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1. Introduction

In the 21st century, agriculture is facing numerous challenges. First, a changing climate
is modifying farming conditions and increasingly influencing how agricultural production
is carried out. For example, dynamic agricultural adaptation to rising temperatures is
necessary to maintain farm profitability and, most importantly, ensure the continuity of
food production. It is important to remember that the faster climate change occurs, the more
difficult adaptation will be. Admittedly, some climatologists stress that climate change
may be beneficial, if only through a theoretical increase in crop yields. Conversely, it is
speculated that climate change will lead to visible shifts in the start and end of the growing
season, a limited supply of water resources, and changes in the species composition of
locally resident plant and animal species. It is worth noting that it is easier for agriculture
to adapt to a slow change in average air temperatures or precipitation totals rather than the
currently observed weather anomalies and extreme events [1].

Currently, there are many techniques conducive to adapting agriculture to the changes
occurring in the Earth’s climate. The main goals behind such measures are to maintain
high and stable productivity and environmental functionality while sustaining profitable
production and food security. Among the most promising agricultural production methods
resilient to climate change are agroecology, which are systems based on soil conservation,
natural methods of plant protection, and soil biologization [2]. Great importance is at-
tributed to the development of precision and digital agriculture. These tools allow for the
monitoring and optimization of agricultural production processes through the involvement
of digital techniques. Precision farming methods are primarily based on a combination of
new technologies using sensors, satellite navigation and positioning, and the Internet of
Things. In mitigating the effects of climate change on agricultural production, prediction
and estimation tools come to the rescue, allowing accurate prediction of certain events
during the growing season. Making predictions of yields, input consumption, and storage
space facilitates the day-to-day management of farms. In turn, predicting extreme weather
events, water resources, etc., allows for more informed planning regarding crop rotation,
including cover crops and irrigation [3].

Considering the above arguments, developing systems for reliable monitoring and
prediction of multi-stage agricultural production is valuable. This will allow, among other
things, researchers to estimate the achievable production effects in both abnormal years and
standard conditions in advance. Agricultural prediction tools include classical statistical
models, machine learning, GIS tools, satellite and aerial remote sensing, the Internet
of Things, and big data [4–6]. Although they already well-integrated into agricultural
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practices, they are constantly evolving with advances in genetics, breeding, and the market
for active substances.

The purpose of this Special Issue was to publish high-quality research articles that
cover issues related to the use of prediction and estimation tools in agriculture challenged
by the effects of climate change. Below are the most important articles published in this
Special Issue.

2. Papers in this Special Issue

In the first article [7], the authors attempted to predict corn yield in the Czech Republic
using extreme machine learning. The advantage of the yield prediction approach presented
in the article, compared to the classical approach, was the division of the entire growth
period of corn into individual months. This resulted in accurate models predicting the
yield of corn grown for silage and grain. The authors worked on a large dataset collected
from 2002 to 2018 for the entire county. The data concerned meteorological conditions and
corn yield levels. Extreme learning machine (ELM) was used to build models. Satisfactory
model accuracy results were obtained, i.e., the coefficient of determination R2 reached
values in the range of 0.641–0.716.

In the second article, the authors predicted yields of rice grown in the most agri-
culturally intensive regions of India [8]. The two-step STRAMA (autoregressive moving
av-erage) approach, referred to as STRAMA-II in this paper, was used to achieve the re-
search objective. The use of the above method made it possible to obtain a lower absolute
percentage of errors in predictive models compared to the results obtained using classical
linear and nonlinear spatio-temporal time series models. The STRAMA-II method provides
opportunities to create accurate forecasting models in the medium and long term.

The third article published in the presented SI also deals with rice cultivation, but
the research topic presented is related to forecasting the occurrence of the main pest in
this crop—Asian rice gall midge (Orseolia oryzae (Wood-Mason)) [9]. A six-year study on
the existence of this pathogen was conducted in rice plantations in four different agro-
ecosystems in India. The starting material for the construction of predictive models was
climatic data and weekly information on the abundance of gall midge populations. The
study used and compared two prediction tools: the time series method (integer-valued
generalized autoregressive conditional heteroscedastic—INGARCH) and machine learning
(artificial neural network—ANN; support vector regression—SVR). Finally, it was shown
that the ANN model with an exogenous variable (ANNX) outperformed the INGRACH
model with an exogenous variable (INGRCHX) and the SVR model with an exogenous
variable (SVRX) in the accuracy of the predictions made. The presented results will allow
more effective management and protection of rice from this dangerous pest.

In the fourth article, the authors presented a method for effectively and accurately
predicting the effect of environmental conditions on the grain yield of maize varieties
belonging to different maturity groups [10]. The presented experiment concerned the
analysis of several important environmental parameters in terms of the yield efficiency
of three groups of corn varieties in VCU (value for cultivation and use) experiments in
Croatia. It was possible to achieve the research objective by using a linear mixed model to
estimate fixed and random effects. The research conducted did not unequivocally identify a
reference variety among the tested earliness groups. The analysis of the best linear unbiased
predictions (BLUP) led to the conclusion that the effect of environmental effects on yield
was stronger with more mature varieties. The authors stressed the need for further research
on this phenomenon.

The fifth article saw the authors attempt to identify the factors with the greatest impact
on the yield and digestibility of sward in Poland based on a three-year field study [11].
Nine neural predictive models were tested. The extraction of the most significant factors
determining the quantity and quality of green fodder yield was possible via the sensi-
tivity analysis of neural networks. Very interesting results were obtained, indicating the
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predominance of the following factors (ranked in order of importance): average daily air
temperature, total precipitation, and percentage of legumes.

The sixth article dealt with estimating the area under cultivation and yield of rice in
the Cauvery delta zone in Tamil Nadu, India. The study was conducted during the samba
season (August–January) in 2020–2021 [12]. Sentinel 1A Synthetic Aperture Council satellite
data were the input data for the construction of forecast models. Various methods of spatial
yield estimation were used for analysis: classical regression analysis using spectral indices,
a semi-physical approach, and an integrated remote product system with a DSSAT crop
growth model. The results of the study showed that methods integrating spectral data with
the DSSAT decision support system and regression analysis generate very accurate results
(agreement of about 90%), and so developing such techniques for the spatial estimation of
crop area is necessary.

In the seventh article, the authors dealt with the evaluation of methods for the spatial
correction of ordinal data using the example of chlorosis symptoms resulting from iron
deficiency in soybean crops [13]. Corrections for autocorrelation were carried out with the
involvement of eight different models. Three groups of models were identified: group I,
moving average grid fitting; group II, geospatial autoregressive regression (SAR) models;
and group III, tensor product of penalized P-splines. The results of the above studies
suggested that the quality and effectiveness of the generated models were most affected
by the variability of the field, the irregularity of the chosen pattern, and the type of model
used. It was shown that models belonging to Group II outperformed the other models in
terms of prediction accuracy.

In the eighth article, the authors attempted a detailed assessment of the impact of
current climate change on the production performance of the oil patch in Costa Rica in
terms of available water resources [14]. The study proposed three scenarios of probable
climate change, feasible in time periods: simulation in the base period 2000–2019; 2040–2059
(CCS1); and 2080–2099 (CCS2). The model for the analyses performed used irrigated crops.
APSIM modeling was conducted in the simulations. The projections made indicated large
decreases in crop yields in the following time intervals, i.e., by 7.86% (CCS1) and 37.86%
(CCS2) in relation to the base period.

The ninth article dealt with the development and validation of innovative models
for predicting the scale of mite infestation (DPM) on date palm fruit [15]. The scale of the
appearance of the pest population in the crop is assessed via visual observation of spider
webs on unripe fruit. Meteorological data and physical and chemical properties of date
palm fruit were used as the input variables of two predictive models (linear regression (LR)
and decision forest regression (DFR)). The DFR model produced a more accurate predictions
of the occurrence of DPM compared to LR, and the R2 coefficient of determination of the
DFR model was over 0.9. The selected model offers great utility and may have substantial
implementation significance.

The final, tenth article of the presented SI dealt with the application of two algorithms
used to forecast wheat yield in Turkey: CHAID and MARS [16]. The study additionally
determined the correlation between some morphological traits of different wheat crop
species. A total of 26 genotypes were analyzed. The results of the analyses described above
showed that the MARS model was the best model for predicting wheat grain yield at this
particular research site. Moreover, this algorithm accounted for and described as much
as 95.7% of the variability in grain yield among wheat. The selected research method is
a great support for breeders of new varieties, as it allows them to accurately describe the
complex and intersecting interactions of G × E, etc.

3. Conclusions

The research presented in this Special Issue provides an excellent overview of the
current state of knowledge on the involvement of various research methods in agriculture.
Most of them use techniques of precision agriculture, digital agriculture, machine learning,
etc. Implementing the results of such analyses provides an opportunity for faster and
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more effective adaptation of this important sector of national economies to the observed
climate changes.
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