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Abstract: Selenium (Se) is a beneficial element for plants and is essential for human nutrition. In
plants, it plays an important role in the formation of selenocysteine and selenomethionine and in
the activation of hydrolytic enzymes, which can aid in seed germination and reduce abiotic stress
during germination. The objective of this study was to evaluate the effects of the application of
selenium sources and rates to the soil on the physiological quality of cowpea seeds. The experimental
design was a randomized block with four replications and a factorial scheme (7 × 2). Two sources of
Se (sodium selenate and sodium selenite) and seven rates (0, 2.5, 5, 10, 20, 40 and 60 g ha−1) were
used. Physiological characterization was carried out by first counting of germination, germination,
emergence, accelerated aging, cold testing, electrical conductivity, length and dry biomass of shoots
and roots. Germination after accelerated aging increased with selenate, even at higher rates, whereas
selenite provided benefits at lower rates. Selenation linearly increased germination after the cold
test and linearly reduced electrolyte leakage as the Se rate increased. The soil application of Se is
beneficial for cowpea seed quality. Compared with those treated with sodium selenite, cowpea plants
treated with sodium selenate through the soil produce more vigorous seeds. The application of
10 g ha−1 Se in the form of sodium selenate provides seedlings with faster germination and root
development and is an alternative for rapid stand establishment.

Keywords: sodium selenate and sodium selenite; soil application; Vigna unguiculata L. Walp.; seed
vigor; seed physiological potential

1. Introduction

Cowpea (Vigna L. ‘Walp.’) belongs to the Fabaceae family and consists of four sub-
species, of which unguiculata is the most widely cultivated in the world [1]. Its seeds
contain an average of 20 to 25% protein and 45 to 55% carbohydrates, and it is an alterna-
tive source of protein for low-income populations, particularly in continents such as Africa
and Latin America [2]. However, technological and management problems have been
identified as the main factors for the low productivity observed in the country, and several
authors point to the low quality of seeds as one of the main obstacles to the development
of the crop [3].
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The use of seeds with good physiological quality is a critical factor in establishing
crop cultivation. Seeds with low germination potential and vigor are among the factors
influencing low productivity and, consequently, low economic returns. Adequate plant
nutrition is also essential for obtaining high-quality seeds. Among the beneficial elements
that can be supplied and have the potential to produce a satisfactory response in terms of
seed quality is selenium (Se) [4].

Despite its importance for some crops, the range between deficient and toxic levels of
Se is narrow [5]. High concentrations of Se can affect plant development, seed germination
and vigor. The tolerated concentrations of Se, as well as the mechanisms of Se toxicity, vary
among species [6]. The application of low concentrations of Se had a positive effect on seed
germination and physiological quality in rice [7,8] and increased the antioxidant properties
of higher plants, as reflected in the reduction in reactive oxygen species (ROS) [2].

However, high concentrations of Se can be toxic to plants because of the high genera-
tion of ROS, such as hydrogen peroxide, and can induce high rates of lipid peroxidation in
cell membranes [9], as well as interfere with germination by acting to inactivate carbohy-
drate hydrolysis enzymes, which can lead to embryo death [7,10]. Studies with cowpea
have shown that foliar Se application at the dose 50 g ha−1 is responsible for increase Se
levels in shoots and grains, without causing symptoms of toxicity or causing oxidative
damage in plant leaf cell. Also, the intake of more than 50 g per day of biofortified cowpea
with Se in the mentioned dosage can meet the recommended recommendation for adults
(0.1 mg Se per day) [4]. The effects of Se on the physiological quality of cultivated plant
seeds are not yet fully understood, and further studies are needed. It is hypothesized that
Se applied via the soil to cowpea crops could improve the physiological quality of the
seeds obtained, especially when they are exposed to low and high temperatures during
germination.

The aim of this work was to study the effects of the sources and rates of soil Se on
cowpea cultivation and its effects on the physiological quality of seeds.

2. Materials and Methods
2.1. Experimental Setup

The experiment was carried out in 2016 in an experimental area located in the mu-
nicipality of Selvíria-MS, south of the central-western region of Brazil, with geographical
coordinates of 51◦22′ W and 20◦22′ S and an altitude of 335 m. According to a survey using
the Brazilian soil classification system [11], the soil in the experimental area is called Dys-
trophic Red Latossoil, corresponding to Typic Haplorthox, according to the international
classification [12]. The climate of the region is Aw, defined as tropical humid with a rainy
season in summer and a dry season in winter, with an average annual temperature of 25 ◦C
and rainfall of 1313 mm (average of the last 25 years). A meteorological station is located
close to the experimental area, and data from this station were used to monitor rainfall and
maximum and minimum air temperatures over the period of the experiment (Figure 1).

Before the experiment was conducted in the field, the soil was sampled from the 0–0.20 m
layer for chemical analysis according to the method described by [13], and the results
were as follows: pH (CaCl2 0.01) 5.2; phosphorus (resin) 34 mg dm−3; sulphur (calcium
phosphate) 8 mg dm−3; potassium (resin) 2.7 mmol dm−3; calcium (resin) 14 mmol dm−3;
magnesium (resin) 14 mmol dm−3; H+Al (SMP buffer) 26 mmol dm−3; SB 30.7 mmol dm−3;
CTC 56.7 mmol dm−3; base saturation 54%; boron (hot water) 0.19 mg dm−3; copper
(DTPA) 2.7 mg dm−3; iron (DTPA) 19 mg dm−3; manganese (DTPA) 12.4 mg dm−3; zinc
(DTPA) 6.1 mg dm−3; and organic matter 18 g dm−3. The concentration of available Se was
3.6 µg kg−1 according to the methodology described by [14]. In previous years, the soil
was cultivated with annual crops in a conventional cropping system, with beans (Phaseolus
vulgaris L.) being grown between 2013 and 2015.
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carried out with a row spacing of 0.45 m and a sowing density of 11.2 seeds m−1. In ac-
cordance with the soil analysis and fertilization recommendations for the crop [15], ferti-
lization was carried out in the furrow with 20 kg ha−1 K2O and 20 kg ha−1 P2O5 in the form 
of KCl (33 kg ha−1) and simple superphosphate (110 kg ha−1). Cowpea seeds of the 
BRS-Tumucumaque variety were used and its characteristics are indeterminate growth, 
semi-erect size with uniform branching, purple pods and white, slightly reniform seeds, 
small, light brown hilum and a cycle of 65 to 70 days [15].  

The seeds were treated with the fungicide carboxin + thiram at a rate of 200 mL 100 
kg seed−1. After drying, the seeds were inoculated with a peat inoculant for cowpea 
(strain SEMIA 6462 with 2.0 × 109 colony forming units g−1) at 8 g kg−1 seed. The inoculant 
was dissolved in a 10% sugar solution and gradually added and mixed with the seeds in 
a concrete mixer machine at a constant speed of 18 rpm for five minutes. Emergence 
started four days after sowing (DAS). 

The treatments were applied to the soil 40 days after emergence (DAE). A solution of 
Se diluted in 2 L of deionized water was prepared for each treatment. Five hundred mil-
liliters of the solution was prepaired to each plot, 100 mL of which was used. The crop 
was harvested at 75 DAE. The phytosanitary treatments were carried out according to the 
needs and recommendations for the cowpea crop [16]. The first herbicide application was 
performed at 17 DAE, using the active ingredients fomesafen plus fenoxaprop-p-ethyl, 
both at a rate of 1 L ha−1 of the commercial product (c.p.). Fungicides were applied at 22 
and 35 DAE with thiophanate-methyl at 140 g ha−1 c.p. and mancozeb at 2 kg ha−1 c.p., 
respectively. At 28, 42 and 52 DAE, insecticide applications were made with acephate, 
chlorpyrifos and beta-cyfluthrin at rates of 1.4 kg ha−1, 1.25 L ha−1 and 100 mL ha−1 c.p., 
respectively, for each date and product. 

Figure 1. Precipitation (mm), maximum and minimum air temperature (◦C) during the experiment
period.

The treatments used were as follows: selenium sources [sodium selenate (Na2SeO4)
and sodium selenite (Na2SeO3)] and seven Se rates (0, 2.5, 5, 10, 20, 40 and 60 g ha−1). Each
experimental plot consisted of five rows three meters long, resulting in a total usable plot
area of 6.75 m2.

The soil in the experimental field was prepared via one plowing operation (disc plow)
and two harrowing operations (intermediate harrow and grader). Sowing was carried out
with a row spacing of 0.45 m and a sowing density of 11.2 seeds m−1. In accordance with the
soil analysis and fertilization recommendations for the crop [15], fertilization was carried
out in the furrow with 20 kg ha−1 K2O and 20 kg ha−1 P2O5 in the form of KCl (33 kg ha−1)
and simple superphosphate (110 kg ha−1). Cowpea seeds of the BRS-Tumucumaque variety
were used and its characteristics are indeterminate growth, semi-erect size with uniform
branching, purple pods and white, slightly reniform seeds, small, light brown hilum and a
cycle of 65 to 70 days [15].

The seeds were treated with the fungicide carboxin + thiram at a rate of 200 mL
100 kg seed−1. After drying, the seeds were inoculated with a peat inoculant for cowpea
(strain SEMIA 6462 with 2.0 × 109 colony forming units g−1) at 8 g kg−1 seed. The inoculant
was dissolved in a 10% sugar solution and gradually added and mixed with the seeds in a
concrete mixer machine at a constant speed of 18 rpm for five minutes. Emergence started
four days after sowing (DAS).

The treatments were applied to the soil 40 days after emergence (DAE). A solution
of Se diluted in 2 L of deionized water was prepared for each treatment. Five hundred
milliliters of the solution was prepaired to each plot, 100 mL of which was used. The crop
was harvested at 75 DAE. The phytosanitary treatments were carried out according to the
needs and recommendations for the cowpea crop [16]. The first herbicide application was
performed at 17 DAE, using the active ingredients fomesafen plus fenoxaprop-p-ethyl,
both at a rate of 1 L ha−1 of the commercial product (c.p.). Fungicides were applied at
22 and 35 DAE with thiophanate-methyl at 140 g ha−1 c.p. and mancozeb at 2 kg ha−1

c.p., respectively. At 28, 42 and 52 DAE, insecticide applications were made with acephate,
chlorpyrifos and beta-cyfluthrin at rates of 1.4 kg ha−1, 1.25 L ha−1 and 100 mL ha−1 c.p.,
respectively, for each date and product.
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After harvest, the seeds were subjected to germination and vigor tests (first count of
germination, emergence, accelerated aging, cold test, electrical conductivity, length and dry
biomass of the roots and shoots of the seedlings).

2.2. Germination, First Count of Germination and Seedling Emergence Analysis

The germination test was carried out with four replicates of 50 seeds per treatment,
using germination paper as the substrate, consisting of two sheets of germination paper on
which the seeds were placed and one to cover them. The sheets were previously moistened
with distilled water at a rate of 2.5 times the mass of the unmoistened paper, and after the
rolls were made, they were kept in the germinator at a temperature of 25 ◦C. The first and
last germination counts were performed on the fifth and eighth days, respectively, and the
average percentage of normal seedlings was calculated according to the criteria established
by the Rules for Seed Analysis [17]. Germination percentage was considered the sum of
both counts.

Four replicates of 50 seeds per treatment were used for seedling emergence. Seeds
were sown in commercial substrate in expanded polystyrene boxes and watered twice a
day. Emergence was assessed on the tenth day after sowing.

2.3. Seed Stress Resistance Analysis

The accelerated aging test was carried out with four replicates of 50 seeds for each
treatment, in which 200 seeds were placed on the stainless steel mesh of a plastic box
containing 40 mL of distilled water. After being covered, the boxes were placed in a
germinator set at 41 ◦C where they remained for 48 h. After this period, the seeds were
sown as described for the germination test [17], and normal seedlings were assessed on the
fifth day after the sowing.

For the cold test, four replicates of 50 seeds were used for each treatment. The seeds
were sown on moistened germ paper rolls and kept at a constant temperature of 10 ◦C for
seven days. At the end of this period, the rolls were held at a constant temperature of 25 ◦C
for another seven days and evaluated according to the same standards as those used for
the germination test [17].

2.4. Biometric Analysis of Seedlings

Root and shoot lengths were measured with four replicates of 20 seeds for each
treatment, following the same pattern as the germination test. After germination, the
seedlings were measured with a ruler graduated in mm from the tip of the root to the neck
for root length and from the neck to the insertion of the cotyledons for shoot length.

Immediately after the length measurements, the roots and shoots of the seedlings were
separated and dried in a forced-air oven at 65 ◦C until they reached a constant weight. The
samples were weighed, and the data are expressed in g plant−1.

2.5. Biochemical Seed Testing

The electrical conductivity test was carried out with four replicates per treatment of
25 seeds, and the biomasses were measured on an analytical balance to an accuracy of four
decimal places. The seeds were placed in plastic cups, soaked in 75 mL of distilled water and
placed in the BOD incubator for 24 h at 25 ◦C. After this period, the electrical conductivity
was read with a conductivity meter, and the values were expressed in µS cm−1 g−1 of seed.

2.6. Statistical Analysis

R software, version 4.0.4 [18], was used to perform the statistical analysis. A variance
analysis was performed for the data, following the factorial model using seven Se rates × two
selenium sources, randomized block design with four replications and for significant results,
a Tukey test (p ≤ 0.05) was performed to evaluate the mean differences across the treatments.
A principal component analysis for the data was performed via RStudio, version 1.4.1103.
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3. Results
3.1. Germination, First Count of Germination and Seedling Emergence

The first count of seeds obtained from the cowpea crop was significantly influenced
(p ≤ 0.05) by the interaction between sources and rates of soil-applied Se (Table 1). No signifi-
cant fit was obtained for the polynomial regressions (first- and second-degree regressions).

Table 1. Summary of the analysis of variance for first count (FC), total germination (G), emergence
(E), accelerated aging (AA), cold test (CT), electrical conductivity (EC), shoot length (SL), root length
(RL), shoot dry biomass (SDM) and root dry biomass (RDM) of cowpea as a function of selenium
sources and rates.

FV
FC G E AA CT

(%)

Sources (S) 9.15 * 0.12 ns 4.65 * 10.26 * 2.76 ns

Rates (R) 2.54 * 6.19 * 2.04 ns 22.50 * 22.33 *
SxR 12.65 * 1.30 ns 0.60 ns 7.81 * 16.08 *

CV (%) 15.56 9.02 6.82 19.83 17.62

EC SL RL SDM RDM

(µS cm−1 g−1) (cm seedling−1) (mg seedling−1)

Sources (S) 2.85 ns 34.88 * 31.87 * 0.77 ns 0.63 ns

Rates (R) 1.74 ns 10.34 * 3.79 * 17.32 * 6.32 *
SxR 4.83 * 2.23 ns 2.36 ns 4.97 * 5.37 *

CV (%) 9.34 12.01 8.42 18.90 19.34

ns and *: not significant and significant at the 5% probability according to the F test, respectively; CV: coefficient
of variation.

However, at the lowest rate (2.5 g ha−1) and rates of 20, 40 and 60 g ha−1, the supply
of sodium selenate as a source of Se resulted in higher values for the first count than did
selenite, whereas at rates of 5 and 10 g ha−1 Se, sodium selenite resulted in higher FC values
than did sodium selenate (Figure 2A). The total germination was significantly influenced
by the Se rate, but there was no fit to the regression models considered (Table 1). In terms
of seedling emergence, the results obtained with sodium selenate were better than those
obtained with sodium selenite (Figure 2B).
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Figure 2. Interaction between Se sources and rates for first count germination (A) and comparison of
means between Se sources for seedling emergence (B) in cowpea. Different uppercase letters indicate
differences between sources at each rate, and lowercase letters indicate differences among application
rates at each source. (Tukey test, p ≤ 0.05).
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3.2. Seed Vigor and Stress Resistance Testing

In the accelerated aging test, with the exception of the 20 and 60 g ha−1 rates, sodium
selenate resulted in higher germination values for seeds exposed to high-temperature and
high-humidity conditions, and for the 5 and 10 g Se ha−1 rates, the seeds with Se presented
greater germination rates than did the control (Figure 3A).
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analysis for the cold test under sodium selenate application rates (B) and interaction between Se
sources and rates for the cold test (C) in cowpea seeds. Different uppercase letters indicate differences
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each source. (Tukey test, p ≤ 0.05).

For sodium selenate, the means fit an increasing linear equation in the cold test,
indicating an increase in the germination percentage of seeds exposed to low temperatures
during germination with increasing rates of Se applied via the soil (Figure 3B). On the other
hand, there was no regression equation for sodium selenite. The application of sodium
selenite resulted in higher germination values for cowpea seeds than did the application of
sodium selenate at rates of 5 and 40 g ha−1, but at the highest rate of Se, sodium selenate
resulted in higher germination values at low temperatures (Figure 3C).

3.3. Seedling Biometric Measurements

The length and dry biomass of the shoot and root were significantly influenced by the
Se rate, but there was no significant fit for the regression models considered (Table 1).
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Sodium selenate had better results than did sodium selenite for the shoot length of the
seedlings (Figure 4A), and the rates of 2.5, 10, 20 and 40 g Se ha−1 were greater than those
of the control (Figure 4B). Selenate resulted in better results than selenite for root length at
rates of 2.5, 10, 20 and 40 g Se ha−1 (Figure 4C).
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Figure 4. Comparison of means between Se sources for shoot length (A), between Se rates for shoot
length (B) and between the interaction of Se sources and rates for root length (C) of cowpea seedlings.
Different uppercase letters indicate differences between sources at each rate, and lowercase letters
indicate differences among application rates at each source. (Tukey test, p ≤ 0.05).

With respect to the shoot dry biomass of cowpea seedlings, there was no regression
model for Se rates, regardless of the source used. The rates of 2.5 and 40 g ha−1 Se, when
selenate was used, resulted in greater accumulation of dry biomass than did selenite, while
at a rate of 5 g ha−1, sodium selenite resulted in greater shoot dry biomass than did selenate
(Figure 5A).

At the lowest Se rate (2.5 g ha−1) and the 20 g ha−1 rate, the highest root dry biomass
values were obtained via sodium selenate, and at the 5 g ha−1 rate, sodium selenite resulted
in greater accumulation of dry biomass than did sodium selenate (Figure 5B).
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3.4. Biochemical Seed Testing

The electrical conductivity of the soaking solution decreased linearly with increasing
Se rates when sodium selenate was used as the source of this element (Figure 6A). For
sodium selenite, there was no significant fit to the linear and quadratic regression models.
At rates of 5 and 10 g ha−1, sodium selenite caused less electrolyte leakage from the seeds
into the soaking solution, whereas at the highest rate of Se (60 g ha−1), the lowest electrical
conductivity was obtained when sodium selenate was used as the Se source (Figure 6B).
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3.5. Principal Component Analysis

A principal component plot was constructed to assess the relationships between the
analyzed variables and the Se sources and rates (Figure 7). Most of the variable vectors
were close to selenate at rates of 10 g ha−1 (FC, SDM and RDM), 40 g ha−1 (E) and 60 g ha−1

(EC). Only selenite at 2.5 g ha−1 was close to AA. These findings indicate that selenate
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provides good results for most of the physiological variables of cowpea seeds. Considering
that the initial stand is fundamental for planting the crop, the 10 g ha−1 rate of sodium
selenate provided seedlings with good root development and good first count germination,
indicating faster seedling establishment.
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(FC), germination (G), emergence (E), electrical conductivity (EC), cold test (CT), accelerated aging
(AA), shoot length (SL), root length (RL), shoot dry biomass (SDM) and root dry biomass (RDM) tests,
and sources and rates of Se in cowpea seeds.

4. Discussion

Although Se is not considered a nutrient, it is beneficial for various crops [6]. Its
benefits are related to increasing the capacity of the plant’s enzymatic and nonenzymatic
antioxidant system; amino acid and protein synthesis; the photosynthetic rate; nitrate and
sugar reductase; and increased nodulation in legumes [14,19–24].

As selenate is more easily transported in plant tissues, it can reach higher concen-
trations in drainage pathways [5]. Selenite has greater potential to cause phytotoxicity
than selenate because of the rapid conversion of selenite to selenoamino acids, which can
then be incorporated into plant proteins [25]. According to [26], the lack of incorporation
of selenoamino acids such as selenomethionine (SeMet) and selenocysteine (SeCys) into
proteins is the factor that contributes the most to Se toxicity in plants.

Therefore, while selenate is more rapidly absorbed by plants than selenite is, the
assimilation of selenite is faster than that of selenate [6]. The presence of free Se in leaf
tissue from selenate can stimulate oxidative stress mitigation mechanisms [27]. On the other
hand, selenite is rapidly converted to organic compounds such as SeCys and SeMet, which
in excess contribute to increased toxicity. This may explain the increase in plant emergence
and development with selenate application and the decrease with selenite application.

Selenate is a source of Se with the capacity to be absorbed more rapidly by plants, as
its behavior is similar to that of sulfate; therefore, it is absorbed through sulfate transport
pathways [28]. Notably, selenate is a highly oxidized compound that requires it to undergo
numerous processes to become organic Se, such as SeCys and SeMet, increasing its ability
to be translocated through plant tissues [6]. Selenite, on the other hand, is translocated via
phosphate transporters, and because it is less oxidized than selenate is converted to organic
forms more quickly, meaning that it is less translocated in the plant and takes longer to
reach leaves and seeds [5]. Notably, the behaviors of selenite and selenate in the soil differ,
as selenite is more easily adsorbed by soil colloids, whereas selenate remains in the soil
solution, especially in soils with high clay contents [14]. Therefore, plants absorb Se in the
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form of selenate more efficiently than selenite. This may be the reason for the better results
with selenate than selenite in this study.

Owing to the high translocation capacity of selenate through the xylem and its low
adsorption in the soil, it is possible that relatively high concentrations of Se are transported
to the seeds during the pod-filling process. [29] reported that Se concentrations in turnip
(Brassica napus L.) seeds were greater in plants treated with selenate than in those treated
with selenite. [30] reported that when 30 g ha−1 Se was applied foliarly to a lentil crop
(Lens culinaris Medikus), the concentration of Se in seeds was significantly greater in those
treated with selenate (1.4 mg kg−1) than in those treated with selenite (0.9 mg kg−1).

In previous studies in legume plants, Se application demonstrated the capacity of
increase the concentration of sugars and N-compounds in seeds, which might explain
the effect of the element in seeds quality. In a pot experiment with 29 cowpea genotypes,
Se application ate the rate of 12.5 µg dm−3 enhanced the concentration of sugar and n-
compounds in seeds [31]. The effect of Se increasing sugars in cowpea was also observed
in a field experiment using two different cultivars at the application rates of 5, 20 and
20 mg Se ha−1 [32]. In mungbean, the application of 30 g ha−1 of exogenous Se upregulated
protein production in seeds [33].

Selenium can also affect the production of hormones, such as gibberellin, an important
hormone for initiating the germination process, in seeds [34]. Physiological conditioning of
B. napus seeds with Se resulted in an increase in the expression of gibberellin production
genes [35]. These authors reported an increase in the expression of five genes related to
gibberellin production, even in the first 24 h after sowing.

Studies using Se solution conditioning have shown that low concentrations of this
beneficial element (15–60 µmol L−1) promote greater germination of rice seeds. This was
attributed to the synthesis of germination-promoting substances and the efficient activity of
hydrolytic enzymes, which can stimulate the efficient mobilization and utilization of seed
reserves (mainly starch amylase activity), as well as membrane reorganisation and reduced
leakage of metabolites in seeds in solution. The positive effect of Se on seed germination is
also associated with an increase in the antioxidant activity of glutathione peroxidase and
the activation of the ascorbate-glutathione cycle [7].

Both selenate and selenite can cause changes in plant membranes; therefore, the
same can be inferred in the process of membrane organization during seed formation.
The increased release of solutes is directly proportional to the decrease in germination
and seedling vigor; higher conductivity values indicate less vigorous seeds, and lower
values, corresponding to less release of exudates, indicate high physiological potential.
The antioxidant effects of Se application during cowpea cultivation may have favored the
formation and integrity of seed membranes during the grain-filling period, which may
have had a positive influence on reducing electrolyte leakage during seed imbibition.

Under stress conditions, whether due to heat and moisture, as in accelerated aging
tests, or cold, high Se concentrations in tissues can lead to the release of superoxides,
which can catalyze the increased expression of antioxidant enzymes and regulate metabolic
disorders [36]. Se can also have a positive effect on seed germination under stressful abiotic
conditions such as excessive salinity, heavy metal exposure and water deficit [37].

Complex interactions between Se and other nutrients can occur during plant metabolic
processes, especially in relation to micronutrients. Se sources clearly behave differently
in terms of plant metabolic processes, indicating that several important factors need to be
considered for agricultural selenium supplementation.

Selenium is considered beneficial for plants as an antioxidant that provides tolerance
to biotic and abiotic stresses [4,6,26,38]. Its use can reduce the effects of abiotic stress on
both plants and seed germination, as presented in this work. Notably, if any type of stress
is not properly regulated, excessive ROS can damage phospholipid membranes, proteins or
DNA, thus inhibiting signaling pathways and, in general, cell function [36], a fact related to
the electrical conductivity of seeds. The supply of Se during crop development can promote
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fewer biotic and abiotic perturbations in plants, without interfering with seed development
and contributing to an increase in their physiological potential.

Compared with the use of sodium selenite, the use of sodium selenate as a source of
Se improved the physiological quality of cowpea seeds. Seed germination after accelerated
senescence stress is increased by the use of sodium selenate, even at relatively high rates,
whereas selenite provides beneficial results at relatively low rates. Sodium selenate linearly
increased seed germination after the cold test and linearly reduced seed electrolyte leakage
with increasing Se rates.

5. Conclusions

The soil application of Se is beneficial for cowpea seed quality. Compared with
those treated with sodium selenite, cowpea plants treated with sodium selenate in the
soil produced more vigorous seeds. The application of 10 g ha−1 Se as sodium selenate
provides seedlings with faster germination and root development and is an alternative for
rapid stand establishment.

As a perspective, we show that soil application of Se at low concentrations can be used
to improve physiological quality and induce tolerance to abiotic stress in cowpea seeds.
Selenium provides a better initial development for cowpea seedlings, this is crucial for a
faster plant development in stressful conditions, specially considering cowpea importance
as a low-income crop, thus, being more susceptible to sub optimal growth conditions.

Is noteworthy that future investigations must be performed to further elucidate sele-
nium effect on cowpea seeds quality. The present data states that selenate is more fitted as
a Se-source than selenite, however, future studies with different genotypes could enhance
the knowledge. In addition to that, wider and longer field experiments would also help to
further investigate the residual effect of Se in cowpea seed over the years.
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