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Abstract: Agronomic traits and quality traits of alfalfa are of great importance to the feed industry.
Genomic selection (GS) based on genotyping-by-sequencing (GBS) data, if it achieves moderate
to high accuracy, has the potential to significantly shorten breeding cycles for complex traits and
accelerate genetic progress. This study aims to investigate the effect of different reference genomes
on the prediction accuracy of genomic selection. A total of 11 Bayesian and machine learning
models and nine different reference genomes were used to conduct genomic selection on five traits
in 385 alfalfa accessions. The accuracy of GS was evaluated using five-fold cross-validation, based
on the correlation between genomic estimated breeding values (GEBVs) and estimated breeding
values (EBVs). For the five traits, it was found that traits with high heritability exhibited significantly
higher prediction accuracy. The prediction accuracy fluctuated minimally across different reference
genomes, with the diploid genome showing relatively higher accuracy. For two high-heritability
traits, fall dormancy and plant height, predictions were made after SNP density reduction, and it was
observed that density had little effect on prediction accuracy. However, for the fall dormancy trait
in the diploid genome, more than half of the models showed regular fluctuations, with prediction
accuracy increasing as SNP density increased. In conclusion, this study provides a theoretical basis
for precision breeding of alfalfa and other polyploid crops by combining different reference genomes
and models, and offers important guidance for optimizing future genomic selection strategies.

Keywords: genomic selection; alfalfa; Bayesian model; machine learning; SNP density; heritability

1. Introduction

Alfalfa (Medicago sativa L.), a widely cultivated perennial leguminous forage crop,
plays a critical role in global agricultural production, offering substantial economic and
ecological benefits [1]. It is not only a primary source of high-quality feed but is also widely
used in agricultural ecosystems due to its nitrogen-fixing ability and soil-improvement
effects [2]. In recent years, with the increasing global demand for efficient and sustainable
agriculture, the breeding and improvement of alfalfa have become increasingly important.
Nevertheless, the complex genetic background of alfalfa, along with its polyploid nature
(both tetraploid and diploid), and the diverse environmental conditions it encounters
present significant challenges to traditional breeding approaches targeting its key traits [3,4].
Therefore, there is an urgent need to introduce new breeding strategies into alfalfa breeding
programs to accelerate genetic gains in target traits, thereby meeting the growing demand
for feed production.

Genomic selection (GS) offers new possibilities for alfalfa breeding by combining
phenotypic data and genome-wide marker information to predict the breeding value of
individuals, thereby reducing breeding cycles and improving selection efficiency [5]. GS
methods based on genome-wide markers have made some progress in plant breeding [2,6].
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For example, genomic selection using Bayesian methods and different cross-validation
techniques has been applied in crops like soybeans, rice, and maize, with prediction
accuracies reaching up to 0.9 for certain traits [7]. Additionally, machine learning methods
have recently been used to predict crop traits. For alfalfa yield prediction, machine learning
models can leverage weather data, historical yield information, and planting dates to
improve accuracy and generate more reliable forecasts [6-10]. The study by Zhang et al. [11]
showed that combining machine learning with GWAS-associated markers significantly
improved the prediction accuracy of genomic selection for complex traits such as fall
dormancy in polyploid crops, achieving 64.1% accuracy. Moreover, the choice of SNP
density also has a significant impact on the accuracy of genomic selection. Kriaridou
et al. [12] demonstrated that by using low-density SNP panels combined with genotype
imputation techniques, it is possible to maintain a prediction accuracy similar to that of high-
density panels while reducing costs. This approach provides a more cost-effective solution
for large-scale implementation of genomic selection, further promoting its application in
agricultural breeding programs, including alfalfa.

However, the application of genomic selection in alfalfa still faces numerous challenges.
Alfalfa is a typical tetraploid plant (2n = 4x = 32), which makes one of the biggest challenges
in genomic selection how to handle its complex genomic structure. Tetraploid plants
have four genome copies, and genomic selection often requires one to accurately integrate
the genotypic and phenotypic information of these copies [13]. There can be significant
variation between these copies, which complicates the association between genetic markers
and phenotypes. Additionally, the alfalfa genome is large and highly diverse, which
presents another issue in genomic selection: how to efficiently manage and analyze large-
scale genomic data. The alfalfa genome is large and contains a substantial number of
repetitive sequences and transposons, which complicates whole-genome sequencing and
SNP marker identification [14]. Therefore, genomic selection research for alfalfa and other
polyploid crops remains an area that urgently requires further exploration.

Given the polyploid genome and complex genetic architecture of alfalfa, selecting an
appropriate reference genome is essential for ensuring the accuracy of genomic selection
outcomes [15]. The effectiveness of genome-wide markers, and consequently the accuracy
of trait prediction, can be influenced by the choice of reference genome. The diversity of the
reference genome, its phylogenetic relationship to the target population, and the quality
of its assembly are key factors that can significantly influence the outcomes of genomic
selection. For instance, Jia et al. [16] utilized the genome of Medicago sativa to predict
25 agronomic and quality traits, applying three Bayesian statistical methods—BayesA,
BayesB, and BayesCr—and demonstrated varying levels of prediction accuracy across
traits. Similarly, Medina et al. [17] investigated salt stress tolerance in alfalfa, using Medicago
truncatula as the reference genome. Through genome-wide association studies (GWASs)
and genomic selection (GS) methods, they identified SNPs associated with salt stress and
employed machine learning models such as support vector machines and random forests
to enhance prediction accuracy. Annicchiarico et al. [18] compared genomic selection
using three different reference genomes for alfalfa: a simulated genome, a diploid genome
(M. truncatula), and a tetraploid genome. Their results indicated that prediction accuracy
followed the order mock reference genome > M. truncatula > M. sativa, providing valuable
insights into genomic selection at the polyploid level. However, there have been no
comprehensive studies to date that directly compare the effects of these reference genomes
on prediction accuracy. Therefore, further research on the impact of different reference
genomes on genomic prediction accuracy is of critical importance for breeding practices.

This study aims to evaluate the performance of various reference genomes in alfalfa
genomic selection by exploring the predictive ability of different statistical models and SNP
densities for high-heritability traits such as fall dormancy and plant height. The research
investigates how reference genomes influence genomic selection outcomes, providing
theoretical guidance for precision breeding of alfalfa and offering insights into genomic
selection strategies for other polyploid crops.
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2. Materials and Methods
2.1. Data Collection

The phenotypic data used in this study were derived from the research conducted by
Pégard et al. (2023) [19]. This research carried out phenotypic evaluations on 400 alfalfa
cultivars, assessing traits such as fall dormancy and flowering date, with measurements
taken in two locations, France and Serbia. The experiment consisted of 440 plots arranged
in 44 columns and 10 rows, using an augmented block design with four incomplete blocks.
The micro-environmental spatial effects were subtracted from the observed phenotypes
to obtain spatially adjusted phenotypes [20]. After filtering out duplicates, a total of
385 phenotypic data points were used in this study. The traits included flowering date (FD)
and autumn dormancy, measured by various parameters in autumn (dormancy (D), forage
dry matter yield (F-DMY), plant height (PH), and speed of elongation (SE)) over two years,
2019 (X19.X) and 2020 (X20.X), in two locations: Lusignan (.L) in France and Novi Sad (.N)
in Serbia. The phenotypic data used in this study were measured in 2019 in Lusignan and
include D19.L, EDMY19.L, PH19.L, SE19.L, and FD.L.

The GBS sequences used in this study are available in the NCBI SRA under BioProject
PRJNA961940, which includes 1012 individuals [19]. To explore the differences in genomic
selection at different ploidy levels, various alfalfa reference genomes were collected, as
shown in Table 1. The first column lists the genome labels used in this study, the second
column provides their Latin names, and the third column cites the reference from which
the genome data were sourced. The collected genomes include seven previously reported
genomes, as well as two haploid genomes derived from Xinjiang Daye and Zhongmu No.
4 alfalfa in this study, resulting in a total of nine distinct genomes.

Table 1. This table summarizes the genome assembly data for various alfalfa species and cultivars,
including both tetraploid and diploid forms.

Index Latin Name Ploidy References
MtA17 Medicago truncatula diploid [14]
MsDip Medicago sativa spp. caerulea diploid [21]
MsJHC Medicago polymorpha tetraploid [22]
MruH Medicago ruthenica tetraploid [23]
MsZM1 Medicago sativa Zhongmu-1 tetraploid [24]

MsXJDY Medicago sativa XinjiangDaye tetraploid [14]
MsZM4 Medicago sativa Zhongmu-4 tetraploid [25]
MsX]JDY-1H XinjiangDaye_haploid haploid [14]
MsZM4-1H Zhongmu-4_haploid haploid [25]

2.2. SNP Identification and Data Processing

In order to detect single-nucleotide polymorphisms (SNPs), sequencing reads were
first aligned to the reference genome using the BWA-MEM algorithm within BWA software
(version 0.7.17), producing BAM-format alignment files [26]. Subsequently, SAMtools
was employed to sort and index these files, optimizing the efficiency of downstream
analyses [27]. Additionally, samtools flagstat can be used to generate statistics for BAM
files, including alignment quality, unique mapping rate, and duplication rate [28]. SNP
identification was then conducted using BCFtools (version 1.10.2) [27]. The process began
by using the bcftools mpileup function to aggregate alignment data, producing a raw
VCF file that contained nucleotide variations and the corresponding read depth at each
site [29]. Following this, SNPs were identified with the bcftools call function, applying
a multi-allelic model to account for variation in regions with multiple alleles. After SNP
calling, the dataset was subjected to a filtering process, retaining only high-confidence SNPs
by excluding variants with a Phred quality score below 20 or a read depth lower than 10.
Next, the VCF dataset was refined using PLINK software (version 1.90b7.2) by removing
loci with a genotype missing rate greater than 20% or a minor allele frequency (MAF) less
than 0.05, ensuring that only bi-allelic sites remained for subsequent analyses [30]. To
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impute any missing genotypes, Beagle software (version 5.1) was utilized, resulting in a
comprehensive SNP dataset for further use in analysis [31]. In this study, to investigate the
impact of SNP density on prediction accuracy, we used the—thin parameter in vcftools
(version 0.1.17) to perform thinning, extracting one SNP every 20 k, 50 k, and 100 k bases,
resulting in three different SNP densities [32].

2.3. Genomic Prediction with Bayes Models

To perform genomic selection, several Bayesian models were employed to estimate the
marker effects on phenotypes. These models included BayesA, BayesB, BayesC, Bayesian
Lasso (BL), and Bayesian Ridge Regression (BRR), all implemented using BGLR software
(version 4.4.1) [33]. The general linear model used for genomic prediction is

y=Xp+Zg+e (@)

where y is the vector of phenotypic values, X is the design matrix for fixed effects, {3 is
the vector of fixed effect coefficients, Z is the genotype matrix (markers), g is the vector of
marker effects, and € is the residual error, which is assumed to follow a normal distribution,
€ ~ N(0,02). The posterior distribution p(g|y) for marker effects g is derived using
Bayes’ theorem:

p(gly) < p(ylg)p(g) 2)

where p(g) represents the prior distribution for marker effects, which differs among
the models:

BayesA: assumes each marker effect g; follows a normal distribution with a marker-
specific variance of

& ~N(0,0?) ©)

The variance G].z for each marker is drawn from an inverse Chi-Square prior distribu-
tion. This allows for different shrinkage across markers. The prior distribution for marker
variance is

01.2~Inverse Chi-Square v,8%)

BayesB introduces sparsity by assuming that most marker effects are zero, and only a
small proportion 7t of markers have non-zero effects. The prior for marker effects is

g ~ (1—m8 +mN(0,0?) 4

where 7t is the proportion of non-zero markers and 8¢ represents the Dirac delta function
for zero effects. Non-zero marker effects g; are drawn from a normal distribution with
marker-specific variances.

BayesC is similar to BayesB, but assumes that all non-zero marker effects share a
common variance, Oé. The prior for marker effects is

g ~ (1—m) + N (0, Gé) )
Here, (ré is shared across all non-zero markers, simplifying the variance structure.

Bayesian Lasso (BL) assumes that marker effects follow a Laplace (double-exponential)
distribution, which imposes a Lasso-like shrinkage:

p(giN) = Sexp(~Mlg)) ©)

The parameter A controls the degree of shrinkage, encouraging sparsity in the marker
effects by shrinking most effects towards zero.
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Bayesian Ridge Regression (BRR) assumes that all marker effects follow a normal
distribution with a common variance:

ngJPJ<O,G§) @)

This model applies uniform shrinkage to all marker effects, assuming that many loci
contribute small effects to the trait.

For all Bayesian methods, the analyses were performed using the BGLR package in
the R environment (version 4.4.1) [33]. The MCMC chain was run for 50,000 iterations,
with the first 1000 iterations discarded as burn-in. Additionally, 5-fold cross-validation was
conducted during the genomic selection process, with each model repeated 50 times.

2.4. Genomic Prediction with Machine Learning Models
2.4.1. Ridge Regression

Ridge Regression is a linear regression model with L2 regularization to prevent over-
fitting. The regularization term penalizes large coefficients, encouraging the model to
generalize better. The parameter « controls the strength of regularization, where larger o
values lead to stronger regularization.

min || y —Xw |3 +o || w |2 (®)

where y is the target variable, X is the input matrix, w represents the model coefficients,
and o is the regularization strength.

2.4.2. Kernel Ridge Regression

Kernel Ridge Regression combines Ridge Regression with kernel methods. It al-
lows the model to capture non-linear relationships by mapping input data into a higher-
dimensional space using a kernel function. The regularization prevents overfitting by
penalizing large coefficients.

: 2 2
min ||y — Ko [[7 +A [ e [3 )
where K is the kernel matrix, « represents the weights, and « is the regularization parameter.

2.4.3. Partial Least Squares Regression (PLS Regression)

PLS regression is used when there are many variables and multicollinearity. It finds
components that explain the most variance in both the input variables and the output,
making it useful for high-dimensional data.

PLS regression does not have a simple formula but operates by finding a set of latent
factors that maximize the covariance between input data X and response Y. It projects X
and Y onto new spaces while preserving the relationship between them:

T =XW

Y =TQ+E (10)

where T is the latent variable, W and Q are loading matrices, and E represents residuals.

2.4.4. Support Vector Regression-Linear Kernel (SVR_linear)

Support Vector Regression (SVR) with a linear kernel is a regression method that aims
to minimize prediction errors while maximizing the margin around the predicted values.
The parameter C balances between fitting the training data and maintaining a large margin.

1
= ~ 11
ming [|w[* +CY & (11)
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Subject to:
yi— (wxi+b) <e+§

(Wi +b) —y; < e +§ (12)

where § are slack variables, C controls the penalty for errors, and e defines the margin
of tolerance.

2.4.5. Support Vector Regression-Polynomial Kernel (SVR_poly)

Support Vector Regression with a polynomial kernel extends linear SVR by using a
polynomial kernel to capture non-linear relationships in the data. It maps input data into
a higher-dimensional space where they can be linearly separated, making it suitable for
complex data.

K(x;,%) = (xi-xj + 1‘)Cl (13)

where r is a constant, d is the degree of the polynomial, and K is the kernel function.

2.4.6. Linear Regression

Linear regression is one of the simplest regression models. It assumes a linear rela-
tionship between the input variables and the output variable and finds the best-fit line by
minimizing the sum of squared errors between predicted and actual values.

y=Xw+b (14)

where y is the predicted value, X is the input matrix, w is the model coefficient, and b is
the intercept.

The machine learning models used in this study were implemented by writing Python
scripts and built using the Python package sklearn. Each model underwent 5-fold cross-
validation and was run 50 times [11].

2.5. Heritability and Phenotypic Variance Explained

Heritability is a measure of the proportion of phenotypic variance that can be at-
tributed to genetic variation. It reflects the contribution of genetic factors to the total
variation observed in a particular trait. In this study, the contribution of all genetic effects
to phenotypic variance, referred to as broad-sense heritability, was assessed as follows:

2 b
=0 (15)
oy + Of

Here, 0% represents the estimated genetic variance in the model (calculated from
the effects of the genotype matrix, also known as additive genetic variance), and 0%
represents the estimated residual variance in the model (the non-genetic component of the
phenotypic variance).

To evaluate the predictive power of the model and assess the difficulty of predicting
traits, the PVE (Phenotypic Variance Explained) value was also calculated in this experiment.
The calculation method is as follows:

Var (Xtrain' B)

PVE =
Var (Ytrain)

(16)

Here, Xtrain represents the genotype matrix in the training set, B denotes the regression
coefficients (genetic effects) obtained from the model fitting, Var(Xi,in ) is the variance in
genetic effects in the training set, and Var(y,,,;,) is the total variance in the phenotypic
data in the training set.

All of the above methods were implemented using the BGLR package in the R environ-
ment [34]. To reduce randomness and avoid bias from chance occurrences, the calculations
were repeated 100 times, and the average value was taken.
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2.6. Cross-Validation and Genomic Prediction Accuracy

In this study, the Pearson correlation coefficient was used to assess the linear rela-
tionship between the true values and the predicted values from different models, which
reflects the prediction accuracy [35]. A 50 x 5 CV (5-fold cross-validation repeated 50 times,
totaling 250 trials) was conducted. The formula for calculating the correlation coefficient is
as follows:

- Z(ytrue B ytrue) (yPred B ypred) (17)

— 2 - 2
\/Z (ytrue - Ytrue) X (Ypred - yPred)
Here, y,, . Tepresents the actual values (true phenotypic values), Ypred Y€Presents the

predicted values (phenotypic values predicted by the model), and y,,,,. and Ypred are the
mean values of the actual and predicted values, respectively.

3. Results
3.1. The Impact of Different Reference Genomes on Mapping Rates

The properly paired rate refers to the proportion of paired-end reads that are correctly
paired and mapped to the reference genome, indicating the success rate of read alignment
and the quality of genome assembly. Figure 1 illustrates the distribution of properly paired
rates across various reference genomes, including MtA17, MsDip, MsJHC, MruH, MsZM1,
MsX]JDY, MsZM4, MsX]DY-1H, and MsZM4-1H. The vertical axis represents the percentage
of properly paired reads for each reference genome, providing a measure of the efficiency
and accuracy of read pairing relative to the genome in use. A violin plot is employed to
visualize the distribution of properly paired rates for each genome.

0.95

/// 1\\\
0.90 H H
B w17

H B msDip
WL MsJHC

|| B vruH

0.85 \ MsZM1
f 3 | | MsXJDY
: : | MsZM4
MsXJDY-1H
: ] Mszm4-1H
.
0.80 :
. L]
L[]
L] [ ]
° °
H
075 X S 3 N 3 1. 3 3
N o & S N ) N N
& § S S A A N
N4 ~

Figure 1. Violin plot of properly paired rates for different reference genomes, including MtA17,
MsDip, MsJHC, MruH, MsZM1, MsX]DY, MsZM4, MsXJDY-1H, and MsZM4-1H. The plot illustrates
the distribution of properly paired rates for each genome, with the width representing the density of
data points at different paired rate intervals.

The figure demonstrates that the correct SNP pairing rates, from highest to lowest,
follow the order of MsDip > MsJHC > MsZM4 > MsZM1 > MsZM4-1H > MsX]DY >
MsX]JDY-1H > MtA17 > MruH. Notably, MsDip exhibits the highest properly paired rate,
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indicating superior genome assembly quality and a high degree of genetic similarity with
the experimental samples. Therefore, MsDip is recommended as the primary reference
genome for alfalfa research. In contrast, MtA17, despite being a model species for alfalfa,
shows a relatively lower SNP pairing efficiency. This suggests that although the genome
assembly quality of MtA17 is relatively good, there are significant genetic differences
between this genome and the experimental samples, making it less suitable for the current
study’s needs. In the comparison between these two diploids, the correct pairing rate
of MsDip is significantly higher than that of MtA17, possibly due to the large difference
in their genome sizes, as well as the higher proportion of transposable elements in the
MsDip genome. MruH performs the worst, with a low and broadly distributed pairing
rate, potentially due to substantial genetic divergence or a more complex genome structure
relative to the experimental samples. Additionally, among all the genomes, MsDip shows
the fewest outliers, while MruH has the most outliers, with a wide distribution. The
performance of MsX]JDY and its haploid version is relatively poor, with notable fluctuations
in the data, indicating that the pairing efficiency for these genomes is particularly low
in certain samples. These variations among the reference genomes reflect differences in
genome complexity, genetic diversity, and their relevance to the experimental samples.
These differences between the reference genomes may reflect variations in diversity, genome
complexity, and genetic relatedness to the experimental subjects. These findings provide a
basis for selecting appropriate reference genomes for alfalfa genomic studies and genomic
selection breeding.

3.2. Comparison of Heritability for Five Traits Across Different Reference Genomes

To assess the impact of different reference genomes on heritability estimates, the BGLR
package was employed to calculate the heritability of five traits across various reference
genomes, as depicted in Figure 2. The x-axis represents the different reference genomes,
while the y-axis indicates heritability values. Each color corresponds to one of the five
traits: D19.L, EDMY19.L, PH19.L, SE19.L, and FD.L. As seen in the figure, the heritability
for the D19.L trait ranges from 0.76 to 0.78, while for the EDMY19.L trait, it spans from 0.64
to 0.67. For the PH19.L trait, heritability also falls within the 0.76 to 0.78 range, whereas
the SE19.L trait ranges from 0.64 to 0.58, and the FD.L trait has a heritability range of 0.58
to 0.59. Among all genomes, the heritability of D19.L. and EDMY19.L traits is relatively
high, generally exceeding 0.7, indicating a strong performance in heritability across various
genes for these models. In contrast, FD.L shows comparatively lower heritability. The
heritability performance across different traits in each genome remains relatively stable;
D19.L and EDMY19.L traits, in particular, maintain high heritability levels across all
genomes, suggesting that these models possess consistent predictive ability across different
genes. The results indicate that the choice of reference genome has minimal influence
on heritability, as heritability across most genomes shows little fluctuation, except for
certain traits in MsXJDY and MsJHC, which exhibit slightly lower values compared to
other genomes.

3.3. Genomic Selection Prediction Accuracy

To evaluate the effects of different reference genomes and prediction models on pre-
diction accuracy, 11 commonly used genomic selection models were employed, including
BayesA, BayesB, BayesC, BL (Bayesian Lasso), BRR (Bayesian Ridge Regression), Kernel
Ridge, linear regression, PLS regression, Ridge Regression, and Support Vector Regression
(SVR), with both linear and polynomial kernels. These models were applied to genomic
selection for five traits: D19.L, EDMY19.L, PH19.L, SE19.L, and FD.L. Pearson correlation
coefficients were used to assess the prediction accuracy, as depicted in Figures 3-7, as
well as a distribution plot of the results repeated 50 times. The x-axis represents different
reference genomes, while the y-axis displays the prediction accuracy achieved by each
model in genomic selection. An asterisk marks the top three genomes in terms of average
prediction accuracy for each model.



Agronomy 2024, 14, 2768

9of 18

0.8

0.6

Heritability
o
S

0.2

0.0

09
06
03
0.0

Heritability Across Various Reference Genomes for Different Traits

Traits

D19.L
F.DMY19.L
PH19.L
SE19.L
FD.L

Genome

MtA17
MsDip
MsJHC
MruH
|§| MsZM1
IE MsXJDY
|§| MsZM4
MsXJDY-1H
MsZM4-1H

A XY O < o> N \g o <
~ 9 g S S Q S A N
N ¥ &y
¥ N
Figure 2. Heritability distribution of five traits across different reference genomes. The x-axis
represents various reference genomes, including MtA17, MsDip, MsJHC, MruH, MsZM1, MsX]DY,
MsZM4, MsXJDY-1H, and MsZM4-1H. Each group contains five traits (D19.L, EDMY19.L, PH19.L,
SE19.L, and FD.L), and the y-axis represents the heritability, ranging from 0.0 to 0.8. The bar chart
shows the heritability differences for each combination of genome and trait, with colors indicating
different trait types.
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Figure 3. Comparison of prediction accuracy for the D19.L trait across different reference genomes.
The plot displays the prediction accuracy distribution across 9 different reference genomes for
11 models. An asterisk (*) indicates the top three models based on the average prediction accuracy

for each model.
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Figure 4. Comparison of prediction accuracy for the EDMY19.L trait across different reference
genomes. The plot displays the prediction accuracy distribution across 9 different reference genomes
for 11 models. An asterisk (*) indicates the top three models based on the average prediction accuracy
for each model.
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Figure 5. Comparison of prediction accuracy for the PH19.L trait across different reference genomes.
The plot displays the prediction accuracy distribution across 9 different reference genomes for
11 models. An asterisk (*) indicates the top three models based on the average prediction accuracy
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In the prediction of the D19.L trait, it can be observed that six out of the eleven
models showed higher prediction accuracy under the MsDip reference genome. Most
models exhibited relatively consistent prediction accuracy across all reference genomes,
with correlation values concentrated between 0.6 and 0.7. MsDip performed well in most
models, particularly in Bayesian models, where it showed the best performance. Next,
MsJHC demonstrated good predictive performance across five models, including BayesA,
BayesC, and machine learning models. MsZM1 showed high prediction accuracy in four
models: BL, BRR, KernelRidge, and SVR_poly. Additionally, in some models, such as
linear_regression and SVR, the monoploid prediction accuracy was also relatively high.
This may be related to the correct pairing ratio, which is consistent with the results of the
correct pairing rate. However, it is worth noting that the prediction accuracy of MsXJDY
and MsZM4 was relatively low, likely due to the complexity of their genomes and the
more fluctuating distribution of their correct pairing rates. In contrast, the prediction
accuracy for the EDMY19.L trait was more variable, with significant differences in model
performance across different reference genomes. However, it was consistent that the MsDip
and MsJHC genomes yielded excellent prediction results, and in some models, the haploid
also demonstrated high prediction accuracy. For the PH19.L trait, the prediction results
showed consistent correlations across the reference genomes and models, with Bayesian
and support vector machine models performing particularly well across all genomes,
maintaining correlations above 0.65. MsDip exhibited strong prediction performance across
all seven models. In predicting the SE19.L trait, accuracy was generally lower than for other
traits, especially in the MtA17 and MsX]JDY genomes. Nevertheless, MsDip demonstrated
solid prediction performance in eight models. Finally, for the FD.L trait, MsJHC and MsDip
exhibited high prediction accuracy in most models. It is worth noting, however, that some
reference genomes also showed relatively high prediction accuracy in specific models and
traits. This suggests that, although predicting this trait is challenging, certain combinations
of reference genomes and models can still provide relatively high prediction performance.

Overall, there are some differences in prediction accuracy across traits with different
models and reference genomes, but the diploid genome consistently showed higher and
more stable prediction accuracy across multiple traits and models. These results suggest
that certain models may perform better for specific traits depending on the reference
genome, providing important insights for future genomic selection research.

3.4. Comparison of PVE Values Across Different Reference Genomes

This study evaluated the PVE (Phenotypic Variance Explained) values for five phe-
notypes across different reference genomes, as shown in Figure 8. In genomic selection,
PVE is a key metric that quantifies the contribution of genomic markers to the variation
in phenotypic traits, representing the proportion of Phenotypic Variance Explained by the
markers. The results indicate that, with the exception of the FD.L trait, the MsDip and
MsJHC genomes exhibit particularly high PVE values for the other traits, suggesting these
two genomes have stronger predictive power for most traits and may be valuable targets
for breeding efforts. For the FD.L trait, the PVE values are generally lower compared to
other traits, with values ranging from 0.4 to 0.55 across different genomes. The MsX]JDY
genome shows the highest PVE value for FD.L, indicating its relatively strong explanatory
ability for this trait, whereas the MruH genome has the lowest PVE value, suggesting a
more limited capacity to account for phenotypic variation in FD.L.

Overall, the MsDip and MruH genomes consistently show higher PVE values across
multiple traits, indicating that they may be ideal reference genomes for explaining variation
in these traits during genomic selection. In contrast, the MtA17, MsJHC, and MsX]JDY
reference genomes show lower PVE values for most traits and may not be the optimal
reference genomes for these traits.
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Figure 8. Comparison of Phenotypic Variance Explained (PVE) across different reference genomes for
five traits. The x-axis shows the genomes: MtA17, MsDip, MsJHC, MruH, MsZM1, MsX]DY, MsZM4,
MsXJDY-1H, and MsZM4-1H. The y-axis represents the PVE values ranging from 0.0 to 0.8. Each bar
group corresponds to a genome, while each colored bar within the groups indicates a specific trait:
D19.L (light orange), EDMY19.L (light blue), FD.L (yellow), PH19.L (red), and SE19.L (light green).
This figure highlights the capacity of different genomes to explain phenotypic variance for each trait,
showing clear distinctions between genomes and their influence across various traits.

3.5. Genomic Selection Prediction Accuracy at Different SNP Densities

From the results of the experiment, MsDip showed overall stability and better perfor-
mance in genomic selection, indicating that it may serve as an optimal reference genome.
Consequently, two traits with high heritability (D19.L and PH19.L) were selected to in-
vestigate how varying SNP densities affect the accuracy of genomic selection predictions.
Figure 9 shows the genomic selection prediction accuracy for these two high-heritability
traits on the MsDip reference genome after SNP thinning. The SNP densities are divided
into three groups, 20 k, 50 k, and 100 k, representing SNP selection at intervals of 20 K, 50 K,
and 100 K bases, respectively. The x-axis represents different models, including BayesA,
BayesB, BayesC, BL (Bayesian Lasso), BRR (Bayesian Ridge Regression), Kernel Ridge,
linear regression, PLS regression, Ridge Regression, and Support Vector Regression (SVR)
with linear and polynomial kernels. The y-axis indicates the prediction accuracy, used to
evaluate the performance of each model under different SNP densities.

For the D19.L trait, overall prediction accuracy significantly improves as SNP density
increases. At a 20 K SNP density, most models demonstrate moderate prediction accuracy,
ranging from approximately 0.55 to 0.6. When SNP density is reduced to 50 K, the prediction
accuracy improves to around 0.6 to 0.7, with models such as BayesA, BayesC, BL, BRR, and
Ridge showing the best performance at this density. Further decreasing the SNP density to
100 K results in only slight improvements in some models (e.g., BayesB, PLS regression),
suggesting that a 50 K SNP density already provides sufficient genetic information, and
additional SNPs do not significantly enhance prediction accuracy. In summary, for the
D19.L trait, four models exhibit a trend of decreasing prediction accuracy as density
decreases, while five models achieve the highest prediction accuracy at the 50 K density.
For the PH19.L trait (Figure 9), the prediction accuracy is generally higher than that for the
D19.L trait. A consistent pattern is observed across all machine learning methods and the
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BL model: as SNP density decreases, prediction accuracy also declines. Overall, higher
SNP densities tend to provide better prediction accuracy; however, certain models can still
maintain good prediction accuracy even at lower densities.
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Figure 9. Prediction accuracy of the D19.L and PH19.L traits in MsDip genomes at different SNP
densities. The x-axis represents various genomic prediction models, including BayesA, BayesB, BL,
Ridge, and others, while the y-axis represents prediction accuracy. Each set of box plots corresponds
to three different SNP densities (20 k, 50 k, 100 k), distinguished by different colors.

4. Discussion

In this study, the genomic prediction accuracy of different statistical models was
evaluated using phenotypic and genotypic data from mature genetic resources under
various reference genomes of alfalfa. Traits such as fall dormancy (D19.L) and plant
height (PH19.L) exhibited high heritability across different reference genomes, suggesting a
strong genetic basis for these traits. The high heritability values observed in this study are
consistent with previous findings in alfalfa breeding, confirming the potential for effective
genomic selection on these key traits [36].

By applying multiple genomic prediction models, we were able to assess the relative
performance of different approaches. Models such as BayesC, Ridge Regression, and Sup-
port Vector Regression (SVR) with a polynomial kernel performed well under higher SNP
densities [37]. These models leveraged the genetic information provided by higher marker
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density, allowing them to capture complex genetic architectures, which is particularly
important for traits like D19.L and PH19.L, which are controlled by multiple loci.

Interestingly, even at reduced SNP densities, models like BayesA and SVR maintained
reasonable prediction accuracy, indicating that they can achieve high predictive precision
even with fewer markers. This suggests that these models can efficiently utilize the available
genetic information, making them suitable for cost-effective breeding programs with limited
genotyping resources [38]. This finding is especially significant for resource-constrained
breeding programs, where genomic selection can be implemented while balancing costs.

The differences in prediction accuracy across reference genomes and traits underscore
the importance of selecting the optimal reference genome for genomic prediction [39]. For
instance, the Medicago sativa and diploid genomes provided higher prediction accuracy
for high-heritability traits such as D19.L and PH19.L. This highlights the critical role of
choosing a reference genome that is genetically aligned with the target population, as
the genetic structure of the reference genome profoundly affects the predictive power of
genomic selection models [15,16,40]. The variation between traits and genomes suggests
that there is no one-size-fits-all solution for genomic prediction [41,42]. Instead, the choice of
reference genome and model should be tailored to specific breeding objectives and available
resources [2,17]. The performance differences across SNP densities also demonstrate that
genomic prediction can be optimized based on breeding goals and resource availability.

Another key aspect is the impact of heritability on model performance. Traits with
high heritability, such as D19.L and PH19.L, achieved better prediction accuracy across all
models and SNP densities, which aligns with the expectation that high-heritability traits
are more suitable for genomic selection [6]. However, for traits with lower heritability,
the prediction accuracy of genomic models was more unstable, with a more pronounced
decline in predictive accuracy as SNP density decreased [17,29,43-45]. This suggests that
breeders should carefully consider the heritability of target traits when designing genomic
selection strategies, as traits with lower heritability may require higher SNP densities and
more complex models to achieve satisfactory predictive accuracy.

Itis important to note that the use of polyploid genomes in plants like alfalfa introduces
additional challenges. Compared to diploid genomes, polyploid genomes are much more
complex, which makes genomic selection more difficult [46]. This is because polyploid
genomes involve multiple copies of genes and intricate genetic interactions, which can lead
to variability in prediction accuracy [2]. As a result, selecting the appropriate reference
genome and optimizing models remain critical issues in polyploid genome selection. In
particular, breeding programs for polyploid plants must carefully consider how to select
markers, address the effects of gene copy numbers, and manage the cost of genotyping data.

Furthermore, with the advancements in high-throughput genomics technologies and
the accumulation of data, genomic selection models are continuously evolving. Future
research could explore more genomic information, such as transcriptomic data, epigenetic
information, and metabolomic data, all of which can provide additional genetic insights
for breeding [47]. For example, epigenetic modifications may have a significant impact
on plant trait expression, particularly under environmental stress conditions [48]. Inte-
grating multi-level omics data can not only improve the accuracy of predictions but also
provide more comprehensive theoretical support for molecular breeding, thus promoting
the development of precision breeding [49].

Lastly, our study lays a solid foundation for future research to explore more complex
genetic architectures, including epistatic interactions and gene-environment interactions.
Although this study primarily focused on additive genetic effects, non-additive effects
may also play a significant role in trait phenotypic variation, particularly for traits like
F-DMY and SE19.L, where prediction accuracy was more variable. Future research could
incorporate these non-additive components into genomic prediction models to further
improve the predictive accuracy and broaden the application of genomic selection in alfalfa
and other forage crops.
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5. Conclusions

This study investigates the application of different reference genomes and statistical
models in the genomic selection of alfalfa and evaluates their impact on the prediction
accuracy of key traits in alfalfa. The results indicate that for all five traits, the prediction
accuracy was highest when using the diploid genome. Moreover, in many cases, a positive
correlation was observed between SNP density and prediction accuracy: the higher the
SNP density, the better the prediction accuracy. There were also differences in the predictive
performance of various Bayesian and machine learning models across traits. In conclusion,
this study provides valuable insights for precision breeding of alfalfa and other polyploid
crops and establishes a theoretical foundation for optimizing genomic selection strategies.

Author Contributions: Conceptualization, Y.S. and X.Z.; methodology, X.Z.; software, X.Z., R.Z.,
and T.Z.; validation, X.Z., R.Z. and T.Z,; investigation, X.Z.; resources, X.Z., T.Z., C.G. and Y.S.; data
curation, X.Z., R.Z. and T.Z.; writing—original draft preparation, X.Z. and Y.S.; writing—review and
editing, X.Z., C.G. and Y.S.; visualization, X.Z. and R.Z.; supervision, Y.S.; project administration,
Y.S,; funding acquisition, C.G. and Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Natural Science Foundation of Heilongjiang Province
(grant number LH2022C050) and the Natural and Science Foundation of China (grant number
U21A20182).

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: We are grateful to the high-performance computing center at Harbin Normal
University for the support of our analysis works. We are also grateful to Manman Li and Shuaixian
Li for technical assistance in this research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.  Atanda, S.A.; Govindan, V,; Singh, R.; Robbins, K.R.; Crossa, J.; Bentley, A.R. Sparse testing using genomic prediction improves
selection for breeding targets in elite spring wheat. Theor. Appl. Genet. 2022, 135, 1939-1950. [CrossRef] [PubMed]

2. Alemu, A.; Astrand, J.; Montesinos-Lopez, O.A; Isidro, Y.S.].; Fernandez-Gonzalez, J.; Tadesse, W.; Vetukuri, R.R.; Carlsson, A.S.;
Ceplitis, A.; Crossa, J.; et al. Genomic selection in plant breeding: Key factors shaping two decades of progress. Mol. Plant 2024,
17, 552-578. [CrossRef] [PubMed]

3. Werner, C.R.; Gaynor, R.C,; Sargent, D.J.; Lillo, A.; Gorjanc, G.; Hickey, ]. M. Genomic selection strategies for clonally propagated
crops. Theor. Appl. Genet. 2023, 136, 74. [CrossRef] [PubMed]

4. Wang, X,; Shi, S.; Ali Khan, M.Y.; Zhang, Z.; Zhang, Y. Improving the accuracy of genomic prediction in dairy cattle using the
biologically annotated neural networks framework. J. Anim. Sci. Biotechnol. 2024, 15, 87. [CrossRef] [PubMed]

5. De Oliveira Celeri, M.; da Costa, W.G.; Nascimento, A.C.C.; Azevedo, C.E,; Cruz, C.D.; Sagae, V.S.; Nascimento, M. Multivariate
Adaptive Regression Splines Enhance Genomic Prediction of Non-Additive Traits. Agronomy 2024, 14, 2234. [CrossRef]

6. Villumsen, T.M.; Su, G.; Guldbrandtsen, B.; Asp, T.; Lund, M.S. Genomic selection in American mink (Neovison vison) using a
single-step genomic best linear unbiased prediction model for size and quality traits graded on live mink. J. Anim. Sci. 2021, 99,
skab003. [CrossRef]

7. Kaler, AS,; Purcell, L.C.; Beissinger, T.; Gillman, J].D. Genomic prediction models for traits differing in heritability for soybean,
rice, and maize. BMC Plant Biol. 2022, 22, 87. [CrossRef]

8. Annicchiarico, P; Nazzicari, N.; Li, X.; Wei, Y.; Pecetti, L.; Brummer, E.C. Accuracy of genomic selection for alfalfa biomass yield
in different reference populations. BMC Genom. 2015, 16, 1020. [CrossRef]

9.  Annicchiarico, P.; Nazzicari, N.; Pecetti, L.; Romani, M.; Ferrari, B.; Wei, Y.; Brummer, E.C. GBS-Based Genomic Selection for Pea
Grain Yield under Severe Terminal Drought. Plant Genome 2017, 10, 2. [CrossRef]

10. Whitmire, C.D.; Vance, ].M.; Rasheed, HK.; Missaoui, A.; Rasheed, K.M.; Maier, EW. Using machine learning and feature
selection for alfalfa yield prediction. AI 2021, 2, 71-88. [CrossRef]

11.  Zhang, F; Kang, J.; Long, R.; Li, M.; Sun, Y.; He, F; Jiang, X.; Yang, C.; Yang, X.; Kong, J.; et al. Application of machine learning to
explore the genomic prediction accuracy of fall dormancy in autotetraploid alfalfa. Hortic. Res. 2023, 10, uhac225. [CrossRef]
[PubMed]

12. Kiriaridou, C.; Tsairidou, S.; Fraslin, C.; Gorjanc, G.; Looseley, M.E.; Johnston, I.A.; Houston, R.D.; Robledo, D. Evaluation of

low-density SNP panels and imputation for cost-effective genomic selection in four aquaculture species. Front. Genet. 2023, 14,
1194266. [CrossRef] [PubMed]


https://doi.org/10.1007/s00122-022-04085-0
https://www.ncbi.nlm.nih.gov/pubmed/35348821
https://doi.org/10.1016/j.molp.2024.03.007
https://www.ncbi.nlm.nih.gov/pubmed/38475993
https://doi.org/10.1007/s00122-023-04300-6
https://www.ncbi.nlm.nih.gov/pubmed/36952013
https://doi.org/10.1186/s40104-024-01044-1
https://www.ncbi.nlm.nih.gov/pubmed/38945998
https://doi.org/10.3390/agronomy14102234
https://doi.org/10.1093/jas/skab003
https://doi.org/10.1186/s12870-022-03479-y
https://doi.org/10.1186/s12864-015-2212-y
https://doi.org/10.3835/plantgenome2016.07.0072
https://doi.org/10.3390/ai2010006
https://doi.org/10.1093/hr/uhac225
https://www.ncbi.nlm.nih.gov/pubmed/36643744
https://doi.org/10.3389/fgene.2023.1194266
https://www.ncbi.nlm.nih.gov/pubmed/37252666

Agronomy 2024, 14, 2768 17 of 18

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Fu, C,; Hernandez, T.; Zhou, C.; Wang, Z.Y. Alfalfa (Medicago sativa L.). Methods Mol. Biol. 2015, 1223, 213-221. [CrossRef]
[PubMed]

Chen, H.; Zeng, Y.; Yang, Y.; Huang, L.; Tang, B.; Zhang, H.; Hao, F,; Liu, W,; Li, Y.; Liu, Y.; et al. Allele-aware chromosome-level
genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nat. Commun. 2020,
11, 2494. [CrossRef]

Du, C.; Wei, ].; Wang, S.; Jia, Z. Genomic selection using principal component regression. Heredity 2018, 121, 12-23. [CrossRef]
Jia, C.; Zhao, F; Wang, X.; Han, J.; Zhao, H.; Liu, G.; Wang, Z. Genomic Prediction for 25 Agronomic and Quality Traits in Alfalfa
(Medicago sativa). Front. Plant Sci. 2018, 9, 1220. [CrossRef]

Medina, C.A.; Kaur, H.; Ray, L; Yu, L.X. Strategies to Increase Prediction Accuracy in Genomic Selection of Complex Traits in
Alfalfa (Medicago sativa L.). Cells 2021, 10, 3372. [CrossRef]

Annicchiarico, P.; Nazzicari, N.; Bouizgaren, A.; Hayek, T.; Laouar, M.; Cornacchione, M.; Basigalup, D.; Monterrubio Martin, C.;
Brummer, E.C.; Pecetti, L. Alfalfa genomic selection for different stress-prone growing regions. Plant Genome 2022, 15, e20264.
[CrossRef]

Pégard, M.; Barre, P.; Delaunay, S.; Surault, F.; Karagi¢, D.; Mili¢, D.; Zori¢, M.; Ruttink, T.; Julier, B. Genome-wide genotyping
data renew knowledge on genetic diversity of a worldwide alfalfa collection and give insights on genetic control of phenology
traits. Front. Plant Sci. 2023, 14, 1196134. [CrossRef]

Julier, B.; Blugeon, S.; Delaunay, S.; Mappa, G.; Ruttink, T.; Pégard, M.; Barre, P. Optimisation of GBS protocols for efficient
genotyping of forage species. In Exploiting Genetic Diversity of Forages to Fulfil Their Economic and Environmental Roles, Proceedings
of the 2021 Meeting of the Fodder Crops and Amenity Grasses Section of EUCARPIA, Freising, Germany, 6-8 September 2021; Univerzita
Palackého v Olomouci: Olomouc, Czech Republic, 2021; pp. 71-74.

Li, A.; Liu, A.; Du, X,; Chen, J.Y,; Yin, M.; Hu, H.Y,; Shrestha, N.; Wu, S.D.; Wang, H.Q.; Dou, Q.W,; et al. A chromosome-scale
genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. Hortic. Res. 2020, 7, 194. [CrossRef]

Cui, J.; Lu, Z.; Wang, T.; Chen, G.; Mostafa, S.; Ren, H.; Liu, S.; Fu, C.; Wang, L.; Zhu, Y.; et al. The genome of Medicago
polymorpha provides insights into its edibility and nutritional value as a vegetable and forage legume. Hortic. Res. 2021, 8, 47.
[CrossRef] [PubMed]

Wang, T,; Ren, L.; Li, C.; Zhang, D.; Zhang, X.; Zhou, G.; Gao, D.; Chen, R.; Chen, Y.; Wang, Z. The genome of a wild Medicago
species provides insights into the tolerant mechanisms of legume forage to environmental stress. BMC Biol. 2021, 19, 96.
[CrossRef] [PubMed]

Shen, C,; Du, H.; Chen, Z,; Lu, H.; Zhu, E; Chen, H.; Meng, X; Liu, Q.; Liu, P; Zheng, L. The chromosome-level genome sequence
of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Mol. Plant 2020,
13,1250-1261. [CrossRef]

Long, R.; Zhang, F.; Zhang, Z.; Li, M.; Chen, L.; Wang, X.; Liu, W.; Zhang, T,; Yu, L.X.; He, E; et al. Genome Assembly of Alfalfa
Cultivar Zhongmu-4 and Identification of SNPs Associated with Agronomic Traits. Genom. Proteom. Bioinform. 2022, 20, 14-28.
[CrossRef]

Jung, Y.; Han, D. BWA-MEME: BWA-MEM emulated with a machine learning approach. Bioinformatics 2022, 38, 2404-2413.
[CrossRef]

Danecek, P; Bonfield, ].K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, RM,;
et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [CrossRef]

Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Align-
ment/Map format and SAMtools. Bioinformatics 2009, 25, 2078-2079. [CrossRef]

Liu, J.; Shen, Q.; Bao, H. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens. PLoS
ONE 2022, 17, €0262574. [CrossRef]

Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, PI.; Daly, M.].; et al.
PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. |. Hum. Genet. 2007, 81, 559-575.
[CrossRef]

Baransel, S.1.; Ser, G. Evaluation of Beagle Genotype Imputation Method and An Application. Yuz. Yil Univ. ]. Agric. Sci. 2017, 27,
531-542.

Danecek, P; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.;
et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156-2158. [CrossRef] [PubMed]

Pérez-Rodriguez, P.; de Los Campos, G. Multitrait Bayesian shrinkage and variable selection models with the BGLR-R package.
Genetics 2022, 222, iyac112. [CrossRef] [PubMed]

Pérez, P.; de los Campos, G. Genome-wide regression and prediction with the BGLR statistical package. Genetics 2014, 198,
483-495. [CrossRef] [PubMed]

Vojgani, E.; Holker, A.C.; Mayer, M.; Schon, C.C.; Simianer, H.; Pook, T. Genomic prediction using information across years with
epistatic models and dimension reduction via haplotype blocks. PLoS ONE 2023, 18, e0282288. [CrossRef]

Banci¢, J.; Ovenden, B.; Gorjanc, G.; Tolhurst, D.J. Genomic selection for genotype performance and stability using information on
multiple traits and multiple environments. Theor. Appl. Genet. 2023, 136, 104. [CrossRef]

Burny, C.; Nolte, V.; Dolezal, M.; Schlétterer, C. Highly Parallel Genomic Selection Response in Replicated Drosophila
melanogaster Populations with Reduced Genetic Variation. Genome Biol. Evol. 2021, 13, evab239. [CrossRef]


https://doi.org/10.1007/978-1-4939-1695-5_17
https://www.ncbi.nlm.nih.gov/pubmed/25300843
https://doi.org/10.1038/s41467-020-16338-x
https://doi.org/10.1038/s41437-018-0078-x
https://doi.org/10.3389/fpls.2018.01220
https://doi.org/10.3390/cells10123372
https://doi.org/10.1002/tpg2.20264
https://doi.org/10.3389/fpls.2023.1196134
https://doi.org/10.1038/s41438-020-00417-7
https://doi.org/10.1038/s41438-021-00483-5
https://www.ncbi.nlm.nih.gov/pubmed/33642569
https://doi.org/10.1186/s12915-021-01033-0
https://www.ncbi.nlm.nih.gov/pubmed/33957908
https://doi.org/10.1016/j.molp.2020.07.003
https://doi.org/10.1016/j.gpb.2022.01.002
https://doi.org/10.1093/bioinformatics/btac137
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1371/journal.pone.0262574
https://doi.org/10.1086/519795
https://doi.org/10.1093/bioinformatics/btr330
https://www.ncbi.nlm.nih.gov/pubmed/21653522
https://doi.org/10.1093/genetics/iyac112
https://www.ncbi.nlm.nih.gov/pubmed/35924977
https://doi.org/10.1534/genetics.114.164442
https://www.ncbi.nlm.nih.gov/pubmed/25009151
https://doi.org/10.1371/journal.pone.0282288
https://doi.org/10.1007/s00122-023-04305-1
https://doi.org/10.1093/gbe/evab239

Agronomy 2024, 14, 2768 18 of 18

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Calus, M.P,; Veerkamp, R.F. Accuracy of multi-trait genomic selection using different methods. Genet. Sel. Evol. 2011, 43, 26.
[CrossRef]

Clark, S.A.; Hickey, ] M.; Daetwyler, H.D.; van der Werf, ].H. The importance of information on relatives for the prediction of
genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet. Sel.
Evol. 2012, 44, 4. [CrossRef]

Jiang, Y.; Schulthess, A.W.; Rodemann, B.; Ling, J.; Plieske, J.; Kollers, S.; Ebmeyer, E.; Korzun, V.; Argillier, O.; Stiewe, G.; et al.
Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using
an independent sample. Theor. Appl. Genet. 2017, 130, 471-482. [CrossRef]

Riedelsheimer, C.; Czedik-Eysenberg, A.; Grieder, C.; Lisec, ]J.; Technow, F,; Sulpice, R.; Altmann, T.; Stitt, M.; Willmitzer, L.;
Melchinger, A.E. Genomic and metabolic prediction of complex heterotic traits in hybrid maize. Nat. Genet. 2012, 44, 217-220.
[CrossRef]

Rincent, R.; Lalog, D.; Nicolas, S.; Altmann, T.; Brunel, D.; Revilla, P; Rodriguez, V.M.; Moreno-Gonzalez, J.; Melchinger, A.; Bauer,
E.; et al. Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: Comparison of
methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 2012, 192, 715-728. [CrossRef] [PubMed]

Lubanga, N.; Massawe, E.; Mayes, S.; Gorjanc, G.; Banc¢i¢, ]. Genomic selection strategies to increase genetic gain in tea breeding
programs. Plant Genome 2023, 16, €20282. [CrossRef] [PubMed]

Munyengwa, N.; Le Guen, V.; Bille, H.N.; Souza, L.M.; Clément-Demange, A.; Mournet, P.; Masson, A.; Soumahoro, M.; Kouassi,
D.; Cros, D. Optimizing imputation of marker data from genotyping-by-sequencing (GBS) for genomic selection in non-model
species: Rubber tree (Hevea brasiliensis) as a case study. Genomics 2021, 113, 655-668. [CrossRef] [PubMed]

Parveen, R.; Kumar, M.; Swapnil; Singh, D.; Shahani, M.; Imam, Z.; Sahoo, J.P. Understanding the genomic selection for crop
improvement: Current progress and future prospects. Mol. Genet. Genom. 2023, 298, 813-821. [CrossRef]

Mbo Nkoulou, L.F,; Ngalle, H.B.; Cros, D.; Adje, C.O.A.; Fassinou, N.V.H.; Bell, J.; Achigan-Dako, E.G. Perspective for genomic-
enabled prediction against black sigatoka disease and drought stress in polyploid species. Front. Plant Sci. 2022, 13, 953133.
[CrossRef]

Wang, X.; Liu, Z.; Zhang, F,; Xiao, H.; Cao, S.; Xue, H.; Liu, W,; Su, Y;; Liu, Z.; Zhong, H.; et al. Integrative genomics reveals the
polygenic basis of seedlessness in grapevine. Curr. Biol. 2024, 34, 3763-3777.e3765. [CrossRef]

Li, D; Liu, Q.; Schnable, P.S. TWAS results are complementary to and less affected by linkage disequilibrium than GWAS. Plant
Physiol. 2021, 186, 1800-1811. [CrossRef]

Gupta, PK. Quantitative genetics: Pan-genomes, SVs, and k-mers for GWAS. Trends. Genet. 2021, 37, 868-871. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1186/1297-9686-43-26
https://doi.org/10.1186/1297-9686-44-4
https://doi.org/10.1007/s00122-016-2827-7
https://doi.org/10.1038/ng.1033
https://doi.org/10.1534/genetics.112.141473
https://www.ncbi.nlm.nih.gov/pubmed/22865733
https://doi.org/10.1002/tpg2.20282
https://www.ncbi.nlm.nih.gov/pubmed/36349831
https://doi.org/10.1016/j.ygeno.2021.01.012
https://www.ncbi.nlm.nih.gov/pubmed/33508443
https://doi.org/10.1007/s00438-023-02026-0
https://doi.org/10.3389/fpls.2022.953133
https://doi.org/10.1016/j.cub.2024.07.022
https://doi.org/10.1093/plphys/kiab161
https://doi.org/10.1016/j.tig.2021.05.006

	Introduction 
	Materials and Methods 
	Data Collection 
	SNP Identification and Data Processing 
	Genomic Prediction with Bayes Models 
	Genomic Prediction with Machine Learning Models 
	Ridge Regression 
	Kernel Ridge Regression 
	Partial Least Squares Regression (PLS Regression) 
	Support Vector Regression–Linear Kernel (SVR_linear) 
	Support Vector Regression-Polynomial Kernel (SVR_poly) 
	Linear Regression 

	Heritability and Phenotypic Variance Explained 
	Cross-Validation and Genomic Prediction Accuracy 

	Results 
	The Impact of Different Reference Genomes on Mapping Rates 
	Comparison of Heritability for Five Traits Across Different Reference Genomes 
	Genomic Selection Prediction Accuracy 
	Comparison of PVE Values Across Different Reference Genomes 
	Genomic Selection Prediction Accuracy at Different SNP Densities 

	Discussion 
	Conclusions 
	References

