Life Parameters and Physiological Reactions of Cotton Aphids Aphis gossypii (Hemiptera: Aphididae) to Sublethal Concentrations of Afidopyropen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Materials
2.2. Insecticides
2.3. Bioassay
2.3.1. Toxicity Bioassay
2.3.2. Sublethal Effect Bioassay
2.3.3. Aphid Susceptibility Detection
2.4. Enzyme Activity Assay
2.4.1. Sample Preparation
2.4.2. Enzyme Activity Assay
2.5. Gene Expression Assay
2.6. Statistical Analyses
3. Results
3.1. Toxicity of Nine Insecticides to A. gossypii
3.2. Sublethal Effects of Afidopyropen on A. gossypii
3.2.1. F0 Generation
3.2.2. F1 Generation
3.3. Sublethal Effects on Enzymatic Activities
3.4. Susceptibility of A. gossypii after Continuous Sublethal Treatment
3.5. Detoxification Metabolism Enzyme Activities of the F0 and F3 Generations
3.6. P450 Gene Expression in the F0 and F3 Generations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ebert, T.A.; Cartwright, B. Biology and ecology of Aphis gossypii Glover (Homoptera: Aphididae). Southwest. Entomol. 1997, 22, 116–153. [Google Scholar]
- Sudhakar, N.; Thajuddin, N.; Murugesan, K. Plant growth-promoting rhizobacterial mediated protection of tomato in the field against cucumber mosaic virus and its vector Aphis gossypii. Biocontrol Sci. Technol. 2011, 21, 367–386. [Google Scholar] [CrossRef]
- Heilsnis, B.; Mahas, J.B.; Conner, K.; Pandey, S.; Clark, W.; Koebernick, J.; Jacobson, A.L. Characterizing the vector competence of Aphis gossypii, Myzus persicae and Aphis craccivora (Hemiptera: Aphididae) to transmit cotton leafroll dwarf virus to cotton in the United States. J. Econ. Entomol. 2023, 116, 719–725. [Google Scholar] [CrossRef]
- Mokbel, E.S. Resistance risk assessment: Realized heritability, cross resistance and resistance stability of acetamiprid in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae). J. Plant Prot. Res. 2018, 58, 328–334. [Google Scholar] [CrossRef]
- Ullah, F.; Gul, H.; Tariq, K.; Desneux, N.; Gao, X.; Song, D. Acetamiprid resistance and fitness costs of melon aphid, Aphis gossypii: An age-stage, two-sex life table study. Pestic. Biochem. Phys. 2021, 171, 104729. [Google Scholar] [CrossRef]
- Zeng, X.; Pan, Y.; Song, J.; Li, J.; Lv, Y.; Gao, X.; Shang, Q. Resistance risk assessment of the ryanoid anthranilic diamide insecticide cyantraniliprole in Aphis gossypii Glover. J. Agric. Food Chem. 2021, 69, 5849–5857. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.Y.; Guo, Q.L.; Xia, X.M.; Wang, H.Y.; Liu, T.X. Resistance of Aphis gossypii (Homoptera: Aphididae) to selected insecticides on cotton from five cotton production regions in Shandong, China. J. Pestic. Sci. 2007, 32, 372–378. [Google Scholar] [CrossRef]
- Shi, D.; Liang, P.; Zhang, L.; Lv, H.; Gao, X.; You, H.; Ma, K. Susceptibility baseline of Aphis gossypii Glover (Hemiptera: Aphididae) to the novel insecticide afidopyropen in China. Crop Prot. 2022, 151, 105834. [Google Scholar] [CrossRef]
- Cheng, S.; Li, R.; Chen, Z.; Ni, J.; Lv, N.; Liang, P.; Gao, X. Comparative susceptibility of Aphis gossypii Glover (Hemiptera: Aphididae) on cotton crops to imidacloprid and a novel insecticide cyproflanilide in China. Ind. Crop Prod. 2023, 192, 116053. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Liu, Z.H.; Ozuzu, S.A.; Arafat, Y.; Han, C.X.; Maggi, F.; Shao, H. Toxicity of Delphinium brunonianum Royle alkaloids against the adults of Diaphorina citri and its mechanism study in insect SF9 cell line. Ind. Crop Prod. 2024, 208, 117826. [Google Scholar] [CrossRef]
- Cui, L.; Qi, H.L.; Yang, D.; Yuan, H.Z.; Rui, C.H. Cycloxaprid: A novel cis-nitromethylene neonicotinoid insecticide to control imidacloprid-resistant cotton aphid (Aphis gossypii). Pestic. Biochem. Phys. 2016, 132, 96–101. [Google Scholar] [CrossRef]
- Leichter, C.A.; Thompson, N.; Johnson, B.R.; Scott, J.G. The high potency of ME-5343 to aphids is due to a unique mechanism of action. Pestic. Biochem. Phys. 2013, 107, 169–176. [Google Scholar] [CrossRef]
- Kandasamy, R.; London, D.; Stam, L.; von-Deyn, W.; Zhao, X.; Salgado, V.L.; Nesterov, A. Afidopyropen: New and potent modulator of insect transient receptor potential channels. Insect Biochem. Mol. 2017, 84, 32–39. [Google Scholar] [CrossRef]
- Koch, R.L.; Queiroz, O.; Aita, R.C.; Hodgson, E.W.; Potter, B.D.; Nyoike, T.; Ellers-Kirk, C.D. Efficacy of afidopyropen against soybean aphid (Hemiptera: Aphididae) and toxicity to natural enemies. Pest Manag. Sci. 2020, 76, 375–383. [Google Scholar] [CrossRef]
- Tang, Q.L.; Liang, P.Z.; Li, J.H.; Gao, X.W. A sublethal concentration of afidopyropen suppresses the population growth of the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae). J. Integr. Agric. 2022, 21, 2055–2064. [Google Scholar] [CrossRef]
- Slusher, E.K.; Cottrell, T.; Acebes-Doria, A.L. Effects of aphicides on pecan aphids and their parasitoids in pecan orchards. Insects 2021, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, Z.; Zheng, H.; Zhang, Q.; Gong, J.; Li, C.; Wang, R. Physiological and biochemical responses to sublethal concentrations of the novel pyropene insecticide, afidopyropen, in whitefly Bemisia tabaci MED (Q Biotype). Agronomy 2021, 11, 2260. [Google Scholar] [CrossRef]
- Chen, X.D.; Ashfaq, M.; Stelinski, L.L. Susceptibility of Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), to the insecticide afidopyropen: A new and potent modulator of insect transient receptor potential channels. Appl. Entomol. Zool. 2018, 53, 453–461. [Google Scholar] [CrossRef]
- Joseph, S.V. Repellent effects of insecticides on Stephanitis pyrioides Scott (Hemiptera: Tingidae) under laboratory conditions. Crop Prot. 2020, 127, 104985. [Google Scholar] [CrossRef]
- Deng, D.; Duan, W.; Wang, H.; Zhang, K.; Guo, J.; Yuan, L.; Wu, S. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). Ecotoxicology 2019, 28, 825–833. [Google Scholar] [CrossRef]
- Stapel, J.O.; Cortesero, A.M.; Lewis, W.J. Disruptive sublethal effects of insecticides on biological control: Altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biol. Control 2000, 17, 243–249. [Google Scholar] [CrossRef]
- Desneux, N.; Decourtye, A.; Delpuech, J.M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 2007, 52, 81–106. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.B.; Jiang, L.L.; Wang, H.Y.; Qiao, K.; Wang, D.; Wang, K. Toxicities and sublethal effects of seven neonicotinoid insecticides on survival, growth and reproduction of imidacloprid-resistant cotton aphid, Aphis gossypii. Pest Manag. Sci. 2011, 67, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Yuan, H.; Wang, Q.; Wang, Q.; Rui, C. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the cotton aphid Aphis gossypii Glover (Hemiptera: Aphididae). Sci. Rep. 2018, 8, 8915. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Huang, Q.; Liu, X.; Liang, G. Differences in the sublethal effects of sulfoxaflor and acetamiprid on the Aphis gossypii Glover (Homoptera: Aphididae) are related to its basic sensitivity level. Insects 2022, 13, 498. [Google Scholar] [CrossRef] [PubMed]
- Liang, P.Z.; Ma, K.S.; Chen, X.W.; Tang, C.Y.; Xia, J.; Chi, H.; Gao, X.W. Toxicity and sublethal effects of flupyradifurone, a novel butenolide insecticide, on the development and fecundity of Aphis gossypii (Hemiptera: Aphididae). J. Econ. Entomol. 2019, 112, 852–858. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, E.M.G.; De-Moura, I.L.T.; Fadini, M.A.M.; Guedes, R.N.C. Beyond selectivity: Are behavioral avoidance and hormesis likely causes of pyrethroid-induced outbreaks of the southern red mite Oligonychus ilicis? Chemosphere 2013, 93, 1111–1116. [Google Scholar] [CrossRef]
- Qu, Y.; Xiao, D.; Li, J.; Chen, Z.; Biondi, A.; Desneux, N.; Song, D. Sublethal and hormesis effects of imidacloprid on the soybean aphid Aphis glycines. Ecotoxicology 2015, 24, 479–487. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Walse, S.S.; Throne, J.E. Sublethal exposure, insecticide resistance, and community stress. Curr. Opin. Insect Sci. 2017, 21, 47–53. [Google Scholar] [CrossRef]
- Wang, S.; Qi, Y.; Desneux, N.; Shi, X.; Biondi, A.; Gao, X. Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. J. Pest Sci. 2017, 90, 389–396. [Google Scholar] [CrossRef]
- Shang, J.; Yao, Y.; Chen, L. Sublethal exposure to deltamethrin stimulates reproduction and alters symbiotic bacteria in Aphis gossypii. J. Agric. Food Chem. 2020, 69, 15097–15107. [Google Scholar] [CrossRef]
- Wang, K.Y.; Liu, T.X.; Yu, C.H.; Jiang, X.Y.; Yi, M.Q. Resistance of Aphis gossypii (Homoptera: Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. J. Econ. Entomol. 2002, 95, 407–413. [Google Scholar] [CrossRef]
- Rizvi, S.A.H.; Ling, S.; Tian, F.; Xie, F.; Zeng, X.N. Toxicity and enzyme inhibition activities of the essential oil and dominant constituents derived from Artemisia absinthium L. against adult Asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae). Ind. Crop Prod. 2018, 121, 468–475. [Google Scholar] [CrossRef]
- Leelaja, B.C.; Rajini, P.S. Biochemical and physiological responses in Caenorhabditis elegans exposed to sublethal concentrations of the organophosphorus insecticide, monocrotophos. Ecotox. Environ. Saf. 2013, 94, 8–13. [Google Scholar] [CrossRef]
- Wen, S.; Xue, Y.; Du, R.; Liu, C.; Wang, X.; Wang, Y.; Xia, X. Toxicity and sublethal effects of triflumezopyrim on the development and detoxification enzymatic activities in the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). Crop Prot. 2021, 150, 105813. [Google Scholar] [CrossRef]
- Voudouris, C.C.; Kati, A.N.; Sadikoglou, E.; Williamson, M.; Skouras, P.J.; Dimotsiou, O.; Margaritopoulos, J.T. Insecticide resistance status of Myzus persicae in Greece: Long-term surveys and new diagnostics for resistance mechanisms. Pest Manag. Sci. 2016, 72, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Mostafiz, M.M.; Alam, M.B.; Chi, H.; Hassan, E.; Shim, J.K.; Lee, K.Y. Effects of sublethal doses of methyl benzoate on the life history traits and acetylcholinesterase (AChE) activity of Aphis gossypii. Agronomy 2020, 10, 1313. [Google Scholar] [CrossRef]
- Lin, Y.; He, S.Q.; Lu, Z.H.; Gao, Y.L.; Duan, Y.R.; Li, Z.Y.; Chen, B.; Gui, F.R. Influence of Aphis gossypii feeding on defense strategy of native and introduced populations of Ageratina adenophora. Arthropod-Plant Interact. 2020, 14, 345–356. [Google Scholar] [CrossRef]
- Yang, Y.X.; Lin, R.H.; Li, Z.; Wang, A.Y.; Xue, C.; Duan, A.L.; Zhang, J.H. Function analysis of P450 and GST genes to imidacloprid in Aphis craccivora (Koch). Front. Physiol. 2021, 11, 624287. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Xu, H.; Pan, Y.; Gao, X.; Xi, J.; Zhang, J.; Shang, Q. Expression profile changes of cytochrome P450 genes between thiamethoxam susceptible and resistant strains of Aphis gossypii Glover. Pestic. Biochem. Phys. 2018, 149, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Su, H.Y. Age-stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Ma, K.; Tang, Q.; Zhang, B.; Liang, P.; Wang, B.; Gao, X. Overexpression of multiple cytochrome P450 genes associated with sulfoxaflor resistance in Aphis gossypii Glover. Pestic. Biochem. Phys. 2019, 157, 204–210. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Z.; Zhu, Y.; Gao, X.; Liu, T.X.; Liang, P. Sublethal and transgenerational effects of afidopyropen on biological traits of the green peach aphid Myzus persicae (Sluzer). Pestic. Biochem. Phys. 2022, 180, 104981. [Google Scholar] [CrossRef] [PubMed]
- Carletto, J.; Martin, T.; Vanlerberghe-Masutti, F.; Brévault, T. Insecticide resistance traits differ among and within host races in Aphis gossypii. Pest Manag. Sci. 2010, 66, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.N.; An, J.J.; Park, S.E.; Kim, J.I.; Kim, G.H. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop Prot. 2014, 55, 91–97. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, M.; Liu, X.; Xu, J.; Dong, F.; Wu, X.; Zheng, Y. Determination and dissipation of afidopyropen and its metabolite in wheat and soil using QuEChERS–UHPLC–MS/MS. J. Sep. Sci. 2018, 41, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Christopher, C.G.; Ramanaidu, K.; Astatkie, T.; Isman, M.B. Green peach aphid, Myzus persicae (Hemiptera: Aphididae), reproduction during exposure to sublethal concentrations of imidacloprid and azadirachtin. Pest Manag. Sci. 2009, 65, 205–209. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Magalhaes, L.C.; Cosme, L.V. Stimulatory sublethal response of a generalist predator to permethrin: Hormesis, hormoligosis, or homeostatic regulation? J. Econ. Entomol. 2009, 102, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Yao, Y.S.; Zhu, X.Z.; Wang, L.; Li, D.Y.; Zhang, K.X.; Cui, J.J. Evaluation of sublethal and transgenerational effects of sulfoxaflor on Aphis gossypii via life table parameters and 16S rRNA sequencing. Pest Manag. Sci. 2021, 77, 3406–3418. [Google Scholar] [CrossRef]
- Li, Z.; Guo, Y.; Liu, Y.; Wang, X.; Zhu, Z. The effects of sublethal levels of insecticide on the wing dimorphism, development and reproduction of two aphid species. Chin. J. Appl. Entomol. 2018, 55, 896–903. [Google Scholar]
- An, J.J.; Gao, Z.L.; Dang, Z.H.; Yan, X.; Pan, W.L.; Li, Y.F. Development and risk assessment of resistance to sulfoxaflor in cotton aphid (Aphis gossypii). J. Hebei Agric. Univ. 2020, 43, 76–81. [Google Scholar] [CrossRef]
- Guo, T.; Ma, Y.; Ding, R.; Zhou, J.; Li, G.; Cai, X.; Gao, X. Selection and realized heritability analysis of resistance to imidacloprid in cotton aphid (Aphis gossypii). Acta Entomol. Sin. 2014, 57, 330–334. [Google Scholar] [CrossRef]
- Karuppaiah, V.; Srivastava, C.; Subramanian, S. Effect of host plants on insecticide susceptibility and detoxiffcation enzymes activity in Spodoptera litura Fabricius (Noctuidae: Lepidoptera). Proc. Natl. Acad. Sci. USA 2015, 86, 715–721. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Wang, H.; Qiao, K.; Wang, K. Cross-resistance to clothianidin and acetamiprid in the imidacloprid-resistant strain of Aphis gossypii (Hemiptera: Aphididae) and the related enzyme mechanisms. Acta Entomol. Sin. 2013, 56, 1143–1151. [Google Scholar]
- Guo, T.F.; Zhou, J.; Ye, Y.X. Study on the activity of the detoxification enzymes and synergist synergism of cotton Aphis gossypii on acetamiprid of different strains. Xinjiang Agric. Sci. 2015, 52, 1334–1339. [Google Scholar]
- Feyereisen, R. Insect P450 enzymes. Annu. Rev. Entomol. 1999, 44, 507–533. [Google Scholar] [CrossRef] [PubMed]
- Weedall, G.D.; Mugenzi, L.M.J.; Menze, B.D.; Tchouakui, M.; Ibrahim, S.S.; Amvongo-Adjia, N.; Wondji, C.S. A cytochrome P450 allele confers pyrethroid resistance on a major African malaria vector, reducing insecticide-treated bednet efficacy. Sci. Transl. Med. 2019, 11, eaat7386. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, C.T.; Garrood, W.T.; Singh, K.S.; Randall, E.; Lueke, B.; Gutbrod, O.; Bass, C. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Curr. Biol. 2018, 28, 268–274.e5. [Google Scholar] [CrossRef] [PubMed]
- Nauen, R.; Bass, C.; Feyereisen, R.; Vontas, J. The role of cytochrome P450s in insect toxicology and resistance. Annu. Rev. Entomol. 2022, 67, 105–124. [Google Scholar] [CrossRef]
- Jones, R.T.; Bakker, S.E.; Stone, D.; Shuttleworth, S.N.; Boundy, S.; McCart, C.; Elsen, J.M. Homology modelling of Drosophila cytochrome P450 enzymes associated with insecticide resistance. Pest Manag. Sci. 2010, 66, 1106–1115. [Google Scholar] [CrossRef]
- Wang, R.; Gao, B.; Che, W.; Qu, C.; Zhou, X.; Luo, C. First report of field resistance to afidopyropen, the novel Pyropene insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China. Agronomy 2022, 12, 724. [Google Scholar] [CrossRef]
Insecticides | Regression Equation y = ax + b | Median Lethal Concentration LC50 (mg/L) | Confidence Interval (95%CI) | χ2 (df) | R2 |
---|---|---|---|---|---|
Afidopyropen | y = 1.14x + 5.60 | 0.30 | 0.21−0.73 | 2.33(16) | 0.97 |
Pymetrozine | y = 1.72x + 5.32 | 0.65 | 0.48−1.01 | 8.29(13) | 0.86 |
Triflumezopyrim | y = 1.11x + 5.03 | 0.93 | 0.42−1.43 | 6.16(13) | 0.85 |
Flonicamid | y = 1.19x + 4.97 | 1.06 | 0.55−1.56 | 6.10(13) | 0.90 |
Sulfoxaflor | y = 1.13x + 4.52 | 2.61 | 1.69−4.13 | 2.50(13) | 0.95 |
Acetamiprid | y = 1.33x + 4.40 | 2.81 | 1.95−4.22 | 2.73(13) | 0.96 |
Thiamethoxam | y = 1.82x + 3.82 | 4.42 | 2.35−6.37 | 6.60(13) | 0.86 |
Clothianidin | y = 2.23x + 2.74 | 10.36 | 8.29−13.01 | 4.46(13) | 0.88 |
Imidacloprid | y = 1.20x + 3.67 | 12.74 | 8.33−22.15 | 4.59(13) | 0.91 |
Parameter | CK | LC5 | LC10 | |
---|---|---|---|---|
Developmental time (d) | 1st-instar nymph | 1.27 ± 0.05a | 1.18 ± 0.05b | 1.19 ± 0.04b |
2nd-instar nymph | 1.42 ± 0.05a | 1.34 ± 0.05b | 1.39 ± 0.05ab | |
3rd-instar nymph | 1.48 ± 0.06a | 1.46 ± 0.06a | 1.44 ± 0.05a | |
4th-instar nymph | 1.66 ± 0.08a | 1.35 ± 0.06b | 1.52 ± 0.06a | |
Preadult | 5.80 ± 0.90a | 5.25 ± 0.91c | 5.52 ± 0.81b | |
Mortality rate (%) | 1st-instar nymph | 4.85 ± 2.12c | 7.48 ± 2.54b | 10.02 ± 2.86a |
2nd-instar nymph | 1.95 ± 1.36b | 1.00 ± 1.00c | 2.72 ± 1.55a | |
3rd-instar nymph | 2.91 ± 1.65b | 6.54 ± 2.39a | 4.53 ± 1.99ab | |
4th-instar nymph | 4.83 ± 2.31b | 7.48 ± 2.55ab | 9.09 ± 2.74a | |
Preadult | 14.54 ± 3.56b | 22.44 ± 4.03ab | 26.36 ± 4.18a | |
Adult longevity (d) | 8.32 ± 0.20a | 7.59 ± 0.22b | 6.47 ± 0.20c | |
Total longevity (d) | 14.13 ± 0.22a | 12.84 ± 0.24b | 11.99 ± 0.23b | |
APOP(d) | 0.56 ± 0.06b | 0.61 ± 0.06a | 0.68 ± 0.05a | |
TPOP (d) | 6.37 ± 0.13a | 5.87 ± 0.12b | 6.20 ± 0.10ab | |
Oviposition days (d) | 6.06 ± 0.20a | 5.99 ± 0.23a | 4.78 ± 0.20b | |
Fecundity (nymph/female) | 19.75 ± 0.57b | 23.46 ± 0.82a | 16.90 ± 0.61c |
Parameters | CK | LC5 | LC10 |
---|---|---|---|
Intrinsic rate of increase r (d−1) | 0.294 ± 0.006b | 0.327 ± 0.007a | 0.282 ± 0.008b |
Finite capacity of increase λ (d−1) | 1.341 ± 0.009ab | 1.387 ± 0.012a | 1.325 ± 0.011b |
The net reproductive rate Ro (offspring/individual) | 16.68 ± 0.85b | 18.97 ± 1.17a | 12.29 ± 0.84c |
Mean generation time T (d) | 9.58 ± 0.12a | 8.99 ± 0.14b | 8.88 ± 0.12b |
Gross reproductive rate GRR (offspring/individual) | 22.48 ± 0.74b | 29.89 ± 0.98a | 20.74 ± 0.79c |
Relative fitness Rf | 1.00 | 1.19 | 0.86 |
Generation | Regression Equation y = ax + b | Median Lethal Concentration LC50 (mg/L) | Confidence Interval (95%CI) | χ2 (df) | R2 | Toxicity Ratio |
---|---|---|---|---|---|---|
F0 | y = 1.14x + 5.60 | 0.30 | 0.19–0.59 | 2.33 (16) | 0.97 | 1.00 |
F1 | y = 1.14x + 5.51 | 0.35 | 0.19–3.40 | 2.51 (10) | 0.86 | 1.17 |
F2 | y = 1.86x + 5.42 | 0.59 | 0.41–1.02 | 2.16 (6) | 0.95 | 1.97 |
F3 | y = 2.06x + 5.08 | 0.78 | 0.48–1.11 | 3.80 (10) | 0.91 | 2.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Guo, L.; Xue, Y.; Wang, M.; Li, C.; Zhang, R.; Zhang, S.; Xia, X. Life Parameters and Physiological Reactions of Cotton Aphids Aphis gossypii (Hemiptera: Aphididae) to Sublethal Concentrations of Afidopyropen. Agronomy 2024, 14, 258. https://doi.org/10.3390/agronomy14020258
Ding W, Guo L, Xue Y, Wang M, Li C, Zhang R, Zhang S, Xia X. Life Parameters and Physiological Reactions of Cotton Aphids Aphis gossypii (Hemiptera: Aphididae) to Sublethal Concentrations of Afidopyropen. Agronomy. 2024; 14(2):258. https://doi.org/10.3390/agronomy14020258
Chicago/Turabian StyleDing, Wenjuan, Longzhi Guo, Yannan Xue, Mei Wang, Chuanwang Li, Ruikai Zhang, Siwen Zhang, and Xiaoming Xia. 2024. "Life Parameters and Physiological Reactions of Cotton Aphids Aphis gossypii (Hemiptera: Aphididae) to Sublethal Concentrations of Afidopyropen" Agronomy 14, no. 2: 258. https://doi.org/10.3390/agronomy14020258
APA StyleDing, W., Guo, L., Xue, Y., Wang, M., Li, C., Zhang, R., Zhang, S., & Xia, X. (2024). Life Parameters and Physiological Reactions of Cotton Aphids Aphis gossypii (Hemiptera: Aphididae) to Sublethal Concentrations of Afidopyropen. Agronomy, 14(2), 258. https://doi.org/10.3390/agronomy14020258