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Abstract: Soybean (Glycine max (L.) Merr.) is a vital agricultural crop and a key source of protein and
oil for food and feed production. The search for new genetic factors affecting the main agronomic
traits of soybean is a significant step for efficient breeding strategies. This study aimed to identify
marker–trait associations (MTAs) for seed protein and oil content and yield by conducting a genome-
wide association study (GWAS). The collection of 252 soybean accessions of five different origins was
analyzed over a period of five years. The GWAS was conducted using 44,385 SNP markers extracted
from whole-genome resequencing data using Illumina HiSeq X Ten. The multiple-locus mixed linear
model (MLMM) facilitated the identification of 38 stable MTAs: nine for protein content, nine for
oil content, seven for the number of fertile nodes, six for the number of seeds per plant, four for
thousand seeds weight, and three for yield per plant. Fifteen of these MTAs are presumed to be novel,
with one linked to seed protein content, three linked to seed oil content, and the remaining MTAs
linked to yield-related traits. These findings offer valuable insights for soybean breeding programs
aimed at developing new, competitive cultivars with improved seed quality and yield characteristics.

Keywords: soybean; genome-wide association study; marker–trait association; protein content; oil
content; yield components; genetic marker

1. Introduction

Soybean (Glycine max (L.) Merr.) is a valuable plant oil and protein source for food and
feed production. The seeds of soybean contain protein (~42%), carbohydrates (~33%), oil
(~20%), and mineral nutrients (~5%) [1–5]. As of 2024, Brazil, the USA, and Argentina are
the top soybean-producing countries in the world [6]. One of the regions where soybean
cultivation is increasing at a rapid pace is Kazakhstan. In 2011, soybeans were cultivated
on approximately 71,000 hectares of land in the country; by 2021, this area had tripled to
over 200,000 hectares [7,8]. The climate and photoperiod in Kazakhstan limit the number
of suitable areas for soybean cultivation; however, irrigation practices have enabled yields
to reach up to 5.5 tons per hectare [9]. The primary regions for soybean cultivation in
Kazakhstan are the Almaty region, which accounts for almost 90% of production, followed
by East Kazakhstan and the Kostanay region [10]. The country is focusing on developing
new soybean varieties with high productivity and protein and oil content to adapt to its
diverse soil and climatic conditions [7,9,10].

Total soybean yield requires several important traits, including the number of fertile
nodes, the number of seeds per plant, and the thousand seeds weight [11]. With regard
to increasing yield, one of the main directions for soybean breeders is improving seed
quality in new promising lines. Protein and oil content with yield components are complex
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polygenic quantitative traits influenced by a combination of genetic and environmental
factors, developmental processes, and trait interactions [12–14]. Only a few genes related
to yield have been verified in soybean. For instance, GmWRI1b (the WRI from WRINKLED,
the transcription factor regulating fatty acid biosynthesis) was found to increase fertile node
number, seed number per plant, and yield per plant [15]. The gene GmSWEET39 (Sugars
Will Eventually be Exported Transporters) on chromosome 15 was shown to transport
sucrose from the seed coat to the embryo and affect seed weight, size, and seed oil content
in soybean [14,16]. The major QTL cqSeed protein-003 on chromosome 20 has been reported
to have the most significant additive effect of any protein QTL mapped in the crop, and
Glyma.20G85100 is the gene likely responsible for this important locus [12,17,18]. While
progress has been made in identifying QTLs for soybean yield and quality traits, many
underlying genes remain undiscovered and require further studies.

One of the challenges for high-quality soybean production is a negative correlation
between protein content and oil/yield [5,12,17,19,20]. Therefore, different strategies can be
applied to produce soybeans with higher-than-average protein genotypes and improved
seed yield and oil content cultivars [21,22]. A promising approach to achieving this goal
is using modern molecular genetics tools, such as marker-assisted selection. Genome-
wide association study (GWAS) can be used in soybean improvement by identifying
genetic markers associated with desirable traits to provide these markers for breeding
programs [23–26]. Since the costs involved in whole-genome genotyping for accessions are
gradually becoming increasingly accessible for the breeding community, GWASs are emerg-
ing as an effective technique for determining the genes underlying complex quantitative
traits in soybean [27]. The first soybean GWAS was performed in around 2007–2008 and
involved the use of SSR markers [28,29]. In 2012–2018, high-density single-nucleotide poly-
morphism (SNP) chips containing tens of thousands of markers were developed [30–32],
including the SoySNP50K iSelect BeadChip from Illumina [33]. This chip contains over
50,000 SNPs and was one of the first high-density SNP chips developed for soybean, with it
used for yield, agronomic traits, and seed composition [34,35]. The increasing accessibility
of next-generation sequencing technologies (NGS) will likely lead to even denser SNP
maps and a more complete picture of soybean genetic variation [36,37]. In this study, we
aimed to identify marker–trait associations (MTAs) for yield components and protein and
oil content in a diverse panel of soybean accessions through a genome-wide association
study (GWAS) using whole-genome resequencing (WGRS) data. The panel was selected
based on its genetic diversity, as the accessions originated from five different regions. The
southeast region of Kazakhstan is the country’s main area of soybean production, and it is
critical to understand the genetic basis of seed quality and yield to develop new soybean
varieties for this region. The central hypothesis of this work is that a GWAS in this specific
environment will facilitate the identification of additional MTAs to enhance local soybean
breeding activities. In addition, accounting for different responses of the studied collections
to given environmental factors on the identification of MTAs, the results may serve as a
valuable reference for GWASs in other regions of the world.

2. Materials and Methods
2.1. Plant Material and Field Experiments

The soybean collection consisted of 252 breeding lines and cultivars from Kazakhstan
(n = 31) and different countries in Eastern Europe (n = 108), Western Europe (n = 23),
North America (n = 40), and East Asia (n = 50) (Table S1). The collection was grown in
the experimental fields of the KRIAPG (Kazakh Research Institute of Agriculture and
Plant Growing, Almaty region, Kazakhstan, 43◦15′ N, 76◦54′ W) from 2018 to 2022, with
two replicates. Sowing and harvesting were performed from May to September based on
Dospechov’s method [38]. The accessions were planted in four rows per plot: 25 cm plant
spacing, 50 cm row spacing, and 1 m row length. The replicates were evaluated yearly in a
randomized complete block design (RCBD) with randomly assigned soybean accessions.
The accessions were grown under uncontrolled natural conditions without additional
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treatment (fertilizers, fungicides, etc.). The field experiment design was standardized for
all seasons. The mean daily temperature and precipitation at the KRIAPG were recorded
during periods between key plant growth stages and are presented in Table S2.

2.2. Phenotyping of the Collection

Phenological observations were performed based on the method of Fehr and Caviness [39].
The planted soybean accessions were harvested at the R8 stage, the stage of full maturity,
where 95% of the pods had reached their full mature color. Thereafter, the collection was
screened based on yield component traits such as the number of fertile nodes (NFN, count),
the number of seeds per plant (NSP, count), the thousand seeds weight (TSW, g), and the
yield per plant (YP, g) based on the method of Korsakov and are presented in Table S1 [40].
The mean value of three random plants per plot was used for the phenotypic evaluation of
each individual genotype. The soybean seeds were assessed for their seed protein content
(SPC, %) and seed oil content (SOC, %) using the NIRS DS2500 Grain Analyzer (FOSS,
Hillerød, Denmark), with the calibration supplied by the manufacturer. The analyzer
operates by performing a sweep of frequencies, capturing data across a wide range of
wavelengths from 700 to 2500 nm. We followed the manufacturer’s recommendations
throughout our analysis to ensure accuracy and reliability.

2.3. Statistical Analyses of Phenotypic Data

Descriptive statistics—minimum, maximum, mean, averages, standard error, and
range values—for each year of the experiments were calculated. The single-factor analysis of
variance (ANOVA) for every year with genotype (G), environment (R), and genotype × envi-
ronment (G × E) interaction was calculated using SPSS v. 22 software (IBM Corp., Armonk,
NY, USA), and broad-sense heritability (h2) was estimated using the following formula:

h2 = VG/ (VG + VE + VG × E + Verror), (1)

where VG is the genotypic variance, VE is the environment variance, VG × E is the variance
due to the G × E, and Verror is the error variance [41]. Genotypic variance was derived
from the variation among the soybean accessions, whereas environmental variance was
estimated from the variation observed across the five years of study. The correlation analysis
of the studied traits was performed using SPSS v. 22.

2.4. Genotyping of the Collection

The WGRS data of 4,923,660 SNPs for 252 lines were obtained using the Illumina HiSeq
X Ten system at the Department of the School of Life Sciences, Guangzhou University,
China [42]. DNA samples were extracted and purified from the young leaves of individual
cultivar single seeds using commercial kits (Qiagen, Redwood City, CA, USA). For each
of the accessions in the panel, at least 5 µg of DNA was used to construct a sequencing
library with an Illumina TruSeq DNA Sample Prep Kit (Illumina Inc., San Diego, CA, USA),
according to the manufacturer’s instructions. Paired-end reads from the resequencing data
were mapped to the reference genome of Chinese cultivar Zhonghuang 13 through the
BWA software package (Cambridge, UK) [43]. The sequences close to indels were realigned
with the IndelRealigner function using GATK v. 4.2 [44]. SNP and indel were identified
using GATK v. 4.2 and SAMtools software (Boston, MA, USA) [42]. After excluding SNPs
with more than 10% missing data and a minor allele frequency (MAF) of less than 1%, a
total of 44,385 SNP markers were selected and used to determine the population structure
and marker–trait association (Table S3).

2.5. The Assessment of Population Structure

The population structure of the studied soybean collection was analyzed using STRUC-
TURE v. 2.3.4 software [45]. STRUCTURE used a systematic Bayesian clustering approach
applying Markov Chain Monte Carlo (MCMC) estimation [46]. We applied the admixture
model with correlated allele frequencies, allowing for individuals to have ancestry from
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multiple populations. The number of hypothetical groups ranging from k = 1 to 10 was
assessed using 100,000 burn-in iterations followed by 100,000 recorded Markov-chain repli-
cations with the number of iterations equal to 3. The Delta K(∆K), which determines the
most appropriate number of clusters (K) in datasets, was identified based on the method of
Evanno et al. [46] using the STRUCTURE HARVESTER v. 0.6.94 web-based program [47].
Files containing STRUCTURE results were used as input files for STRUCTURE HAR-
VESTER, where we used the default settings to identify the most likely number of clusters.
The obtained values were then transformed into a population structure (Q) matrix. The
kinship matrix (K) that describes the most likely similarity of each allele between acces-
sions was generated using TASSEL v. 5.0 [48]. Analysis of the linkage disequilibrium (LD)
between the SNP markers based on their squared correlations (R2) was also calculated in
TASSEL and visualized in RStudio v. 2024.04.2 [49].

2.6. Genome-Wide Association Study and MTA–MTA Interactions

Associations between genotypic and single-trait phenotypic data were identified us-
ing the multi-locus mixed linear model (MLMM) with the GAPIT package (version 3) in
RStudio (version 2024.04.2) [49,50]. The quantile–quantile (Q-Q) plots between the observed
and expected log10 p-values were compared to confirm the correction due to the K and Q
matrices. The p-value < 1 × 10−4 was used as a significance threshold for the identified
QTL, as the Bonferroni correction and false discovery rate (FDR) were too conservative and
stringent for this analysis [51]. The SoyBase database [52] was used to search candidate
genes for identified marker–trait associations with the reference genome of Chinese soy-
bean Cv. Zhonghuang 13, genome assembly version 1 (glyma. Zh13. gnm1). The linkage
disequilibrium decay distance was calculated by using the squared allele frequency corre-
lation (r2) in TASSEL and RStudio [49] and further applied as a boundary for identifying
candidate genes near detected significant SNPs. To detect QTN-by-QTN interactions, we
utilized the IIIVmrMLM method, which applies a multi-locus mixed linear model (MLMM)
incorporating epistatic interactions between quantitative trait nucleotides (QTNs) to identify
significant genetic associations influencing complex traits in soybean [53].

3. Results
3.1. Descriptive Statistics of Phenotypic Traits

The whole soybean collection was assessed using SPC and SOC and yield component
traits, such as NFN, NSP, TSW, and YP, from 2018 to 2022 years. Over five years, the yield
components showed significant diversity among the accessions. The mean value of the
protein content ranged from 40.95% in 2019 to 43.29% in 2020. The oil content showed a
small range of 20.31% to 21.01%. The maximum values of all yield components among the
studied years were recorded in 2022, followed by 2018; minimum values were registered
in 2019 for NFN, NSP, and TSW and in 2020 for YP. A summary of information on seed
quality traits and yield components across five years of experiments is presented in Table 1.

A normal distribution was observed for all six traits, as illustrated in Figure S1. The
check cultivar “Zhansaya” showed lower protein content values than the average datum
for the entire soybean collection. For the oil content and YP, “Zhansaya” demonstrated
values similar to the mean for the whole collection. For the remaining yield component
traits (NFN, NSP, and TSW), the check cultivar showed lower values than the collection’s
mean (Figure S1). The most promising genotypes identified in this study, which exhibited
superior performance in both SPC (>40%) and YP (>17 g), include the local breeding line
350/1 and the cultivars 1674 (China), Lybid (Ukraine), and Rainer 58 (Moldova) (Table S1).

ANOVA was used to assess the variance in the six studied traits based on genotype
(G), environment/year, and genotype × environment interaction (G × E). The results of
ANOVA, including p-values and heritability (h2) of six traits, are presented in Table 2. The
results showed that G, E, and G × E interaction had a strong significant effect on all studied
traits (p-value from <2 × 10−16 to 0.0106) except for the impact of G × E on seed protein
content (p-values 0.858). The heritability indices (h2) were calculated for each trait (Table 2).
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Table 1. Phenotypic variation in the seed protein and oil content and yield components of the soybean
collection across the five years of study.

Traits Value 2018 2019 2020 2021 2022 5-Year Mean

Seed protein content
(SPC, %)

min 35.85 35.09 37.85 35.10 36.04 37.07

max 48.59 48.22 48.60 49.30 47.70 48.36

mean ± SE 41.67 ± 0.19 40.95 ± 0.19 43.29 ± 0.18 41.96 ± 0.19 42.33 ± 0.15 42.12 ± 0.16

Seed oil content
(SOC, %)

min 16.45 15.87 16.60 16.20 16.89 17.05

max 24.38 23.96 23.65 24.30 24.08 23.78

mean ± SE 21.01 ± 0.10 20.87 ± 0.11 20.70 ± 0.11 20.97 ± 0.09 20.31 ± 0.09 20.70 ± 0.08

Number of fertile
nodes (NFN, count)

min 6.90 4.90 4.60 4.70 4.00 8.32

max 41.20 31.30 34.90 52.00 60.00 30.19

mean ± SE 19.59 ± 0.41 14.45 ± 0.34 17.45 ± 0.35 15.87 ± 0.47 24.77 ± 0.66 18.42 ± 0.29

Number of seeds per
plant (NSP, count)

min 15.00 8.40 6.70 8.00 5.80 17.04

max 105.10 87.70 84.20 126.00 182.50 81.07

mean ± SE 48.075 ± 1.12 36.51 ± 0.98 39.06 ± 0.86 40.27 ± 1.33 66.15 ± 1.84 46.03 ± 0.83

Thousand seeds
weight (TSW, g)

min 124.00 18.90 11.90 118.00 114.00 106.12

max 287.00 310.90 361.10 276.00 283.20 227.87

mean ± SE 175.97 ± 1.51 125.97 ± 3.5 145.17 ± 4.99 173.52 ± 1.61 187.59 ± 1.83 161.56 ± 1.49

Yield per plant (YP, g)

min 3.00 1.50 0.40 0.30 1.12 3.82

max 44.15 39.30 40.65 55.60 68.33 30.22

mean ± SE 16.54 ± 0.46 10.50 ± 0.36 10.68 ± 0.34 9.11 ± 0.45 20.45 ± 0.73 13.45 ± 0.31

SPC—seed protein content; SOC—seed oil content; NFN—number of fertile nodes; NSP—number of seeds per
plant; TSW—thousand seeds weight; YP—yield per plant; SE—standard error.

Table 2. ANOVA and heritability of seed quality and yield components in the studied soybean collection.

Trait Factors Df SS MS p-Value h2

Seed protein content
(SPC, %)

G 4 1091 272.87 <2 × 10−16 *** 0.64

E 4 585 146.13 <2 × 10−16 ***

G × E 16 63 3.95 0.858

Res. 1051 6542 6.22

Seed oil content
(SOC, %)

G 4 182.0 45.49 <2 × 10−16 *** 0.65

E 4 74.2 18.55 1.61 × 10−07 ***

G × E 16 62.9 3.93 0.0106 *

Res. 1050 2057.9 1.96

Number of fertile
nodes (NFN, count)

G 4 2260 565 4.99 × 10−09 *** 0.12

E 4 16.120 4030 <2 × 10−16 ***

G × E 16 2105 132 0.000432 ***

Res. 1219 60.794 50

Number of seeds per
plant (NSP, count)

G 4 20.589 5147 7.91 × 10−11 *** 0.12

E 4 143.650 35.913 <2 × 10−16 ***

G × E 16 17.503 1094 0.000114 ***

Res. 1219 60.794 50
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Table 2. Cont.

Trait Factors Df SS MS p-Value h2

Thousand seeds weight
(TSW, g)

G 4 73.688 18.422 4.14 × 10−07 *** 0.10

E 4 635.799 158.950 <2 × 10−16 ***

G × E 16 149.338 9334 7.42 × 10−09 ***

Res. 1221 2.499.565 2062

Yield per plant (YP, g)

G 4 4168 1042 3.02 × 10−15 *** 0.15

E 4 23.148 5787 <2 × 10−16 ***

G × E 16 2658 166 4.70 × 10−05 ***

Res. 1220 66.570 55

SPC—seed protein content; SOC—seed oil content; NFN—number of fertile nodes; NSP—number of seeds per
plant; TSW—thousand seeds weight; YP—yield per plant; Df—degree of freedom; SS—sum of squares; MS—mean
of squares; h2—heritability index; ***—p < 0.001, *—p < 0.05.

The Pearson correlation analysis showed that the protein content and oil content were
negatively and positively correlated with all studied traits (p < 0.01), respectively, whereas
the remaining components were positively correlated (Table 3).

Table 3. Correlation coefficients among the studied traits (mean data of 2018–2022).

Traits SPC SOC NFN NSP TSW

SOC –0.632 **

NFN –0.513 ** 0.289 **

NSP –0.573 ** 0.314 ** 0.913 **

TSW –0.413 ** 0.384 ** 0.407 ** 0.476 **

YP –0.607 ** 0.350 ** 0.770 ** 0.848 ** 0.609 **
“**” p < 0.01. SPC—seed protein content; SOC—seed oil content; NFN—number of fertile nodes; NSP—number of
seeds per plant; TSW—thousand seeds weight; YP—yield per plant.

3.2. The Assessment of Population Structure

A total of 44,385 SNPs were used to analyze LD and population structure. The results
of genome-wide LD decay analysis showed that at R2 of 0.1, the distance was 321,509 bp
(Figure S2). The population stratification was assessed using 44,385 SNP loci and the
STRUCTURE package. The results produced by the STRUCTURE and STRUCTURE
HARVESTER package applications suggested that K = 3 was the optimal value for the
studied collection, as the correlation between K and Delta K illustrated the maximum Delta
K at K = 3 (Figure 1A).

The distribution of soybean accessions among three generated subpopulations at K = 3
was as follows: Q1—80.5 % Eastern Europe, 8% Northern America, 5.5 % Western Europe,
3% East Asia, and 3% Kazakhstan; Q2—63% Eastern Europe, 19% Kazakhstan, 13% East
Asia, 5% Northern America, and 0% Western Europe; Q3—29.2% Eastern Europe, 25.6%
East Asia, 20.2% North America, 12.5% Kazakhstan, and 12.5% Western Europe (Figure 1B).
Kazakhstan’s soybean accessions were distributed among three subpopulations: 67.8% in
Q3, 29% in Q2, and 3.2% in Q1.
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Figure 1. Population structure of the studied soybean collection. (A) Delta K (∆K) plot and
(B) Bayesian clustering of the 252 soybean accessions at K = 3.

3.3. Genome-Wide Association Study and MTA–MTA Interactions

The GWAS was conducted using 44,385 SNPs, field data for four yield-related traits,
and protein and oil content. The results of the GWAS based on the MLMM in GAPIT
revealed 83 MTAs associated with the studied traits (Table 4). Among all 83 significant
MTAs found in different environments, 38 were identified in at least two years of the
experiment with significant p-values (p < 1 × 10−4) and considered stable MTAs. As a
result, we identified nine associations for protein content, nine for oil content, seven for
NFN, six for NSP, four for TSW, and three for YP (Table 4).

Table 4. The total number of marker–trait associations identified in this study.

Traits Number of Significant QTLs * Number of Stable MTAs Number of Published MTAs ** Number of Novel MTA

SPC 15 9 8 1

SOC 12 9 6 3

NFN 16 7 4 3

NSP 15 6 3 3

TSW 14 4 1 3

YP 11 3 1 2

Total 83 38 23 15

* p < 1 × 10−4. ** The detailed information about MTAs with references is provided in Table S4. SPC—seed protein
content; SOC—seed oil content; NFN—number of fertile nodes; NSP—number of seeds per plant; TSW—thousand
seeds weight; YP—yield per plant.

The Manhattan and Q-Q plots of the GWAS for the mean values of five years of protein
and oil content and for yield components are shown in Table S5. Detailed information about
stable MTAs of the studied traits identified in at least two years of the experiment is presented
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in Table 5. MTAs for protein content demonstrated a PVE range of 4.52–11.15% and the effect
on the trait from −0.92 to +0.92. Among the MTAs for oil content, the largest PVE was 9.48%
(SNP S16_6256537), and the largest negative effect was 1.29 (SNP S06_5537821).

Table 5. The list of identified significant MTAs associated with protein, oil, and yield components for
2018–2022 and the mean data.

Trait SNP Chr. Position (bp) p-Value Positive Allele Effect PVE (%) Year

SPC S02_40916569 2 40.916.569 2.80 × 10−05 C −0.73 6.98 2018, mean

SPC S05_3377432 5 3.377.432 5.06 × 10−05 T 0.75 4.81 2020, mean

SPC S06_5653082 6 5.700.406 1.92 × 10−05 T 0.88 7.36 2018, 2021, 2022, mean

SPC S06_48327505 6 48.327.505 2.66 × 10−05 T 0.69 8.23 2020, 2022, mean

SPC S10_45325143 10 45.325.143 3.67 × 10−05 A −0.92 7.24 2018, 2019, 2021, mean

SPC S14_2073248 14 2.073.248 2.21 × 10−05 A −0.87 8.45 2019, 2020, mean

SPC S14_45537479 14 45.537.479 5.53 × 10−05 A −0.85 4.52 2018, 2019, 2021, mean

SPC S17_40642517 17 40.642.517 1.26 × 10−05 A −0.7 8.04 2022, mean

SPC S19_48095581 19 48.015.856 1.04 × 10−06 G 0.92 11.15 2018, 2021, mean

SOC S03_3327118 3 3.349.008 4.03 × 10−05 G 0.35 6.38 2019, 2020, 2022, mean

SOC S06_5537821 6 5.653.082 2.04 × 10−05 A −1.29 5.56 2018, mean

SOC S07_42119515 7 42.119.515 9.80 × 10−06 G −0.5 7.81 2018, 2022, mean

SOC S09_41221274 9 41.221.274 7.71 × 10−05 A −0.49 4.97 2021, mean

SOC S14_45542107 14 45.542.107 6.91 × 10−05 T 0.59 6.94 2019, 2021, mean

SOC S16_4427570 16 4.427.570 6.67 × 10−05 G 0.55 6.76 2018, mean

SOC S16_6256537 16 6.256.537 4.17 × 10−05 T 0.59 9.48 2021, mean

SOC S16_36471151 16 36.461.023 4.63 × 10−05 A −0.55 5.81 2018, 2021, mean

SOC S17_5368514 17 5.368.514 8.13 × 10−05 T 0.48 5.48 2021, mean

NFN S07_17041516 7 16.978.432 6.77 × 10−06 T 4.24 6.35 2022, mean

NFN S11_8211474 11 8.211.474 6.01 × 10−05 G 3.48 6.81 2022, mean

NFN S13_28224204 13 28.224.204 2.28 × 10−06 C −3.68 7.50 2022, mean

NFN S18_55651846 18 55.651.846 4.34 × 10−05 G 1.44 7.01 2022, mean

NFN S19_38590123 19 38.590.123 5.59 × 10−06 T 4.37 8.12 2022, mean

NFN S20_11932337 20 11.932.337 6.92 × 10−05 C −2.05 6.41 2019, 2022, mean

NFN S20_34832847 20 34.832.847 1.37 × 10−05 A −1.36 9.02 2020, mean

NSP S04_48109794 4 48.109.794 2.27 × 10−05 G 13.54 6.32 2022, mean

NSP S07_17041516 7 17.041.516 2.32 × 10−05 T 10.72 5.08 2022, mean

NSP S10_45323571 10 45.323.571 4.08 × 10−06 T 5.59 8.27 2019, 2021

NSP S16_8084401 16 8.084.401 5.45 × 10−05 T −9.19 4.97 2018, mean

NSP S16_36572386 16 36.572.386 5.91 × 10−05 C 6.94 6.78 2019, 2021, mean

NSP S20_34832847 20 34.832.847 2.70 × 10−05 A −3.58 8.14 2020, mean

TSW S06_3119005 6 3.119.005 8.94 × 10−05 G 10.85 5.48 2020, mean

TSW S10_5908937 10 5.908.937 8.83 × 10−05 A −9.66 4.61 2020, mean

TSW S13_21819620 13 21.819.620 2.67 × 10−05 T 16.22 6.54 2019, mean

TSW S15_50483491 15 50.483.491 9.11 × 10−05 C −39.87 5.75 2020, mean

YP S03_580652 3 580.652 4.16 × 10−05 T 1.87 6.78 2019, 2021, mean

YP S06_3459276 6 3.459.276 2.60 × 10−05 C −2.81 7.48 2018, 2020

YP S08_14486855 8 14.486.855 4.08 × 10−09 G 3.96 11.98 2019

SNP—single nucleotide polymorphism; SOC—seed oil content; SPC—seed protein content; NFN—number
of fertile nodes; NSP—number of seeds per plant; TSW—thousand seeds weight; YP—yield per plant;
PVE—phenotypic variants explained. Markers in bold are the novel MTAs for this study.
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The MTAs for the NFN showed a PVE ranging from 6.35% to 9.02%; the most signif-
icant value was detected for SNP S20_34832847. For the NSP trait, the largest PVE was
8.27% (SNP S10_45323571), and the largest effect was +13.54 (SNP S04_48109794). MTAs
associated with TSW exhibited PVE values from 4.61% to 6.54%, with trait effects ranging
from −39.87 to +16.22. The most significant marker, S13_21819620 on chromosome 13,
showed the highest PVE of 6.54% and the largest positive effect of +16.22. The marker
S08_14486855 on chromosome 8 had the highest PVE at 11.98% and also the largest positive
effect of 3.96. Haplotype analysis was conducted to identify combinations of genetic vari-
ants associated with seed quality and yield traits. The identified multiple haplotype blocks
with row data for each trait are presented in Tables S6–S11. The weights of haplotypes
with different numbers of effective alleles are shown in Figures S3–S8. The most effective
haplotypes associated with increased protein and oil content for seed quality traits were the
combination of alleles CCCTAAAGG (Table S6) and GATATGTAT (Table S7), respectively.

Notably, several SNPs in LD were associated with two traits simultaneously. For exam-
ple, S16_36471151 and S16_36572386 were associated with both seed oil content and NSP.
Similarly, S06_5653082, S06_5537821, S14_45537479, and S14_45542107 were in LD and asso-
ciated with both protein and oil content. Additionally, S10_45325143 and S10_45323571 were
associated with both protein content and NSP, and markers S07_17041516 and S20_34832847
were related to both NFN and NSP (Table 4).

Among the identified MTAs for seed quality and yield components, 23 MTAs matched
with already reported QTLs from previous reports (Table 4). The interval of 321,509 bp
(LD distance at r2 = 0.01) was used as a window to map the candidate genes. Given the
significant long-range LD, a wider distance of approximately 1.3 Mbp was allowed to
present candidate genes, each annotated with its corresponding protein domain. Finally,
we identified ten candidate genes, and their position overlapped with our identified MTAs
(Table S4).

Specific genome-wide significant MTA–MTA interactions were detected for each
studied trait except for YP (Table 6).

Table 6. Detected MTA–MTA interactions.

Trait SNP Chr. Position (bp) SNP Chr. Pos. p-Value lm_Coefficient PVE (%)

SPC S06_5653082 6 5.700.406 S06_48327505 6 48.327.505 5.45 × 10−04 0.08725 0.54520

SPC S14_2073248 14 2.073.248 S14_45537479 14 45.537.479 4.46 × 10−05 −0.06032 0.06450

SPC S19_48095581 19 48.015.856 S05_3377432 5 3.377.432 2.14 × 10−04 0.06734 0.63980

SOC S07_42119515 7 42.119.515 S09_41221274 9 41.221.274 4.87 × 10−04 −0.05305 0.07854

SOC S16_4427570 16 6.256.537 S16_6256537 16 36.461.023 5.40 × 10−05 −0.05070 0.00965

NFN S07_17041516 7 16.978.432 S11_8211474 11 8.211.474 2.10 × 10−05 −0.05207 0.00874

NSP S16_8084401 16 8.084.401 S10_45323571 10 45.323.571 4.50 × 10−04 −0.04834 0.46540

NSP S16_36572386 16 36.572.386 S20_34832847 20 34.832.847 8.78 × 10−05 −0.04057 0.08748

TSW S13_21819620 13 21.819.620 S15_50483491 15 50.483.491 2.46 × 10−04 −0.03811 0.06885

SNP—single nucleotide polymorphism; SPC—seed protein content; SOC—seed oil content; NFN—number of fertile
nodes; NSP—number of seeds per plant; TSW—thousand seeds weight; PVE—phenotypic variants explained.

In total, nine MTA–MTA interactions were detected at p < 1 × 10−03, including three
interactions for SPC, two for SOC, two for NSP, one for NFN, and one for TSW. For YP, no
significant interactions were found. The interactions captured a total of 1.249% of PVE in
SPC, 0.088% of PVE in SOC, 0.009% of PVE in NFN, 0.553% of PVE in NSP, and 0.069%
of PVE in TSW. Unlike the case for MTAs found in GWAS, no large- or moderate-effect
MTA–MTA interactions were observed for studied traits.

4. Discussion

This research was conducted using 252 soybean accessions cultivated from 2018 to
2022 in the Almaty region, as this is the country’s primary soybean production region [7,54].
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Descriptive statistical analysis revealed significant variability for all studied traits, including
SPC, SOC, NFN, NSP, TSW, and YP for the studied collection (Table 1 and Figure S1). Wide
genetic diversity and a normal distribution within the analyzed population were sufficient
for a successful GWAS and offered robust data for identifying genetic loci associated with
the studied traits. The mean values of the phenotypic traits varied across the years, showing
environmental factors’ impact on the accessions’ performance (Table 2). For instance, the
mean SPC ranged from 40.95% in 2019 to 43.29% in 2020; in comparison, the SOC showed a
relatively narrow range (Table 1). The ranges in yield components were also considerably
variable, with the maximum values recorded in 2022 and the minimum recorded in 2019.
High temperatures during the R5–R6 stage are known to decrease protein content but
increase oil content [55]. In our study, the year 2020 was characterized by the coolest mean
temperatures (Table S2), which may have resulted in slower lipid metabolism and greater
protein accumulation (Table 1). In contrast, in 2018 and 2021, higher temperatures enhanced
oil accumulation (Tables 1 and S2). A large number of studied accessions exceeded the
performance of the check cultivar “Zhansaya” for all studied traits except SOC (Figure S1),
indicating that the collection has great potential for breeding activities in the region. Thus,
the variability of the soybean collection underscores the necessity of considering both
genetic and environmental factors in breeding programs aimed at improving soybean
traits [56]. Among the genotypes evaluated in this study, the most promising in terms
of both SPC (>40%) and YP (>17 g) were the local breeding line 350/1 and the cultivars
1674 (China), Lybid (Ukraine), and Rainer 58 (Moldova). These genotypes demonstrated
exceptional agronomic potential, making them valuable candidates for further breeding
programs focused on enhancing soybean protein content and yield.

The ANOVA results indicated that G, E, and G × E significantly affected all the studied
traits except for the G × E interaction on SPC and SOC (Table 2). The significant heritability
indices (h2) for SPC (0.64) and SOC (0.65) suggest that these traits are primarily influenced
by genetic factors, making them promising targets for genetic improvement. However,
the lower heritability indices for NFN (0.11), NSP (0.12), and TSW (0.10) indicate a more
substantial environmental influence on these traits, highlighting the complexity of breeding
for yield components [57]. The results of Pearson’s correlation analysis revealed that SPC
and SOC were negatively and positively correlated with all other traits (Table 3), respectively.
This inverse relationship between SPC and SOC is critical for breeding programs and is
recognized as evidence in genetics research, showing that both traits may compete for the
same resources, are regulated by complex genetic networks, and have been historically
selected for different uses, strengthening this inverse relationship [12,18,19,22,24,58].

High-yielding soybean cultivars are the main target of many world breeding programs
to optimize productivity and meet global food demand [59]. In a recent GWAS, key
genetic markers related to soybean yield components were identified through studies of
diverse genotype panels [60,61]. In this study, the application of the MLMM in a GWAS
facilitated the identification of 83 significant MTAs of seed quality and yield-related traits,
with 38 being stable across multiple years (Tables 4, 5 and S4). Among 38 stable MTAs,
20 yield-related associations were identified on 13 chromosomes across the soybean genome
(Tables 4 and S4). The literature has previously reported nine regions [32,60,62–68]. For
instance, in 2019, Karikari et al. [60] identified qSW-19-3 associated with seed weight. In
our study, in the close position, q.NFN.ipbb.19 was associated with NFN, suggesting that
this genome region may have a genetic factor with a pleiotropic effect. The gene Rab5a2
encodes a small GTPase located close to MTA S13_28224204 and was discovered as a
regulatory element for storage protein transport, influencing the seed protein content [63].
The MTAs q.NFN.ipbb.20.2 and q.NSP.ipbb.20, associated with yield traits, are situated
near the well-known protein gene POWR1 on chromosome 20 [65,66]. The POWR1 gene
regulates lipid metabolism and nutrient transport in flowers and developing seed coats [65].
The gene GmPDAT [67], a regulator of chromosome condensation, affects oil content found
in close position with TSW MTA, S13_21819620 (Table S4). The alignment of our findings
with previously reported QTLs strengthens the robustness of our significance threshold.
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Additionally, nine significant MTA–MTA interactions were identified for all traits except
for YP (Table 6). However, their individual effects ranged from 0.009% to 0.640% of PVE,
which is considerably smaller than the PVE values observed for MTAs in GWAS (ranging
from 4.52% to 11.98%), indicating their limited contribution to the variance of studied traits.

Protein and oil content are crucial seed quality components and essential traits in soybean
breeding. Although soybeans can achieve high yields, seed quality may often be compromised
due to the negative genetic correlation between protein and oil content [34,69–71]. Recent
studies have identified genetic loci that improve yield and seed quality, helping to develop
more efficient soybean varieties [24,71,72]. This study identified nine MTAs associated with
SPC spread across eight different chromosomes (Tables 5 and S4). The majority of these nine
regions have already been reported in the scientific literature [2,70,73–75]. Two pairs of QTLs
were identified for both SPC and SOC. These were q.Prt.ipbb.6.1 and q.Oil.ipbb.6 positioned on
chromosome 6 at 5653082 and 5537821 bp, respectively, and q.Prt.ipbb.14.2 and q.Oil.ipbb.14
positioned on chromosome 14 at 45537479 and 45542107 bp, respectively (Tables 5 and S4).
However, an opposite effect of minor alleles on SPC and SOC was observed, confirming a
negative correlation between these two traits observed in the current study (Table 3) and in
previous works [30,76]. Soybean gene GA20OX [77] positioned in the interval of 46961500-
46963113 bp on chromosome 10 is close to MTAs q.Prt.ipbb.10 and q.NSP.ipbb.10 associated with
SPC and NSP, respectively (Table S4). The gene is a key rate-limiting enzyme in gibberellins
(GA) biosynthesis, producing bioactive GA [77]. In soybean, GA20OX is described as a key
driver of seed traits and enhanced seed size and weight [78]. Jun Qin et al. (2022) [79] identified
several QTLs for SPC on chromosomes 10 and 14 for SPC, findings that are consistent with
our results (Table S4). In addition, Whiting et al. (2020) [73] reported several QTLs related to
SPC, including qPro_Gm02–3, whose physical position is in the proximity of S02_40916569,
identified in this study (Table S4). MTA with seed protein content q.Prt.ipbb.6.2 was close to
the candidate gene GmZF351 (encoding a zinc finger protein) was identified [80]. This gene
activates lipid biosynthesis pathways, contributing to increased oil accumulation in soybean
seeds [80]. Additionally, GmCYP78A72, located in the vicinity of the MTA q.Prt.ipbb.19, is
known to enhance seed size and weight [81]. The novel MTA qPrt.ipbb.14.2 is located near the
recognized membrane transport protein-like gene SoyZH13_14G158400, the component of
the membrane regulating transport across the lipid bilayer [52] and could consequently be
involved in controlling protein content through its impact on nutrient transport [82]. This
consistency across different studies highlights the potential stability of these MTAs, making
them strong candidates for marker-assisted selection.

This study identified nine MTAs for SOC on seven different chromosomes (Table 5).
These MTAs showed substantial variability in their effects and the percentage of PVE, high-
lighting their importance in the genetic control of oil content in soybeans (Tables 4 and 5).
The locations of MTAs on chromosomes 6, 9, 14, 16, and 17 overlapped with QTLs of seed
oil content (Table S4) [35,66,75,83,84]. Two MTAs on chromosome 16 were identified in the
same locations for QTLs for oil content identified by Jin and co-authors (2023) [66]. Moreover,
S14_45542107 on chromosome 14 in this study was located near the QTL for oil content, as
reported by Zhang and co-authors (2018) [35]. The gene GmDof4 [84] was found to increase the
content of lipids and seed weight in GmDof4 transgenic Arabidopsis seeds. MTA q.Oil.ipbb.17
was located close to this gene, suggesting that q.Oil.ipbb.17 may regulate similar metabolic
pathways influencing oil content and seed weight, as observed with GmDof4. The results of our
literature survey suggest that three MTAs for SOC on chromosomes 3, 7, and 16 are putative
novel factors for this trait. Among them, q.Oil.ipbb.7 was found in coding DNA sequences, such
as those involved in protein modification, gene SoyZH13_07G202800 [52,85]. MTAs q.Oil.ipbb.3
and q.Oil.ipbb.16.1 were close to genes SoyZH13_03G028300 and SoyZH13_16G043200, respec-
tively [52]. These genes are involved in important biological functions such as leucine-rich
repeat protein synthesis and cysteine protease activity [52]. The overlapping of these MTAs
with genes with recognized functional roles suggests the possible involvement of these genes
in the regulation of oil content in soybean.
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Several identified MTAs in this report were associated with multiple traits, suggesting
that they have pleiotropic effects. For example, S06_5653082 and S06_5537821 were linked
to protein and oil content, indicating that these traits may share genetic regulation path-
ways and resources. Additionally, S16_36471151 and S16_36572386 were linked to both
seed oil content and NSP and MTAs on chromosomes 7 and 20, which were pleiotropic
for yield component traits with similar marker effects (Table 4). This pleiotropic effect
is advantageous for breeding programs as they may simultaneously influence multiple
agronomic traits, providing valuable targets for breeding programs.

To summarize the main findings, we identified 15 putatively novel MTAs for protein,
oil, and yield components with no prior reports in the literature, emphasizing the discovery
of potential new genetic factors contributing to soybean quality and yield traits.

5. Conclusions

A comprehensive assessment of a diverse collection of 252 soybean accessions, includ-
ing seed quality and productivity traits, population structure, and MTAs, was performed.
Significant variability in seed protein content (SPC), seed oil content (SOC), and yield
components was observed across the studied accessions, offering valuable insights for
breeding programs. The analysis confirmed the strong influence of genotype, environment,
and genotype × environment interaction on these traits, with high heritability indices for
SPC and SOC. The GWAS identified 83 significant MTAs for key yield components and
seed quality traits, 38 of which were stable across multiple years. Importantly, 15 novel
MTAs were discovered, representing previously unreported genetic factors that could con-
tribute to improving soybean yield and quality. Additionally, several MTAs demonstrated
pleiotropic effects, influencing multiple traits such as SPC, SOC, and yield components.
This highlights the potential for these markers to be used in marker-assisted selection
(MAS) to simultaneously enhance several agronomic traits, making them highly valuable
for future soybean breeding programs. In summary, this study advances our understanding
of the genetic architecture of soybean quality and productivity traits and identifies novel
genetic loci that could be targeted in breeding efforts to develop high-yielding, high-quality
soybean varieties, particularly for Kazakhstan.
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