Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Starch Isolation
2.3. Total Starch Content and Proximal Analysis
2.4. Morphological Analyses
2.5. Physicochemical Properties
2.5.1. Pasting Properties
2.5.2. Thermal Properties
2.5.3. X-ray Diffraction
2.5.4. Apparent Amylose Content
2.5.5. Resistant Starch Content
2.5.6. Swelling Power () and Water Solubility ()
2.5.7. Refrigeration and Freeze-Thaw Stability
2.6. Microencapsulation by Spray Drying
2.7. Characterization of Microparticles
2.7.1. Water Activity, Particle Size Distribution, and Morphological Analysis
2.7.2. Encapsulation Efficiency (EE)
2.8. Statistical Analyses
3. Results
3.1. Starch Isolation Yield
3.2. Chemical Composition of Jinicuil Seed Starch (JSS)
3.3. Morphological Properties of JSS
3.4. Pasting Profile and X-ray Diffraction Pattern of JSS
3.5. Gelatinization Properties of JSS
3.6. Water Solubility () and Swelling Power () of JSS
3.7. Stability under Freeze-Thaw and Refrigeration of JSS Gel
3.8. Spray Drying Process Yield and Encapsulation Efficiency
3.9. Morphological Properties and Water Activity of Dried Particles
4. Discussion
4.1. Characteristics, Properties, and Potential Applications of Jinicuil Seed Starch
4.2. Evaluation of Jinicuil Seed Starch as Wall Material
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Pacheco, E.; Moo-Huchin, V.M.; Estrada-León, R.J.; Ortiz-Fernández, A.; May-Hernández, L.H.; Ríos-Soberanis, C.R.; Betancur-Ancona, D. Isolation and characterization of starch obtained from Brosimum alicastrum Swarts seeds. Carbohydr. Polym. 2014, 101, 920–927. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Qin, G.; Wu, X.; Li, M.; Sun, L.; Dang, W.; Zhang, S.; Liang, Y.; Zheng, X.; et al. Classification, gelation mechanism and applications of polysaccharide-based hydrocolloids in pasta products: A review. Int. J. Biol. Macromol. 2023, 248, 125956. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Saguilán, A.; Méndez-Montealvo, G.; Solorza-Feria, J.; Bello-Pérez, L.A. Thermal and viscoelastic properties of starch gels from maize varieties. J. Sci. Food Agric. 2006, 86, 1078–1086. [Google Scholar] [CrossRef]
- Alonso-González, M.; Castro-Criado, D.; Felix, M.; Romero, A. Evaluation of rice bran varieties and heat treatment for the development of protein/starch-based bioplastics via injection molding. Int. J. Biol. Macromol. 2023, 253, 127503. [Google Scholar] [CrossRef]
- Eliasson, A.-C.; Kim, H.R. Changes in rheological properties of hydroxypropyl potato starch pastes during freeze-thaw treatments I. A rheological approach for evaluation of freeze-thaw stability. J. Texture Stud. 1992, 23, 279–295. [Google Scholar] [CrossRef]
- Singh, N.; Singh, J.; Kaur, L.; Singh Sodhi, N.; Singh Gill, B. Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem. 2003, 81, 219–231. [Google Scholar] [CrossRef]
- Mokhtari, Z.; Jafari, S.M.; Ziaiifar, A.M.; Cacciotti, I. Extraction, purification and characterization of amylose from sago and corn: Morphological, structural and molecular comparison. Int. J. Biol. Macromol. 2024, 255, 128237. [Google Scholar] [CrossRef] [PubMed]
- BeMiller, J.N. Starches: Molecular and granular structures and properties. Carbohydr. Chem. Food Sci. 2019, 3, 159–189. [Google Scholar] [CrossRef]
- Zortéa-Guidolin, M.E.B.; Demiate, I.M.; Godoy, R.C.B.d.; Scheer, A.d.P.; Grewell, D.; Jane, J.-l. Structural and functional characterization of starches from Brazilian pine seeds (Araucaria angustifolia). Food Hydrocoll. 2017, 63, 19–26. [Google Scholar] [CrossRef]
- Kaur, J.; Borah, A.; Chutia, H.; Gupta, P. Extraction, modification, and characterization of native litchi seed (Litchi chinesis Sonn.) starch. J. Sci. Food Agric. 2024, 104, 215–224. [Google Scholar] [CrossRef]
- Aparicio-Saguilán, A.; Valera-Zaragoza, M.; Perucini-Avendaño, M.; Páramo-Calderón, D.E.; Aguirre-Cruz, A.; Ramírez-Hernández, A.; Bello-Pérez, L.A. Lintnerization of banana starch isolated from underutilized variety: Morphological, thermal, functional properties, and digestibility. CYTA J. Food 2015, 13, 3–9. [Google Scholar] [CrossRef]
- Du, S.-k.; Jiang, H.; Ai, Y.; Jane, J.-l. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydr. Polym. 2014, 108, 200–205. [Google Scholar] [CrossRef]
- Kou, Y.; Guo, R.; Li, X.; Sun, X.; Song, H.; Song, L.; Guo, Y.; Song, Z.; Yuan, C.; Wu, Y. Synthesis, physicochemical and emulsifying properties of OSA-modified tamarind seed polysaccharides with different degrees of substitution. Int. J. Biol. Macromol. 2023, 253, 127102. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Chen, W. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci. Technol. 2017, 65, 49–67. [Google Scholar] [CrossRef]
- Shishir, M.R.I.; Xie, L.; Sun, C.; Zheng, X.; Chen, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends Food Sci. Technol. 2018, 78, 34–60. [Google Scholar] [CrossRef]
- Hoyos-Leyva, J.D.; Bello-Pérez, L.A.; Álvarez-Ramírez, J.; García, H.S. Microencapsulation using starch as wall material: A review. Food Rev. Int. 2018, 34, 148–161. [Google Scholar] [CrossRef]
- Vázquez-León, L.A.; Aparicio-Saguilán, A.; Martínez-Medinilla, R.M.; Utrilla-Coello, R.G.; Torruco-Uco, J.G.; Carpintero-Tepole, V.; Páramo-Calderón, D.E. Physicochemical and morphological characterization of black bean (Phaseolus vulgaris L.) starch and potential application in nano-encapsulation by spray drying. J. Food Meas. Charact. 2022, 16, 547–560. [Google Scholar] [CrossRef]
- Guo, Y.; Qiao, D.; Zhao, S.; Zhang, B.; Xie, F. Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr. Polym. 2021, 270, 118358. [Google Scholar] [CrossRef] [PubMed]
- Hoyos-Leyva, J.D.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Álvarez-Ramírez, J. Potential of taro starch spherical aggregates as wall material for spray drying microencapsulation: Functional, physical and thermal properties. Int. J. Biol. Macromol. 2018, 120, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Soto, R.A.; de la Vega, B.; García-Suarez, F.J.; Agama-Acevedo, E.; Bello-Pérez, L.A. Preparation of spherical aggregates of taro starch granules. LWT-Food Sci. Technol. 2011, 44, 2064–2069. [Google Scholar] [CrossRef]
- Peeters, L.Y.K.; Soto-Pinto, L.; Perales, H.; Montoya, G.; Ishiki, M. Coffee production, timber, and firewood in traditional and Inga-shaded plantations in Southern Mexico. Agric. Ecosyst. Environ. 2003, 95, 481–493. [Google Scholar] [CrossRef]
- Gallegos-García, A.J.; Lobato-García, C.E.; González-Cortazar, M.; Herrera-Ruiz, M.; Zamilpa, A.; Álvarez-Fitz, P.; Pérez-García, M.D.; López-Rodríguez, R.; Ble-González, E.A.; Medrano-Sánchez, E.J.; et al. Preliminary Phytochemical Profile and Bioactivity of Inga jinicuil Schltdl & Cham. ex G. Don. Plants 2022, 11, 794. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Salas, M.T.; Equihua-Zamora, M.; Pérez-Vázquez, A. Inga jinicuil como árbol frutal nativo: Valor comercial, calidad de frutos y valor cultural como determinantes para permanecer o ser eliminados. In Matemáticas, Estadística y Medio Ambiente; Reyes-Cervantes, H., Loya-Monares, N., Eds.; Benemérita Universidad Autonoma De Puebla: Puebla, Mexico, 2013; pp. 54–65. [Google Scholar]
- Flores-Gorosquera, E.; García-Suárez, F.J.; Flores-Huicochea, E.; Núñez-Santiago, M.C.; González-Soto, R.A.; Bello-Pérez, L.A. Rendimiento del proceso de extracción de almidón a partir de frutos de plátano (Musa paradisiaca). Estudio en planta piloto. Acta Cien. Venez. 2004, 55, 86–90. [Google Scholar]
- AACCI. Approved Methods of Analysis, 10th ed.; American Association of Cereal Chemists International: St. Paul, MN, USA, 2000. [Google Scholar]
- Hoyos-Leyva, J.D.; Chavez-Salazar, A.; Castellanos-Galeano, F.; Bello-Pérez, L.A.; Álvarez-Ramírez, J. Physical and chemical stability of L-ascorbic acid microencapsulated into taro starch spherical aggregates by spray drying. Food Hydrocoll. 2018, 83, 143–152. [Google Scholar] [CrossRef]
- Paredes-López, O.; Bello-Pérez, L.A.; López, M.G. Amylopectin: Structural, gelatinisation and retrogradation studies. Food Chem. 1994, 50, 411–417. [Google Scholar] [CrossRef]
- Tian, Y.; Petersen, B.L.; Liu, X.; Li, H.; Kirkensgaard, J.J.K.; Enemark-Rasmussen, K.; Khakimov, B.; Hebelstrup, K.H.; Zhong, Y.; Blennow, A. Characterization of different high amylose starch granules. Part: Structure evolution during digestion and distinct digestion mechanisms. Food Hydrocoll. 2024, 149, 109593. [Google Scholar] [CrossRef]
- Hoover, R.; Ratnayake, W.S. Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem. 2002, 78, 489–498. [Google Scholar] [CrossRef]
- Vázquez-León, L.A.; Olguín-Rojas, J.A.; Páramo-Calderón, D.E.; Barbero, G.F.; Salgado-Cervantes, M.A.; Palma, M.; García-Alvarado, M.A.; Rodríguez-Jimenes, G.C. Closed-loop spray drying with N2 of Moringa oleifera leaf ethanolic extracts: Effects on bioactive compounds and antiradical activity. Dry. Technol. 2021, 39, 2092–2104. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Espada-Bellido, E.; Ferreiro-González, M.; Toledo-Domínguez, J.J.; Carrera, C.; Palma, M.; Barbero, G.F. Ultrasound-assisted extraction of two types of antioxidant compounds (TPC and TA) from black chokeberry (Aronia melanocarpa L.): Optimization of the individual and simultaneous extraction methods. Agronomy 2019, 9, 456. [Google Scholar] [CrossRef]
- Wijaya, C.; Do, Q.D.; Ju, Y.H.; Santoso, S.P.; Putro, J.N.; Laysandra, L.; Soetaredjo, F.E.; Ismadji, S. Isolation and characterization of starch from Limnophila aromatica. Heliyon 2019, 5, e01622. [Google Scholar] [CrossRef]
- Benesi, I.R.; Labuschagne, M.T.; Dixon, A.G.; Mahungu, N.M. Stability of native starch quality parameters, starch extraction and root dry matter of cassava genotypes in different environments. J. Sci. Food Agric. 2004, 84, 1381–1388. [Google Scholar] [CrossRef]
- Moore, C.O.; Tuschhoff, J.V.; Hastings, C.W.; Schanefelt, R.V. Chapter XIX—Applications of starches in foods. In Starch: Chemistry and Technology, 2nd ed.; Whistler, R.L., Bemiller, J.N., Paschall, E.F., Eds.; Academic Press: San Diego, CA, USA, 1984; pp. 575–591. [Google Scholar] [CrossRef]
- Sudheesh, C.; Sunooj, K.V.; George, J.; Kumar, S.; Sajeevkumar, V.A. Physico-chemical, morphological, pasting and thermal properties of stem flour and starch isolated from kithul palm (Caryota urens) grown in valley of Western Ghats of India. J. Food Meas. Charact. 2019, 13, 1020–1030. [Google Scholar] [CrossRef]
- Estrada-León, R.J.; Moo-Huchin, V.M.; Ríos-Soberanis, C.R.; Betancur-Ancona, D.; May-Hernández, L.H.; Carrillo-Sánchez, F.A.; Cervantes-Uc, J.M.; Pérez-Pacheco, E. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocoll. 2016, 57, 1–9. [Google Scholar] [CrossRef]
- Maniglia, B.C.; Tapia-Blácido, D.R. Isolation and characterization of starch from babassu mesocarp. Food Hydrocoll. 2016, 55, 47–55. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Andrade-Mahecha, M.M.; Sobral, P.J.d.A.; Menegalli, F.C. Isolation and characterization of the flour and starch of plantain bananas (Musa paradisiaca). Starch—Stärke 2012, 64, 382–391. [Google Scholar] [CrossRef]
- Jiang, H.; McClements, D.J.; Dai, L.; Qin, Y.; Ji, N.; Xiong, L.; Qiu, C.; Sun, Q. Effects of moisture content and retrogradation on structure and properties of indica rice flour and starch gels. Food Hydrocoll. 2024, 150, 109657. [Google Scholar] [CrossRef]
- Tontul, I.; Topuz, A. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends Food Sci. Technol. 2017, 63, 91–102. [Google Scholar] [CrossRef]
- Nizori, A.; Bui, L.T.T.; Jie, F.; Small, D.M. Spray-drying microencapsulation of ascorbic acid: Impact of varying loading content on physicochemical properties of microencapsulated powders. J. Sci. Food Agric. 2020, 100, 4165–4171. [Google Scholar] [CrossRef] [PubMed]
- Leyva-López, R.; Palma-Rodríguez, H.M.; López-Torres, A.; Capataz-Tafur, J.; Bello-Pérez, L.A.; Vargas-Torres, A. Use of enzymatically modified starch in the microencapsulation of ascorbic acid: Microcapsule characterization, release behavior and in vitro digestion. Food Hydrocoll. 2019, 96, 259–266. [Google Scholar] [CrossRef]
- Dhull, S.B.; Chandak, A.; Chawla, P.; Goksen, G.; Rose, P.K.; Rani, J. Modifications of native lotus (Nelumbo nucifera G.) rhizome starch and its overall characterization: A review. Int. J. Biol. Macromol. 2023, 253, 127543. [Google Scholar] [CrossRef] [PubMed]
- Bello-Perez, L.A.; Flores-Silva, P.C. Interaction between starch and dietary compounds: New findings and perspectives to produce functional foods. Food Res. Int. 2023, 172, 113182. [Google Scholar] [CrossRef] [PubMed]
- Quiroga Ledezma, C.C. Chapter 20—Starch Interactions With Native and Added Food Components. In Starch in Food, 2nd ed.; Sjöö, M., Nilsson, L., Eds.; Woodhead Publishing: Cambridge, MA, USA, 2018; pp. 769–801. [Google Scholar] [CrossRef]
- Chávez-Salazar, A.; Bello-Pérez, L.A.; Agama-Acevedo, E.; Castellanos-Galeano, F.J.; Álvarez-Barreto, C.I.; Pacheco-Vargas, G. Isolation and partial characterization of starch from banana cultivars grown in Colombia. Int. J. Biol. Macromol. 2017, 98, 240–246. [Google Scholar] [CrossRef]
- Srichuwong, S.; Isono, N.; Jiang, H.; Mishima, T.; Hisamatsu, M. freeze-thaw stability of starches from different botanical sources: Correlation with structural features. Carbohydr. Polym. 2012, 87, 1275–1279. [Google Scholar] [CrossRef]
- Montoya-Yepes, D.F.; Jiménez-Rodríguez, A.A.; Aldana-Porras, A.E.; Velásquez-Holguin, L.F.; Méndez-Arteaga, J.J.; Murillo-Arango, W. Starches in the encapsulation of plant active ingredients: State of the art and research trends. Polym. Bull. 2023, 81, 135–163. [Google Scholar] [CrossRef]
- Romero-Hernandez, H.A.; Sánchez-Rivera, M.M.; Alvarez-Ramirez, J.; Yee-Madeira, H.; Yañez-Fernandez, J.; Bello-Pérez, L.A. Avocado oil encapsulation with OSA-esterified taro starch as wall material: Physicochemical and morphology characteristics. LWT-Food Sci. Technol. 2021, 138, 110629. [Google Scholar] [CrossRef]
Parameter | Jinicuil Seed Starch | Commercial Corn Starch |
---|---|---|
Moisture (g 100 g−1 db) | 7.82 ± 0.24 b | 8.94 ± 0.08 a |
Total starch (g 100 g−1 db) | 76.71 ± 1.54 b | 83.97 ± 2.82 a |
Protein (g 100 g−1 db) | 20.93 ± 1.54 a | 1.01 ± 0.02 b |
Fat (g 100 g−1 db) | 2.08 ± 0.05 a | 0.25 ± 0.05 b |
Ash (g 100 g−1 db) | 0.27 ± 0.04 b | 0.97 ± 0.03 a |
Resistant starch (g 100 g−1 db) | 15.73 ± 2.52 a | 0.38 ± 0.02 b |
Apparent amylose (%) | 21.00 ± 2.23 b | 26.65 ± 0.55 a |
(°C) | 84.53 ± 0.05 a | 69.16 ± 0.18 b |
(°C) | 87.85 ± 0.05 a | 74.62 ± 0.48 b |
(°C) | 98.02 ± 0.14 a | 80.69 ± 0.18 b |
(J g−1) | 15.27 ± 0.33 a | 12.19 ± 0.39 b |
Inlet Air Temperature (°C) | Outlet Air Temperature (°C) | Process Yield (%) | Encapsulation Efficiency (%) |
---|---|---|---|
130 | 60 | 19. 96 ± 0.18 b | 79.29 ± 1.84 a |
140 | 60 | 20.62 ± 0.63 ab | 81.84 ± 0.73 a |
150 | 60 | 21.95 ± 1.55 ab | 27.54 ± 1.04 b |
130 | 70 | 21.18 ± 2.79 ab | 14.97 ± 0.48 d |
140 | 70 | 27.64 ± 0.64 a | 65.74 ± 1.48 b |
150 | 70 | 20.76 ± 0.23 ab | 71.48 ± 0.80 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aparicio-Saguilán, A.; Vázquez-León, L.A.; Martínez-Cigarroa, A.S.; Carpintero-Tepole, V.; Fernández Barbero, G.; Acosta-Osorio, A.A.; Páramo-Calderón, D.E. Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying. Agronomy 2024, 14, 272. https://doi.org/10.3390/agronomy14020272
Aparicio-Saguilán A, Vázquez-León LA, Martínez-Cigarroa AS, Carpintero-Tepole V, Fernández Barbero G, Acosta-Osorio AA, Páramo-Calderón DE. Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying. Agronomy. 2024; 14(2):272. https://doi.org/10.3390/agronomy14020272
Chicago/Turabian StyleAparicio-Saguilán, Alejandro, Lucio Abel Vázquez-León, Ana Sofía Martínez-Cigarroa, Violeta Carpintero-Tepole, Gerardo Fernández Barbero, Andrés Antonio Acosta-Osorio, and Delia Esther Páramo-Calderón. 2024. "Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying" Agronomy 14, no. 2: 272. https://doi.org/10.3390/agronomy14020272
APA StyleAparicio-Saguilán, A., Vázquez-León, L. A., Martínez-Cigarroa, A. S., Carpintero-Tepole, V., Fernández Barbero, G., Acosta-Osorio, A. A., & Páramo-Calderón, D. E. (2024). Characterization of Starch from Jinicuil (Inga jinicuil) Seeds and Its Evaluation as Wall Material in Spray Drying. Agronomy, 14(2), 272. https://doi.org/10.3390/agronomy14020272