs) were evenly distributed within the
study area. Before and after the flight, the standardization of band values was achieved
using a calibration board. The UAV followed predefined flight routes generated by the DJI
software (version v10.01.08.01), ensuring at least 75% forward and side overlaps among
images. Flights were consistently conducted at an altitude of 20 m with a speed of 3 m/s.
Data collection occurred exclusively on sunny days between 11:00 AM and 13:00 PM.

2.3. Multispectral Image Data Processing

Figure 2 shows the LAI estimation framework outlined in this study. Pix4DMapper
software (version 4.0, Pix4D S.A., Prilly, Switzerland) was used for image preprocessing.
Subsequently, the preprocessed images were geo-calibrated using ArcMap software (ver-
sion 10.8, EsriInc., Redlands, CA, USA), resulting in the generation of an orthographic
image map of the field. For accurate extraction of maize spectral data, maize parts were
segregated from the soil background (Figure 1f). An SVM classification performed using
ENVI software (version 5.3, EXELIS., Boulder, CO, USA) was used to identify and extract
maize pixels [19]. The SVM tool parameters were set to the default values (i.e., gamma
in kernel function = 1, penalty parameter = 100, pyramid levels = 0, and classification
probability threshold = 0). Based on ground truth data, the Kappa coefficients of the
SVM classifications for all UAV imagery were >85%. Plot-level data extraction involved
defining individual plot boundaries from orthographic images with an assigned plot ID
corresponding to the maize inbred lines.

In this study, to evaluate the prediction performance of multiple types of VI in different
environments, we extracted the pixel number (COUNT), 5 spectral bands, and 22 VIs
(Table 1) from the time-series multispectral image for each maize plot. These data were
used to develop prediction models of LAI at the plot level. To evaluate the predictive
capacity of 22 VIs, they were divided into three classes: (i) VIs computed only in visible
bands (R, G, and B); (ii) VIs incorporating the NIR band but excluding the RE band; and
(iii) VIs computed including the RE band. In addition, in situ LAI measurements were
obtained in a field with uneven emergence rates. To mitigate the potential overestimation of
LAI in plots with higher pixels and to address scaling issues, the COUNT was normalized
(NCOUNT) based on the emergence rate (ER) within each plot:

NCOUNT = COUNT ×
ERp

ERmax
, ERp =

Gn
Sn

(2)



Agronomy 2024, 14, 2688 5 of 17

where ERp is the ER of each plot. ERmax denotes the maximum value of ER, with a default
value of 1. Gn and Sn represent the number of germination and sowing in each plot,
respectively. NCOUNT was employed for subsequent analysis.

Figure 2. A framework regarding leaf area index (LAI) estimation in this study.

Table 1. Vegetation indices used in this study.

Full Name Abbreviation Formulas a Ref. Category

Excess green vegetation index ExG (2G − R − B)/(G + R + B) [22]

Visible
bands

Normalized green–red difference index NGRDI (G − R)/(G + R) [19]
Normalized pigment chlorophyll ratio index NPCI (R − B)/(R + B) [19]

Red–green ratio index RGRI R/G [19]
True color vegetation index TCVI 1.4 × (2R − 2B)/2R − G − 2B + 0.4) [19]

Green chlorophyll index CIgreen NIR/G − 1 [15]

NIR
bands

Difference vegetation index DVI NIR − R [19]
Enhanced vegetation index EVI 2.5 × (NIR − R)/(NIR + 6R − 7.5G + 1) [16]

Green–blue normalized difference vegetation
index GBNDVI (NIR − (G + B))/(NIR + (G + B)) [19]

Green normalized difference vegetation index GNDVI (NIR − G)/(NIR + G) [19]
Normalized difference vegetation index NDVI (NIR − R)/(NIR + R) [24]

Plant senescence reflectance index PSRI (R − G)/NIR [25]
Ratio vegetation index RVI NIR/R [15]

Soil-adjusted vegetation index SAVI (NIR − R)/(NIR+ R +0.25) + 0.25 [15]

Chlorophyll index red edge CIre NIR/RE − 1 [24]

RE
bands

Modified enhanced vegetation index MEVI 2.5 × (NIR − RE)/(NIR + 6RE − 7.5G + 1) [19]
Normalized difference red edge index NDRE (NIR − RE)/(NIR + RE) [11]

NIR-RE normalized difference vegetation index NIRRENDVI ((NIR + RE)/2 − R)/((NIR + RE)/2 + R) [26]
Red edge difference vegetation index REDVI NIR − RE [27]

Red edge normalized difference vegetation index RENDVI (RE − R)/(RE + R) [19]
Red edge ratio vegetation index RERVI NIR/RE [28]

Soil-adjusted red edge index SARE (NIR − RE)/(NIR + RE + 0.25) + 0.25 [19]
a B, G, R, RE, and NIR represent the blue, green, red, red edge, and near-infrared bands, respectively.

The RF model has the capacity to efficiently process complex nonlinear relation-
ships and avoid redundancy of variable information, thereby meeting the requirements
for developing predictive models under multiple variables [20]. For model training, the
RF model incorporates 28 predictive variables (NCOUNT, five spectral bands, and 22
VIs), with in situ LAI serving as the response variable. Two RF models were constructed
for the ground-measured LAI datasets using a training dataset based on (1) a single
observation period only and (2) all observation periods. Each dataset was randomly
divided into two subsets: 75% served as the training set and 25% as the test set. In
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developing the models, the optimal number of variables in each model was initially deter-
mined. Variable selection method was implemented in the “VSURF” R package [21].
Then, hyperparameter optimization was conducted using the “tidymodels” package
(https://tidymodels.tidymodels.org/authors.html#citation, accessed on 15 October 2024.)
in R software (version 4.3.3) to find the optimal hyperparameter combination. A set of
values for the number of trees (100, 200, 300, 400, 500, 600, 700, 800, 900, 1000) and the
number of mtry (mtry is determined based on the outcomes of the variable selection in
steps of 1) were tested to identify the optimal hyperparameter combination of RF. The hy-
perparameter tuning was conducted on each training model. The selected hyperparameter
combinations of the optimal model were used for LAI prediction. During the process of
tuning hyperparameters, the model-building dataset was randomly divided into training
and tuning set and 5-fold cross-validation was performed. The significance of each variable
was rated based on the percentage increase in mean squared error (%IncMSE) [19]. During
model training, the reliability of the models was assessed by the mean squared error (MSE),
root mean squared error (RMSE), and determination coefficient (R2). The RF models were
implemented using the R (version 4.3.3) package “randomForest (version 4.7.1.1)”.

2.4. Soil Sampling and Measurement

In each field (XD and KZ), seven sampling points were chosen along the S-shape. Soil
samples at four depths (0–20, 20–40, 40–60, and 60–80 cm) were collected in the quadrat
using soil drill after removing the surface plants and litter. Five samples collected at the
same depth from each sampling point were thoroughly mixed, resulting in a total of 56
composite samples. The samples were transported to the laboratory and subjected to
drying to remove plant residues and other impurities. Subsequently, they were screened
through different sizes (0.25 mm and 1 mm) of sieves before being used for further analysis.

A pH meter and a conductivity meter (SevenExcellence-S470, Zurich, Switzerland)
were used to determine the soil pH value (pH) and electrical conductivity (EC), respectively,
after water extraction (with a 1:5 ratio of soil to deionized water). The soil organic carbon
(SOC) content was determined through K2Cr2O7-H2SO4 oxidation. A flame photometer
(Shanghaiyuefeng FP6400, Shanghai, China) was used to determine soil available potassium
(K) and total potassium (TK). Furthermore, the alkaline hydrolysis diffusion approach was
employed to measure the available soil nitrogen (N). Soil available phosphorus (P) was
determined using spectrophotometry (Shimadzu UV-1780, Kyoto, Japan). Soil total nitrogen
(TN) content was determined using the Kjeldahl digestion–distillation approach [29]. The
soil carbon to nitrogen ratio (C/N) was computed as the ratio of SOC to TN.

2.5. Statistical Analyses

For statistical analysis and graphical representation, R (version 4.3.3) was used. The
Least Significant Difference (LSD) test, performed at a 95% significance level, was employed
to compare the average values of various degraded areas, soil depths, and physical and
chemical properties of the soil and to assess the normality and uniformity of variance.
The analysis primarily relied on the R package “randomForest ” to examine the impact of
fertilization factors on the LAI of maize.

3. Results
3.1. Presentation of Data Collected In Situ

Figures S1 and 3 illustrate the manually collected LAI in situ and multispectral image
data, respectively. The manually collected and multispectral image data were obtained
eight times during the maize growing period. The analysis of the ground measurements
dataset indicated that the LAI exhibited a slightly skewed normal distribution until the
V10 period. However, the ground measurement data were based on a portion of the maize
material and may not be fully representative of the entire maize population.

https://tidymodels.tidymodels.org/authors.html#citation
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Figure 3. LAI data collected manually in situ during 8 periods. (a) KZ field; (b) XD field.

3.2. Significance of Variables in Various Random Forest Models

The sensitivity of each variable was evaluated based on the statistics of the variable
importance ranking and the variable selection results in the LAI prediction model across
different field locations. The significance of the 28 variables in estimating the LAI using an
RF model was evaluated, and the findings are shown in Figure S2. In each model, the top
seven (top 25%) of twenty-eight variables were defined as significant variables (Figure 4a,b).
For all models in both fields, the VI incorporating the NIR band (excluding the red edge
band) was the most important, followed by the VI with the RE band only. In minority
models, a single band appears only in the top 25% of most important variables, indicating
limited contributions of a single band to LAI predictions. Three VIs, namely RVI, NDVI,
and NPCI, were among the seven highest-ranked variables when predicting the LAI in the
KZ field. Conversely, in the XD field, REDVI, NCOUNT, and RVI are the most important
LAI prediction models. In the prediction models established across all observation periods,
NCOUNT is the most crucial variable in both fields.

Variable selection is often a necessary part of prediction model development. To
provide a reference on the variable importance in the RF models across various datasets
(single observation period only and all observation periods) for LAI prediction, the VIs
obtained from the variable selection are labeled (Figure S3 and 4c). For all models in both
fields, NCOUNT was the most frequently occurring variable, followed by DVI. Compared
to the single band and VI calculated in visible bands, the VI incorporating the NIR band
(excluding the red edge band) and the VI with the RE band only occur with greater
frequency. These findings indicate that VIs computed using NIR and RE can reflect more
information about maize growth compared to other VIs, as confirmed in different prediction
models. Of these, DVI and NCOUNT are more sensitive to changes in the LAI and are
therefore more effective in predicting the LAI.

3.3. Predictive Accuracy of the Models

To investigate the generality of the RF model, the models developed on a single
observation period and all observation periods were applied to the XD and KZ fields. The
model was developed using different datasets, and the results are presented in Figure 5
and Table S1. For prediction models trained with the dataset from a single observation
period, models developed before the VT generally yield higher accuracy (MSE: 0.001 to
0.017) compared to those developed after the VT of maize (MSE: 0.003 to 0.041). Among the
models established using a single observation period in the KZ field, the prediction accuracy
before the VT of maize is significantly high. The goodness-of-fit metrics for the test dataset
range from 0.62 to 0.94 for R2 and from 0.19 to 0.03 for RMSE. In the single observation
period model of the XD field, the prediction accuracy of the LAI is notably lower only
during R1 and R3. The R2 values for the test dataset are 0.50 and 0.34, respectively, with
corresponding RMSE values of 0.18 and 0.20. In some models established in a single
observation period, there was a considerable gap between the prediction accuracy of the
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training dataset and that of the test dataset. Compared with the models established using
a single observation period, the gap in prediction accuracy between the training and test
datasets was smaller in the model developed using all observation periods (all stage). The
R2 values for the test dataset were 0.79 and 0.86, with corresponding RMSE values of
0.18 and 0.12, respectively. Although some models established using a single observation
period were reliable, not every single observation period model was suitable for LAI
prediction. The model constructed using all observation periods offers a greater advantage
in predicting the LAI.

Figure 4. In (a) KZ and (b) XD field, top 25% most important variables in the random forest models
and (c) variables obtained through variable selection on the KZ and XD.
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Figure 5. The UAV on (a) KZ field and (b) XD field. Comparison between manually measured LAI
with LAI predicted by RF models.

3.4. Dynamics of the Maize Leaf Area Index

The RF models developed using all observation periods were employed to predict the
LAI phenotype of maize. Figure 6 shows the spatial patterns of the LAI predicted by the
RF model for the KZ and XD fields at eight growth stages. Prior to the maize VT stage,
most of the KZ field and XD field had LAI values between 0.1 and 1.2. The LAI values
higher than 1.4 were mainly distributed in the KZ field (after R1). Normal distributions
were observed for V10, V14, VT, R1, R2, and R3 in the XD and KZ fields, whereas V6 and
V8 showed slightly skewed normal distributions (Figure 7a,b). Notably, in the XD field, the
LAI of maize exhibited a significant increase with the growth and development of maize
in adjacent observation periods. In the KZ field, the LAI of maize exhibited no significant
change during V6 and V8 and gradually increased after V8. A substantial difference in
the LAI was observed between KZ and XD in each observation period, indicating that
the diversity in the maize LAI between the two fields is attributable to the environmental
conditions at various locations (Figure 7c).

To reduce the dimensionality of the time-series data, a principal component analysis
(PCA) was conducted using the LAI data for all eight observation periods in the KZ and
XD fields (Figure 8a,b). The first two principal components accounted for 55.0% and 21.1%,
respectively, of the growing variation in the LAI data in the KZ field. In the XD field, PC1
(57.9%) and PC2 (17.0%) explained 74.9% of the growing variation in the LAI data. PC1
primarily demonstrated the magnitude of the LAI value, whereas PC2 represented the
growth rate of maize leaves. Notably, this analysis yielded similar results in the KZ and
XD fields. The PCA effectively captured most of the variations in the time-series LAI. A
cluster analysis based on time-series data was conducted to further investigate the growth
variation types of the maize LAI in the two fields (Figure 8c,d). In the KZ field, the 399
maize inbred lines were categorized into three large clusters (A, B, and C), whereas in the
XD field, they were classified into two categories (A and B). These results indicate that
environmental conditions influenced the variation categories of the LAI time-series data
but not the variation patterns.
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Figure 6. Maps of LAI using the random forest prediction model trained on all stages. (a) KZ; (b) XD.

Figure 7. Violin plots of maize LAI using the RF model on (a) KZ field and (b) XD field. The horizontal
axis represents different observation periods. (c) Comparison of maize LAI between KZ field and XD
field in different observation periods. The central short line represents the median value. *, ** and ***
are significant correlation at p < 0.05, p < 0.01, p < 0.001, respectively. NS: not significantly different.
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Figure 8. Principal component analysis (PCA) and cluster analysis of maize LAI change on KZ field
(a,c) and XD field (b,d). Q, quantile. Different colors indicate clusters.

The analysis of variance for the eight observation periods revealed highly significant
variations in genotypes, environments, and genotype-by-environment interactions (Table 2).
Maize exhibited no significant effects from genotype-by-environment interaction in the
later stage of growth (after entering VT). After entering the R2 stage, maize is primarily
influenced by genotypes and environments, emphasizing the significance of this period for
environmental impacts on the LAI. Various soil conditions resulting from fertilization play
a vital role in changing the maize phenotype under the same climatic conditions.

Table 2. Analysis of variance for LAI.

Stage
F-Value

Environment Genotype Environment × Genotype

V6 73.14 *** 1.46 *** 1.40 ***
V8 242.87 *** 1.61 *** 1.42 ***

V10 55.29 *** 1.71 *** 1.22 **
V14 164.96 *** 1.60 *** 1.18 *
VT 22.58 *** 2.09 *** 1.17 *
R1 192.18 *** 1.78 *** 1.18 *
R2 459.75 *** 1.51 *** 0.92
R3 1357.43 *** 1.67 *** 1.02

*, ** and *** are significant correlation at p < 0.05, p < 0.01, p < 0.001, respectively.

3.5. Factors Influencing the Leaf Area Index

To understand the difference in soil environments between KZ and XD resulting from
various fertilization approaches, soil samples from the maize R2 stage were examined in
layers. The findings are illustrated in Figure 9a. Significant differences were observed
between the two fields (KZ and XD) in soil pH, SOC, TN, K, and C/N in the 0~20 cm soil
layer. In the 20~40 cm soil layer, significant differences were observed in soil TK, N, P, and
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K between KZ and XD. Furthermore, EC, TN, and C/N exhibited significant differences in
deep-seated soil (40~60 cm and 60~80 cm).

Figure 9. Effects of different fertilization treatments on LAI of maize. (a) Nutrient conditions of
different soil layers in KZ field and XD field. (b) Effects of soil nutrient conditions in different soil
layers on maize LAI. Higher values of mean decrease in accuracy indicate variables that are more
important to the LAI. * is significant correlation at p < 0.05.

The multiple regression findings of the RF model illustrated the influence of different
factors on the LAI of maize, as assessed by the Mean Decrease Accuracy metric. A higher
Mean Decrease Accuracy value indicates a significant impact of the factor on the model’s
prediction accuracy (Figure 9b). In general, the upper soil (0~20 cm and 20~40 cm) exhibits
a significant impact on the LAI of maize, whereas the lower (40~60 cm and 60~80 cm)
soil has a relatively minor influence. The first five primary factors influencing the LAI of
maize are associated with carbon and nitrogen in the soil. These findings indicate that the
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contents of carbon and nitrogen in soil are the primary factors affecting the LAI of maize.
However, it is crucial to recognize that these findings are based on the analysis conducted
using an RF model. Additional statistical analysis and domain knowledge validation are
required to fully understand the impact of these factors.

4. Discussion
4.1. Importance of Variables in Prediction Models

To predict LAI in maize at the plot level, RF machine learning models were employed
to assess the impact of various variables on prediction accuracy. The findings indicate that
VIs were typically more important than the individual spectral bands in predicting the
LAI, which is consistent with previous research [19,29]. In this study, VIs computed using
the NIR and RE bands proved useful in predicting the LAI. Similarly, in previous studies,
VIs associated with the NIR and RE bands consistently exhibited strong correlations with
the crop LAI, as evidenced in various crops such as vines [12], spinach plants [6], and
maize [9]. In addition, NCOUNT, a non-VI variable, exhibited significant importance
in some LAI prediction models (particularly in the RF model based on all observations).
Among these models, NCOUNT exhibited significant importance for LAI estimation. This
could be attributed to NCOUNT representing the purest crop pixels of the upper leaves,
which directly reflects the canopy growth of maize plots [16]. Since NCOUNT is pixel
data, it can avoid some VI saturation when the canopy structure reaches its peak [6,20].
The prediction models established multiple times during the pilot study underscore the
potential of NCOUNT in investigating canopy dynamics. Simultaneously, it also indicates
that NCOUNT as a variable has some limitations. These limitations may arise from the
drought of farmland soil and background noise from the surrounding environment (e.g.,
weeds) [16,20,30,31]. Some prediction models were established under conditions of low
soil moisture content in farmland due to the separation of farmland management between
the two fields (KZ and XD). Low soil moisture conditions can cause crop leaves to curl, a
scenario that directly affects the number of crop pixels extracted (COUNT). Nevertheless,
manually measured data are unaffected by curved leaves, resulting in a mismatch between
pixel data and manually measured data, consequently leading to the low contribution of
NCOUNT in some models. Furthermore, the noise generated by weeds in the plot can lead
to an incorrect estimation of NCOUNT [20], which will further affect the contribution of
NCOUNT in the model.

4.2. Prediction Accuracy and Influencing Factors of the Random Forest Model

The findings also indicated disparities in the importance ranking of variables in the
LAI prediction model across various observation periods or fields. The primary reason may
be that the VI, as a commonly employed input variable, is sensitive to the environment
during the estimation process [15]. Variations in environmental conditions, such as solar
radiation, sun angle, and cloud coverage, across various measurement dates could lead to
inconsistent measurements obtained by sensors deployed using UAVs [32]. Furthermore,
the occlusion factors must be considered, as spectral features only account for apparent
factors, while the LAI represents an aggregated level [19]. These observations indicate
the importance of employing multiple VIs in constructing prediction models. However,
the RF model developed using multiple variables may be overfitted and less robust than
expected [33]. In this case, the model may exhibit a good fit in the training dataset but
fail to achieve accurate predictions in the test dataset. This limitation could stem from the
abundance and distribution of the training datasets [29]. In this study, using measured
data from all observation periods to develop the model would broaden the abundance and
distribution of data, which may enhance the model’s robustness [33].

Overall, the findings demonstrate the utility of utilizing multiple types of variables
and an RF model to predict the LAI. Therefore, the incorporation of multiple variables is
recommended for predicting phenotypic traits across various environments. Although the
prediction findings of the model developed during the observation period are promising,
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there is still room for improvement. Since VIs are sensitive to environmental conditions,
future studies could consider conducting multiple data collections under different environ-
mental conditions to reduce the impact of environmental changes on sensor measurement
consistency. Furthermore, one advantage of RF is its ability to accommodate extensive
datasets [34]. By combining multiple variables, the accuracy of the RF model can be en-
hanced [35]. However, the challenge in multivariate estimations of crop phenotypes lies in
the redundancy of information among variables, which often impacts accuracy. Therefore,
it is crucial to use an appropriate number of variables [15]. The results indicate that mul-
tispectral sensors incorporating both RE and NIR bands provide appropriate additional
information, thereby facilitating the identification of suitable variables. These advance-
ments will further improve the efficacy of developing predictive models across multiple
environments.

4.3. Environmental Effects on Time-Series LAI Data

Plant growth is a dynamic and complex process that responds to environmental
changes. It is regulated by various sets of genes at different times and in different envi-
ronments [36,37]. Analyzing the dynamics of plant growth can help identify geno loci
that cannot be detected with single growth period data [4]. A previous investigation re-
vealed that 30.6% of the loci linked to dynamic traits detected in genome-wide association
studies were not identified in previous nondynamic studies [38]. Collecting time-series
phenotypes of crops is advantageous for breeding programs. In this study, analyzing
time-series data provides additional insights into the dynamics and trends crucial for breed-
ing. PCA provides valuable information on the dynamics of the LAI over time for maize
populations [4,6]. Our natural population of maize accessions exhibited varied time-series
LAI patterns, as reflected in the PCA results, where the first two principal components
represented the magnitude of the LAI value and growth rate of maize leaves, respectively.
These findings could facilitate the selection and breeding of maize varieties associated
with leaf characteristics, particularly those associated with growth rate. In addition, a
cluster analysis of time-series trait data can effectively categorize inbred lines exhibiting
similar trait dynamics and distinguish inbred line differences in the time dimension [4]. In
this study, natural population accessions of maize were categorized into different clusters
exhibiting distinct LAI growth patterns under the two environments. The categorization
of LAI variations through cluster analysis prompted further investigation into whether
growth patterns can be explained by environmental information. This interest stems from
the differences in soil nutrient conditions influenced by the environment. Notably, soil
nutrients associated with carbon and nitrogen, such as SOC, N, and C/N, were dominant
factors. These carbon- and nitrogen-related soil nutrients not only directly provide essential
nutrients for crop growth but also indirectly regulate the release of other nutrients in the
soil [39]. Thus, soil nutrients associated with carbon and nitrogen play a crucial role in
influencing the shifts in LAI over time.

High-throughput phenotyping techniques improved statistical capabilities by allow-
ing large-scale field phenotyping data collection to be rapidly realized. These statistical
capabilities provide the means to collect time-series data in multiple environments. Time-
series data can provide more phenotypic variation information, rendering it a valuable
addition to quantitative genetics investigations and plant breeding programs. With future
developments in the UAS, the scope of applications for time-series data in crop genetics
and breeding research is expected to broaden significantly.

5. Conclusions

This study employed a multispectral UAS based on an RF model to estimate the LAI
of maize during the entire growth stage under two fertilization approaches. In addition,
the primary variation patterns and environmental factors of the maize LAI varying with
time were examined. The findings of this study indicated that (1) among the variables in
the prediction model, VIs computed using NIR and RE bands exhibit superior performance
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in LAI prediction; (2) integration multispectral sensors and RF model in large-scale maize
breeding trials facilitate the prediction of the LAI at various growth stages; and (3) the soil
environment significantly impacts the variation in the LAI in maize after the R2 stage, and
such variation is substantially influenced by carbon and nitrogen in the upper soil.

This study holds significance in developing suitable prediction models for LAI esti-
mation across specific crop and phenology periods, thereby enhancing the applications of
UAVs in crop breeding.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/agronomy14112688/s1. Table S1: MSE statistics for different prediction
models. Figure S1: Multispectral image data. Similar multispectral image data were acquired eight
times during the maize growth period. Figure S2: Importance variables in the random forest models.
Figure S3: Results of variable selection for random forest models.
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