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Abstract: Brazil is one of the largest grain producers worldwide, with yields heavily dependent
on ecologically and financially expensive inputs. One possible approach to reduce these inputs is
inoculation with plant-growth-promoting bacteria, whose large-scale use depends on a continual
search for new genotypes for inoculant production. Several bacteria with potential for this have been
isolated from plants that are more adapted to stressful environments. Thus, we aimed to evaluate
the potential of pangolão grass (Digitaria eriantha cv. Suvernola) endophytic bacteria both in vitro
and on maize growth. To this end, endophytic bacteria were isolated from pangolão grass of a
tropical semiarid climate and a random subset of 80 strains was evaluated for biological nitrogen
fixation, HCN, IAA and siderophore production and calcium phosphate solubilization, and later
for maize growth promotion. All strains were positive for at least one of these in vitro growth
promotion mechanisms and some strains increased maize plant height and root length, including
some with better results than plants receiving commercial inoculants, confirming the potential of
endophytic bacteria from stress-adapted plants. In vitro results had poor correlation with plant
growth promotion, which indicates that the common practice of using these laboratory techniques as
a pre-selection tool before a subset of strains is evaluated for plant growth promotion might result in
the rejection of potentially interesting strains.

Keywords: corn; PGPB; inoculant; stress-adapted plants

1. Introduction

Brazil is one of the major maize (Zea mays) producers and exporters, largely due
to the intensive use of agrichemicals with high economic and ecological footprints [1,2].
An alternative is the inoculation with plant-growth-promoting bacteria (PGPB), already
widely used in Brazil [3,4]. Generally, these inoculants allow for a reduction in fertilizer use
and/or increase environmental stress resistance, particularly to drought, while maintaining
or improving yield [5–8]. This is considered to be due to several mechanisms such as
IAA, siderophore or HCN production, phosphate solubilization or biological nitrogen
fixation [9–11].

The effect of PGPB inoculation under environmental stress suggests that plants
adapted to these environments might be useful sources of these bacteria for crops [12–14].
This is already seen with the widespread use of maize-isolated Azospirillum brasilense strains
for inoculants in maize, wheat, rice, Brachiaria grasses, soybean and common beans in
Brazil [15]. At the same time, Bacillus and Enterobacter strains isolated from the rhizosphere
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of drought-affected Bermuda grass (Cynodon spp.) reduced water stress in maize and
wheat [14], while Pseudomonas putida and P. brassicacearum isolated from Opuntia sp. in-
duced drought resistance in wheat [16] and root-endophytic Kocuria arsenatis ST-19 from
the halophyte Stipa tenacissima reduced salt stress in tomato [17].

Another possible PGPB source is pangolão grass (Digitaria eriantha cv. Suvernola). This
perennial species is well adapted to a low-fertility soil from a tropical semiarid climate in
Northeast Brazil, and previous work from this group has found a high endophytic bacteria
diversity and some strains with potential for maize growth promotion [18,19]. At the same
time, while several of the putative growth promotion mechanisms are well identified, there
is still a knowledge gap on how their laboratory determinations are linked to actual plant
growth [20]. Since most of the literature on selecting strains for PGPB inoculants uses one
or a combination of these growth promotion mechanisms evaluated in vitro as pre-selectors
for plant assays [12,17,18,21], this knowledge gap might mean that researchers are not
evaluating potentially promising bacterial strains.

Thus, this paper evaluates a randomly selected group of strains with regard to their
maize growth promotion under controlled conditions and evaluates if the in vitro growth
promotion characteristic values are well related to the actual growth promotion.

2. Materials and Methods
2.1. Sampling

Sampling was carried out in an area cultivated with pangolão grass in the experimental
station of the Instituto Agronômico de Pernambuco—IPA, Araripina, Pernambuco, Brazil,
with a semiarid hot climate Bsh, according to Köppen [22]. The soil was classified as
Cutanic Acrisol (WRB 2006) and there was liming or fertilization for over 30 years [23].

The samplings were performed in December 2016 (dry season) and March 2017 (rainy
season) to maximize environmental variability within the sampling area and increase
potential biodiversity. Ten plants were collected in a transect in each sampling period, with
the soil adhering to the roots, to form a compound sample and two of these samples were
taken per environment (Table 1). A soil sample made of part of the soil from both samples
was chemically characterized [24] (Table 2).

Table 1. Digitaria eriantha sampling from a tropical semiarid low-fertility site in Pernambuco, Brazil.

Date Season Liming Coordinates

December Dry No 7◦27′42.82′′ S

March Rainy
No 40◦25′12.71′′ W

Yes 7◦27′48′′25′′ S
40◦25′16.11′′ W

Table 2. Soil chemical characterization in experimental plots in the 0–20 cm layer.

pH Ca Mg Al Na K P H+Al

Season Liming 1:2.5 cmolc dm−3 mg dm−3 cmolc
dm−3

Dry No 5.50 2.0 1.60 0.10 0.03 0.10 3.0 3.71
Rainy No 5.1 0.55 0.50 0.45 0.06 0.07 3.0 4.86
Rainy Yes 6.40 2.30 1.20 0.00 0.03 0.12 2.0 1.73

2.2. Isolation and Morphophysiological Characterization of Endophytic Bacteria

The plant samples were separated into leaves, culm and roots. The leaves and culms
were washed under running water, dried on paper towels and washed in 70% alcohol [25].
The roots were washed under running water and cut into pieces of approximately 10 cm.
The roots were disinfected with 70% alcohol for 30 s and washed with 2.5% sodium
hypochlorite for 1 min and with autoclaved water five times.
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A 1:9 weight/volume of each plant part and 0.85% sterile saline solution [26] was
crushed for the 10−1 dilution, followed by ten-fold dilutions to 10−8 in the same solution.
Aliquots of 0.1 mL of the diluted extracts were inoculated in triplicate in tubes containing
5 mL of the semi-solid nitrogen-free media NFB, JNFB and JMV [27,28].

The tubes were incubated at 35 ◦C for 72–96 h, and the most probable number of
colony-forming units was determined [29] followed by phenotypic characterization of
isolated colonies in YMA [30,31] and grouping at 100% by the paired groups algorithm
with Jaccard Index, using the PAST 2.17 program [32]. The diversity indexes were calculated
considering the phenotypical groups as taxonomic units. Eighty isolates were randomly
chosen to maintain the group’s representativeness and isolation conditions for later stages
of the study.

2.3. Genetical Diversity

The isolates were grown in TSB culture medium and incubated at 30 ◦C at 180 RPM for
72 h, followed by DNA extraction, using the MiniPrep Kit (Axygen, Union City, CA, USA),
according to the manufacturer’s instructions. After extraction, DNA integrity was verified
by electrophoresis on 0.8% agarose gel at 100 V for 30 min and DNA was quantified in a
NanoDrop 2000c (Scientific Thermo, Waltham, MA, USA). Working DNA was standardized
at 20–30 ng.µL−1 and stored at −20 ◦C.

The BOX element amplif ication used the oligonucleotide BOX-A1R (5′-
CTACGGCAAGGCGACGCTGACG-3′). The amplification reaction with a final volume of
25 µL was as follows: 10% 10 X Buffer; 0.2 mM dNTPs; 2 mM MgCl2; 0.3 U of Taq DNA
platinum polymerase; and Template DNA (20–30 ng.µL−1). The amplification conditions
were initial denaturation at 95 ◦C for 9 min, 30 cycles of denaturation (1 min at 94 ◦C),
annealing (1 min at 55 ◦C) and extension (5 min at 72 ◦C) and one final extension cycle at
72 ◦C for 10 min [33].

The amplified fragments were separated by electrophoresis, containing 0.5 X TBE
buffer at 100 V, for 360 min in 1.2% agarose gels, stained with SybrGold (Sigma-Aldrich, St.
Louis, MO, USA) and photographed on a Loccus do Brasil LPIX-HE photocomputer.

Amplification was confirmed for 67 isolates, and a dendrogram was built using the Gelj
v2 program using the Jaccard coefficient and UPGMA algorithm [34] at 70% similarity. Rep-
resentatives of each BOX-PCR group were sequenced for the 16S rRNA gene, using primers
27F (5′-AGAGTTTGACCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-
3′) [19]. The amplified products were evaluated on a 1% agarose gel and visualized
under UV light. PCR products were sent to Macrogen (South Korea) for purification and se-
quencing and the sequences were compared to the NCBI database using the MEGABLAST
algorithm. For sequences that did not show high similarity, the BLASTn algorithm was
used. The same sequences were then analyzed comparatively with regard to the percent-
age of molecular identity, using the Clustal W multiple progression method [35] by the
MEGA7.1 program [36].

Aligned sequences were used for phylogenetic analysis by the Neighbor-Joining
method, using Kimura-2 parameters, applying a bootstrap with a minimum of 1000 replica-
tions, as described by Martins et al. [37]. Isolate numbers were evaluated by the chi-square
test for a comparison between seasons, liming, plant part and medium used in the isolation.

2.4. In Vitro Growth Promotion Mechanism Evaluation

The isolates were tested for IAA production according to the method by Kuss et al. [38]
modified by Barreto et al. [25], involving cultivation in TSB + 5 mM L-tryptophan, with
Salkowski’s reagent, storage for 30 min in the dark and readings at 520 nm using a spec-
trophotometer, with the readings compared to a standard curve.

Calcium phosphate solubilization was determined in NBRIP media after incubation
for 15 days at 28 ◦C in the dark, with the solubilization index determined by the ratio
between the solubilization and colony halos [39].
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Siderophore production was evaluated by growth in TSB 1/10 for 72 h at 32 ◦C,
followed by the change in color from blue to yellow in 15 min determined by the ratio of
spectrophotometer readings at 630 nm for the sample and a blank [40].

Potential for biological nitrogen fixation was determined by the formation of growth
pellicle in NFB semi-solid media and ascribed as positive or negative [26], while HCN
production was also considered positive or negative by color change in filter paper impreg-
nated with a 0.5% picric acid and 2% sodium carbonate solution in TSA medium [41].

2.5. Maize Growth Promotion Evaluation

Maize growth promotion was evaluated under nutrient solution conditions with
Hoagland’s nutrient solution [37] at ¼ strength and adjusted to 20% of N content in a green-
house with cultivar AG 1051, recommended for corn-on-the cob and sillage production
on a randomized block design with six replicates. The plants were grown in amber glass
330 mL bottles with two paper strips to support the plants and autoclaved.

The treatments included the 80 strains, an uninoculated control (NI) and a control
inoculated with a commercial inoculant recommended for maize (AzzoFix™, with strains
Ab-V5 and Ab-V6 of Azospirillum brasilense) (CI), with a third control with the same solution,
but at full N content (N).

Maize seeds were superficially disinfected with 70% ethanol for 30 s and 2.5% sodium
hypochlorite for 2 min, washed eight times in distilled, autoclaved water and germinated
in sterile paper for four days at 25 ◦C, followed by transplant to the bottles and inoculation
with 1 mL of bacterial broth with approximately 109 viable cells.ml−1, as recommended by
Brazilian legislation [15].

The plants were harvested 35 days after inoculation, and plant height (PH), leaf area
(LA), culm diameter at root insertion (CD) and root length (RL) were measured. Plants
were divided into root and shoot, dried at 65 ◦C for 72 h and shoot (SDM), root (RDM) and
total (TDM) dry masses were determined.

Shoot dry masses were used to determine growth relative to uninoculated control
(ERC), to full N rate (ERN) and to commercial inoculant (ERIC) as below:

ERC(%) =

(
SDM treatment

average SDM uninoculated control

)
× 100

ERN(%) =

(
SDM treatment

average SDM 100% N rate control

)
× 100

ERIC(%) =

(
SDM treatment

average SDM commercial inoculant control

)
× 100

2.6. Data Analysis

In vitro growth promotion mechanisms were grouped with the Jaccard index and
UPGMA algorithm using PAST 2.17c [42]. Maize experiment data were preprocessed to
eliminate outliers and transformed by log10, enough to guarantee ANOVA requisites, and
evaluated by ANOVA at 10% significance due to relatively high variability. When appro-
priate, Dunnett’s test was applied separately for each control treatment. Plant variables
with more differentiation from the controls were also evaluated by Tukey’s test at 10%
significance to better evaluate individual strains. In vitro and in vivo data were also used
for correlation and principal component analysis, considering only the strain values.

3. Results
3.1. Endophytic Bacteria in Digitaria eriantha

Endophytic populations were found in the culm, leaf and root of pangola grass as well
as in the rhizospheric soil in all evaluated conditions in all isolation media. The population
density was higher in the culm during the dry season. NFB had the lowest population
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estimate while JMV had the highest one, 6.7 × 102 and 1.2 × 104 cells gram−1, respectively
(Figure 1).
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Figure 1. Endophytic bacterial populations isolated from D. eriantha at different sampling seasons
(dry or rainy), with or without liming, from different compartments (endophytic from culm, leaf or
root or rhizospheric) and using different culture media (NFB, JNFB or JMV).

Altogether, 316 isolates were obtained with higher proportions in the culm, in the
rainy season and in the limed plot, using the JNFB based on the comparisons for each of
these factors separately, although the difference between the dry and rainy seasons was not
significant (Table 3).

Table 3. Number and percentage of endophytic or rhizospheric bacterial isolates from D. eriantha
at different sampling seasons (dry or rainy), with or without liming, from different compartments
(endophytic from culm, leaf or root or rhizospheric) and using different culture media (NFB, JNFB or
JMV), compared through the χ2 test.

Condition Number of Isolates % Pr > qui2

Dry 131 41.59
0.12057Rainy 184 58.41

With lime 102 55.74
0.00282Without lime 81 44.26

Culm 162 51.43

6.6 × 10−36Leaf 62 19.68
Root 79 25.08
Rhizospheric soil 12 3.81

JMV 26 8.25
2.2 × 10−26JNFB 168 33.33

NFB 121 38.41

The 316 isolates formed 73 phenotypical groups at 100% similarity, with up to 55 isolates
per group, which showed high phenotypic diversity of endophytic bacteria of D. eri-
antha. The Shannon diversity index (H) was 3.58 (Table 4), while the dominance index
(D) was close to zero. The Simpson index (1-D) presented values close to 1, indicat-
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ing high uniformity and richness, according to the equitability index (J) and richness
(Margalef), respectively.

Table 4. Phenotypic diversity indexes of endophytic or rhizospheric bacterial isolates from D. eriantha
at different sampling seasons (dry or rainy), with or without liming, from different compartments
(endophytic from culm, leaf or root or rhizospheric) and using different culture media (NFB, JNFB
or JMV).

Condition Groups Isolate Dominance Simpson Shannon Margalef Equitability Chao

Total 73 316 0.054 0.945 3.58 12.51 0.834 104.1

Dry 53 131 0.038 0.961 3.62 10.67 0.912 82.55
Rainy 49 185 0.086 0.913 3.12 9.19 0.801 68.46

Culm 52 163 0.063 0.936 3.37 10.01 0.855 73.23
Leaf 26 62 0.081 0.918 2.86 6.05 0.880 43.5
Root 34 79 0.061 0.938 3.13 7.55 0.889 55.11
Rhizospheric
soil 10 12 0.125 0.875 2.21 3.62 0.959 46

With lime 35 104 0.097 0.902 2.96 7.32 0.833 48.6
Without
lime 30 81 0.087 0.912 2.87 6.59 0.844 125

JMV 18 26 0.082 0.917 2.71 5.21 0.939 48.33
JNFB 53 168 0.047 0.952 3.49 10.15 0.879 78.09
NFB 44 122 0.072 0.927 3.23 8.95 0.855 65

3.2. Genotypic Diversity

Of the 80 representative isolates, 67 amplified with the BOX-A1 oligonucleotide at 70%
similarity, with very diverse bands and cluster profiles (Figure 2) regardless of the isolation
site or method.
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Approximately 79% of the isolates had an identity greater than 96% using the MEGABLAST
algorithm (Supplementary Table S1), while fourteen isolates had an identity less than 96%,
and thirteen isolates were not found to be highly similar to any entry in the GenBank. For
the isolates that did present a low percentage of identity, the BLASTn algorithm was used,
and the isolates showed an identity ca. 67–95% to Enterobacter, Pseudomonas, Rhizobium,
Shinella, Shingomonas, Stenotrophomonas, Bacillus, Staphylococcus and two isolates of bacteria
with no resemblance to those cataloged on GenBank.

Four phyla, five classes, ten orders, one suborder, fifteen families and twenty different
genera of bacteria were identified (Table 5). The γ-proteobacteria class had representatives
of the Enterobacter, Erwinia, Pseudomonas, Pantoea and Stenotrophomonas genera. As for
α-proteobacteria, the genera Massilia, Beijerinckia, Rhizobium and Shinella were identified
(Table 5).

Table 5. Taxonomic classification of endophytic and rhizospheric bacteria from D. eriantha under a
tropical semiarid condition.

Phylum Class Order Family Genera Total %

Actinobacteria Actinomycetales Actinomycetales
Microbacteriaceae Curtobacterium 1 1.49
Micrococcaceae Kocuria 1 1.49
Nocardioidaceae Nocardioides 2 2.99

Micrococcales Microbacteriaceae Microbacterium 2 2.99

Proteobacteria

α-Proteobacteria

Burkholderiales Oxalobacteraceae Massilia 1 1.49

Rhizobiales Rhizobiaceae
Rhizobium 8 11.94
Shinella 4 5.97
Agrobacterium 6 8.95

γ-Proteobacteria
Enterobacteriales Enterobacteriaceae

Enterobacter 6 8.95
Erwinia 1 1.49
Pantoea 8 11.94

Pseudomonadales Pseudomonadaceae Pseudomonas 6 8.95
Lysobacterales Lysobacteraceae Stenotrophomonas 4 5.97

β-Proteobacteria Burkholderiales
Alcaligenaceae Alcaligenes 1 1.49
Burkholderiaceae Burkholderia 1 1.49

The culm, root and leaf had more genera than the rhizospheric soil (Figure 3). The
most abundant genera were Pantoea and Rhizobium with eight isolates each, followed by
Agrobacterium, Enterobacter and Pseudomonas with six representatives and Stenotrophomonas
and Shinella with four, while the environmental conditions with most genera were dry
season, no liming and when NFB was used for isolation.

3.3. In Vitro Plant-Growth-Promoting Mechanisms

All isolates produced IAA, most (53%) more than 50 g·L−1 (Supplementary Table S2),
and siderophores, while 70, 34 and 14% were positive for BNF, phosphate solubilization and
HCN production, respectively (Figure 4). Seven groups were formed based on in vitro plant-
growth-promoting characteristics (Figure 5). Isolates 376A (Stenotrophomonas) and 361B
(Agrobacterium) formed a group with high IAA production and average-to-high phosphate
solubilization and were positive for BNF, HCN and siderophore production, while the
largest group had strains negative for phosphate solubilization and HCN production.

The same genus could be found in different in vitro plant-growth-promoting charac-
teristic phenotypical groups, while a single group had different genera.

3.4. Maize Growth Promotion

While some strains were significantly different from either NI or CI (Supplementary Table S3
synthesized in Figure 6), the same did not occur in comparison to N. While 22 strains were
significantly different from NI for at least one of the characteristics, isolates 195C (IAA and
siderophore producer) and 5242 (positive for BNF, and an IAA and siderophore producer)
were significantly higher for plant height, root length, leaf area and total dry mass.
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plant height, root length, culm diameter, leaf area root and total dry mass than plants non-inoculated
or inoculated with a commercial inoculant and average percentage of gain (B).



Agronomy 2024, 14, 2769 10 of 17

The strains were grouped according to the results of the Tukey test into three groups
(Supplementary Table S4 synthesized in Figure 7), and the group with the higher averages
(strains classed as A in Supplementary Table S4) had taller plants with larger leaf areas
than the commercial inoculant or N.
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Figure 7. Average and strain number of different Tukey test groupings of rhizospheric and endo-
phytic D. eriantha bacterial strains and control treatments (CI—commercial inoculant, N—full N rate,
NI—non-inoculated). (A) Plant height, (B) root length, (C) leaf area.

Although phosphate solubilization had a significant correlation with plant height,
culm diameter and root and total dry masses (Table 6), the correlation coefficients were too
low (−0.19 to −0.28) to allow an important explanatory power, while the other correlations
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were even lower and non-significant. A similar issue was found for the explanatory power
through PCA, since five principal components (from a total of eleven) explained 70% of the
total variation (Figure 8).

Table 6. Pearson correlations and their probability between in vivo effects on corn plant height (PH),
root length (RL), neck diameter (D), leaf area (LA), shoot (SDM), root (RDM) and total (TDM) dry
masses and in vitro plant-growth-promoting characteristics including IAA and siderophore produc-
tion (IAA and Sid), phosphate solubilization (PS), presence or absence of growth in N-free media
(BNF) and HCN production (HCN). Correlations in bold are significant at the 10% probability level.

PH RL D LA SDM RDM TDM

IAA R
Prob

0.03
0.7820

−0.10
0.3859

−0.07
0.5207

≈0.00
0.9972

0.10
0.3837

−0.11
0.3458

−0.14
0.2257

Sid R
Prob

0.04
0.7562

0.11
0.3153

−0.04
0.7230

−0.12
0.2991

−0.07
0.5212

−0.05
0.6831

−0.05
0.6772

PS R
Prob

−0.21
0.0575

−0.17
0.1433

−0.20
0.0706

−0.15
0.1965

−0.18
0.1125

−0.28
0.0125

−0.19
0.0898

BNF R
Prob

−0.12
0.2836

0.14
0.2046

0.07
0.5224

−0.13
0.2580

0.06
0.5662

−0.02
0.8574

−0.04
0.7234

HCN R
Prob

−0.15
0.1751

0.06
0.6009

−0.08
0.4821

0.06
0.6019

0.09
0.4433

−0.08
0.4742

−0.05
0.6719
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Figure 8. Principal component analysis for both in vitro and in vivo growth promotion characteristics.

4. Discussion

Digitaria eriantha harbors high endophytic bacteria diversity, several genera of which
contain species with different plant growth promotion traits. Crop-associated micro-
biota directly influences plant productivity and health and is fundamental in suppressing
pathogens, acquiring nutrients and tolerating environmental stress [43].
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Pangola grass has a high population density of endophytic bacteria, especially in the
culm, as also reported in wheat (Triticum spp.) [44] and in andropogon (Andropogon gayanus
Kunth) and Buffel (Cenchrus ciliari L.) grasses in tropical semiarid non-degraded soils [45].
Although a higher proportion of endophytes in the culm than in the root is not expected
or commonly reported, this might be due to reduced stress on the culm compared to the
root [46]. At the same time, the relatively undegraded condition of the pasture [23] might
allow relatively higher soil organic matter contents than degraded pastures, decreasing the
competition for nutrients among microbial species [47]. While some studies have reported
a larger endophytic bacteria population in grasses in the rainy season [48–50], likely due
to a break in the dormancy of microorganisms previously inactive or non-functional [51],
and our population estimates were higher for the dry season, this higher estimate did not
result in more isolates, although the isolation effort was the same in both cases, and might
be an artifact from the population estimative method. Most bacterial isolates were equally
abundant, particularly in the rainy season, which might be either directly linked to water
availability or indirectly through increased exudate production from more intensive plant
growth [52].

Even considering the 70% similarity level, there was high genotypic diversity, as also
observed in endophytic bacteria from maize [53] and sugarcane [54]. The isolates that
amplified for the 16S rRNA showed similarity with Curtobacterium, Alcaligenes, Burkholderia,
Enterobacter, Erwinia, Kocuria, Massilia, Microbacterium, Nocardioides, Pantoea, Pseudomonas,
Rhizobium, Shinella, Agrobacterium and Stenotrptophomonas.

Some of this genera, such as Enterobacter, include strains that promote plant growth
and mitigate the effect of drought on maize and wheat with phytohormone and siderophore
production [14], while some Pseudomonas, Microbaterium and Burkholderia include excellent
phosphate solubilizers, producers of siderophores and indolacetic acid [55–58]. On the
other hand, the inoculation of Pantoea sp. in maize seedlings can increase leaf area, culm
length and shoot dry biomass under water stress, even when isolated from cactus [21],
perhaps due to high exopolysaccharide production [59].

The high IAA production levels found were similar to those from wheat endo-
phytes [48], although higher than the most common range of up to 130 mg·L−1 [49–51].
At the same time, while we could not find the relation between HCN production and
phosphate solubilization previously found [60], one Stenotrophomonas strain was positive
for both, while other research also found strains from this genus producing IAA and solu-
bilizing phosphate [9,48]. Some Rhizobium and Enterobacter had high IAA production, up to
medium phosphate solubilization and were BNF- and HCN-positive, as frequently found
for strains from these genera [48,61–68].

A point to consider, though, is the lack of apparent linkage between in vitro growth
promotion characteristics and taxonomical characteristics, since while a single genus could
have representative strains in different phenotypical groups, the same group would have
strains from different genera, which invalidates the use of taxonomical identification as a
pre-selector for possible growth promotion.

While most research aiming to find possible plant growth promoters pre-selects strains
based on one or a combination of in vitro putative plant growth mechanisms [4,6,7,9,10,13,18],
we still found possibly effective strains which did not present these mechanisms under
the standard laboratory methods. The low correlation between these measures and plant
effects questions this practice. For example, while the literature frequently indicates IAA
production as one of the major plant-growth-stimulating mechanisms [69–71], our results
indicate only a non-significant and very low correlation between IAA production in vitro
and any of the plant variables (Table 6, p values between 0.23 and 1.00, and r values
between −0.14 and 0.10), even though the highest IAA producer was also among those
with better maize response. At the same time, other researchers also found this lack of
linkage between IAA and plant response [21,72], perhaps due to plant response depending
on its endogenous IAA levels [73]. While the literature also indicates that siderophore
production and phosphate solubilization in vitro are usually linked to increased plant
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growth [9,62,69,74–78], we did not find any indication of these being connected, with very
low non-significant correlations between in vitro siderophore production and plant growth
variables (p values ranging from 030 to 0.76, with r values ranging from −0.12 to 0.11;
Table 6).

Considering multiple in vitro characteristics simultaneously, we still could not find a
clear link between the in vitro and plant results, since the strains with the best plant results
were not among those with the highest in vitro results, although the strains with better
plant responses included more than one in vitro mechanism, indicating this might be a
valid pre-selector [50,79].

Although our choice of a hydroponic system, which provides higher nutrient and
water availability, might be partially responsible for the reduced correlations, we still
observed gains from several strains, even when compared to a commercially produced
inoculant, so this is not likely to be the only reason for the lack of correlation.

5. Conclusions

Pangola grass showed a great endophytic bacteria diversity, coexisting in different
plant tissue compartments, with the greatest diversity in the culm. Several of the genera
found are frequently considered to be plant growth promoters, which validates the use of
stress-resistant plants as endophytic bacteria sources for plant evaluation.

While both in vitro and in vivo growth promotion was widespread, we could not
find a link between them on a random sample of 80 strains, which indicates the in vitro
evaluation is not a strong indicator of plant growth promotion.

Further research on developing accurate predictors of plant growth promotion un-
der laboratory conditions is likely to be a promising area for future research, since these
could reduce the number of strains submitted to the labor- and resource-intensive selec-
tion of plants, while at the same time reducing the chance of not evaluating the most
suitable strains.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agronomy14122769/s1, Supplementary Table S1—Identity of endo-
phytic bacteria from Digitaria eriantha based on 16S rRNA identity; Supplementary Table S2—Pangola
grass endophytic bacteria and their in vitro plant growing characteristics; Supplementary Table S3—Effects
of inoculation with endophytic bacteria on corn plant height (PH), root length (RL), culm diameter
(D), leaf area (LA), shoot (SDM), root (RDM) and total (TDM) dry masses when compared with
uninoculated (NI), inoculated with commercial inoculant (CI) and full N level (N) controls. * indicates
the isolate result was different and higher than the respective control according to Dunnett’s test at
10% significance; Supplementary Table S4—Effects of inoculation with endophytic bacteria on corn
plant height (PH), root length (RL) and leaf area (LA).
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