Spatial Distribution, Source Analysis, and Health Risk Assessment of Heavy Metals in the Farmland of Tangwang Village, Huainan City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Source Analysis
2.4. Ecological Assessment
2.4.1. Geological Cumulative Index
2.4.2. Potential Ecological Risk Index (RI)
2.5. Health Assessment
Human Health Risk Assessment Model
2.6. Statistical and Geostatistical Analysis
- (1)
- The presence of trait values can result in the fragmentation of continuous surfaces and have a direct impact on the distribution patterns of variables. As a result, domain-based methods are initially employed to identify these trait values, after which data labeled as special values are substituted with standard maximum and minimum values, respectively. The heavy metal content of the arable soils at the sampling sites in the study area was analyzed using SPSS 23 software, employing classical statistical methods for descriptive statistics. The statistical parameters included the range (min–max), mean (mean), standard deviation (SD), and coefficient of variation (CV). Among them, the CV is a normalized measure of the dispersion of a probability distribution. According to the CV classification criteria, CV ≤ 20% is considered low variability, 51% < CV ≤ 100% is considered moderate variability, 20% < CV ≤ 50% is considered high variability, and CV > 100% is considered very high variability.
- (2)
- The semi-variance function is a valuable tool in the field of geostatistics for effectively characterizing the spatial properties of variables. In order to assess the normality of the data, the K–S method available in the Minitab 21 statistical software was employed. Subsequently, the GS+ version 9 geostatistical software was utilized to fit the model to the data obtained from the previous step and to compute the primary model parameters. The choice of the fitted model was determined by evaluating both the coefficient of determination (R2) and the residuals (RSS). The optimal fitting model was selected based on the principle of maximizing the coefficient of determination and minimizing the residuals.
- (3)
- The geographical arrangement (latitude and longitude) of heavy metal data points obtained from arable soils was depicted utilizing ArcGIS 10.8 software, while interpolation was performed using the inverse distance weighted (IDW) method. Furthermore, an assessment of the health risks associated with the data was conducted, and all computations were executed using Excel 2019 software. Additionally, all statistical graphs were generated utilizing Origin 2022.
3. Results
3.1. Spatial Distribution
3.1.1. Descriptive Statistical Analysis
3.1.2. Spatial Distribution of Heavy Metal Content in Soils
3.1.3. Variance
3.2. Source Analysis
3.2.1. Correlation Analysis
3.2.2. PMF Parsing
3.3. Ecological Risk Assessment
3.3.1. Geological Cumulative Index
3.3.2. Potential Ecological Risk Evaluation
3.4. Health Risk Assessment
Human Health Risk Assessment
4. Conclusions
- (1)
- The results indicate that, apart from Zn, the average values of the other six heavy metals analyzed (Cu, Hg, As, Pb, Cr, and Cd) were higher than the background values of soil elements in Huainan City. This suggests that the heavy metal content of the arable soils in the study area has been affected by human impact, with most being found to be enriched and some showing local enrichment of Zn.
- (2)
- The study found that high concentrations of As, Pb, Cr, and Zn were mainly located in the central and northeastern parts of the study area, while Cu and Cd showed distinct peaks in certain areas. Hg was only found in one specific location with high values.
- (3)
- Following correlation and PMF model analysis, the study area was found to have four sources of soil heavy metals: agricultural practices, mixed sources of natural parent material and mining activities, transport sources, and industrial activities. These sources contributed 21.10%, 24.45%, 36.38%, and 18.07%, respectively, of the total metal concentration. This study revealed that agricultural practices, transport, and industrial activities are the primary sources of heavy metal contamination in arable soils in this region.
- (4)
- The final health risk assessment analysis of the study area found that As, Cd, Hg, Cr, and Cu had significant levels of contamination. In terms of RI, the entire region is situated within the transitional range from low ecological risk to medium-high ecological risk. In the human health risk assessment, the total carcinogenic risk for children and adults from multiple elements was close to or partially above the risk threshold, with As posing the greatest risk to children and adults, both in terms of non-carcinogenic and carcinogenic risk.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The Global Food-Energy-Water Nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Han, R.; Feng, C.-C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef]
- Sarkar, D.; Dubey, P.K.; Chaurasiya, R.; Sankar, A.; Shikha; Chatterjee, N.; Ganguly, S.; Meena, V.S.; Meena, S.K.; Parewa, H.P.; et al. Organic interventions conferring stress tolerance and crop quality in agroecosystems during the UN Decade on Ecosystem Restoration. Land Degrad. Dev. 2021, 32, 4797–4816. [Google Scholar] [CrossRef]
- Heinze, A.; Bongers, F.; Ramírez Marcial, N.; García Barrios, L.E.; Kuyper, T.W. Farm diversity and fine scales matter in the assessment of ecosystem services and land use scenarios. Agric. Syst. 2022, 196, 103329. [Google Scholar] [CrossRef]
- Sousa Rd Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Kurmi, B.; Nath, A.J.; Sileshi, G.W.; Pandey, R.; Das, A.K. Impact of progressive and retrogressive land use changes on ecosystem multifunctionality: Implications for land restoration in the Indian Eastern Himalayan region. Sci. Total Environ. 2024, 912, 169197. [Google Scholar] [CrossRef]
- Lasanta, T.; Cortijos-López, M.; Errea, M.P.; Llena, M.; Sánchez-Navarrete, P.; Zabalza, J.; Nadal-Romero, E. Shrub clearing and extensive livestock as a strategy for enhancing ecosystem services in degraded Mediterranean mid-mountain areas. Sci. Total Environ. 2024, 906, 167668. [Google Scholar] [CrossRef]
- Testa, S.; Nielsen, K.R.; Vallentin, S.; Ciccullo, F. Sustainability-oriented innovation in the agri-food system: Current issues and the road ahead. Technol. Forecast. Soc. Chang. 2022, 179, 121653. [Google Scholar] [CrossRef]
- SDGs UNSDGU. Sustainable Development Goals. 2022. Available online: https://www.un.org/development/desa/dspd/2022/07/sdgs-report/ (accessed on 22 January 2024).
- Traverso, M.; Nangah Mankaa, R. The Palgrave Handbook of Global Sustainability; Palgrave Macmillan: Cham, Switzerland, 2023; pp. 1255–1277. [Google Scholar] [CrossRef]
- UN-SDGs. United Nations Sustainable Development Goals Platform. 2019. Available online: https://unstats.un.org/sdgs/report/2019/#sdg-goals (accessed on 22 January 2024).
- Publication EDoT. Introduction to the Special Topic of ‘Farmland Protection and Food Security. Trans. Chin. Soc. Agric. Eng. 2020, 36, 3. [Google Scholar]
- Sang, L.L.; Yun, W.J.; Tang, H.Z.; Zhang, C.; Cheng, F. Analysis and Countermeasures on the Current Situation of China’s Farmland Resource Survey and Monitoring. Agric. Compr. Dev. China 2022, 11, 18–20. [Google Scholar]
- Xu, Y.D.; Zhang, Y.L. The Profound Connotation and Key Measures to Consolidate the Foundation of Food Security in the New Journey. J. Northwest A&F Univ. 2023, 23, 95–103. [Google Scholar] [CrossRef]
- Council OotL Gft TNL SotS; Resources MoN; Statistics NBo. The main data bulletin of the Third National Land Survey. Natl. Land Resour. Inf. 2021, 17, 7–8. [Google Scholar] [CrossRef]
- Ren, Y.; Cao, W.G.; Xiao, S.Y.; Li, X.Z.; Pan, D.; Wang, S. Research progress on distribution, harm and control technology of heavy metals in soil. Geol. China 2023, 51, 1–32. [Google Scholar] [CrossRef]
- Li, C.; Sanchez, G.M.; Wu, Z.; Cheng, J.; Zhang, S.; Wang, Q.; Li, F.; Sun, G.; Meentemeyer, R.K. Spatiotemporal patterns and drivers of soil contamination with heavy metals during an intensive urbanization period (1989–2018) in southern China. Environ. Pollut. 2020, 260, 114075. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H. Soil heavy metal(loid) pollution and health risk assessment of farmlands developed on two different terrains on the Tibetan Plateau, China. Chemosphere 2023, 335, 139148. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.J.; Gu, F.; Jiu, L.X.; Ren, C.P.; Tian, M.S.; Luo, Y.F.; Li, S.L. Heavy metals contents and sources in soil of typical farmland in Wumeng Mountain, Southwest China. Environ. Pollut. Control 2023, 45, 829–836. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, C.; Zhou, Z.; Huang, D.; Qin, C.; Nong, Z.; Ling, C.; Zhu, Y.; Chai, X. Pollution characteristics and source identification of farmland soils in Pb–Zn mining areas through an integrated approach. Environ. Geochem. Health 2023, 45, 2533–2547. [Google Scholar] [CrossRef] [PubMed]
- Nuralykyzy, B.; Wang, P.; Deng, X.; An, S.; Huang, Y. Heavy Metal Contents and Assessment of Soil Contamination in Different Land-Use Types in the Qaidam Basin. Sustainability 2021, 13, 12020. [Google Scholar] [CrossRef]
- Ning, W.J.; Xie, X.M.; Yan, L.P. Spatial distribution, sources and health risks of heavy metals in soil in Qingcheng District, Qingyuan City: Comparison of PCA and PMF model results. Earth Sci. Front. 2023, 30, 470–484. [Google Scholar] [CrossRef]
- Adimalla, N. Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environ. Geochem. Health 2019, 42, 59–75. [Google Scholar] [CrossRef]
- Fei, X.F.; Lou, Z.H.; Xiao, R.; Ren, Z.Q.; Lv, X.N. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, S.; Sun, Y.; Guo, M. Analysis of Pollution Sources of Heavy Metal in Farmland Soils Based on Positive Matrix Factorization Model; IOP Publishing: Bristol, UK, 2020; p. 012013. [Google Scholar]
- Ma, J.; Chen, L.; Chen, H.; Wu, D.; Ye, Z.; Zhang, H.; Liu, D. Spatial distribution, sources, and risk assessment of potentially toxic elements in cultivated soils using isotopic tracing techniques and Monte Carlo simulation. Ecotoxicol. Environ. Saf. 2023, 259, 115044. [Google Scholar] [CrossRef] [PubMed]
- Anaman, R.; Peng, C.; Jiang, Z.; Liu, X.; Zhou, Z.; Guo, Z.; Xiao, X. Identifying sources and transport routes of heavy metals in soil with different land uses around a smelting site by GIS based PCA and PMF. Sci. Total Environ. 2022, 823, 153759. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Teng, Y.G.; Wu, J.; Jiang, J.Y.; Huang, Y. Source Apportionment of Soil Heavy Metal in the Middle and Upper Reaches of Le’an River based on PMF Model and Geostatistics. Res. Environ. Sci. 2019, 32, 984–992. [Google Scholar] [CrossRef]
- Liang, C.; Gong, S. Pollution characteristics and source apportionment of ambient PM2.5 from Jinshui District of Zhengzhou in winter. Environ. Prot. Sci. 2023, 49, 102–109+144. [Google Scholar] [CrossRef]
- Sylla, M.; Swiader, M.; Vicente-Vicente, J.L.; Arciniegas, G.; Wascher, D. Assessing food self-sufficiency of selected European Functional Urban Areas vs metropolitan areas. Landsc. Urban Plan. 2022, 228, 104584. [Google Scholar] [CrossRef]
- Li, K.; Wang, J.; Zhang, Y. Heavy metal pollution risk of cultivated land from industrial production in China: Spatial pattern and its enlightenment. Sci. Total Environ. 2022, 828, 154382. [Google Scholar] [CrossRef]
- Yu, F.; Wang, J.B.; Wang, R.; Wang, Y.; Ning, M.H.; Zhang, Y.Y.; Su, L.M.; Dong, J.X. Source Analysis and Ecological Risk Assessment of Heavy Metals in the Arable Soil at the Geological High Background, Based on the Township Scale. Environ. Sci. 2023, 44, 2838–2848. [Google Scholar] [CrossRef]
- Jin, Y.L.; O’Connor, D.; Ok, Y.S.; Tsang, D.C.W.; Liu, A.; Hou, D.Y. Assessment of sources of heavy metals in soil and dust at children’s playgrounds in Beijing using GIS and multivariate statistical analysis. Environ. Int. 2019, 124, 320–328. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef]
- Xiao, P.N.; Zhou, Y.; Li, X.G.; Xu, J.; Zhao, C. Assessment of Heavy Metals in Agricultural Land: A Literature Review Based on Bibliometric Analysis. Sustainability 2021, 13, 4559. [Google Scholar] [CrossRef]
- Li, Z.H.; He, W.; Cheng, M.F.; Hu, J.X.; Yang, G.Y.; Zhang, H.Y. SinoLC-1: The first 1-meter resolution national-scale land-cover map of China created with the deep learning framework and open-access data. Earth Syst. Sci. Data Discuss. 2023, 2023, 1–38. [Google Scholar] [CrossRef]
- Centre CNEM, Station NEMC. Technical Specification for Soil Environmental Monitoring; The State Administration of Environmental Protection; Ministry of Ecology and Environment of People’s Republic of China: Beijing, China, 2004; p. 38.
- Chen, N.; Ren, N. On the testing of the heavy matel in soil with induction coupled plasma emission spectrometry. Yunnan Geol. 2019, 38, 141–144. [Google Scholar] [CrossRef]
- Geosciences CUO; Institute HGER; Center CGSD; Institute of Geophysical and Geochemical Exploration CAoGS. Specification of Land Quality Geochemical Assessment; Ministry of Land and Resources of the People’s Republic of China: Beijing, China, 2016; pp. 1–57.
- Shi, W.; Zhou, H.; Sun, T.; Huang, J.; Yang, W.; Li, W. Research on Priority Control Factors and Health Risk Assessment of Heavy Metal Pollution in Soil Around Mining Areas. Ecol. Environ. Sci. 2022, 31, 1616–1628. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R.; Brown, S.; Bai, S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; US Environmental Protection Agency. National Expo Res Lab Res Triangle Park: Petaluma, CA, USA, 2014; pp. 1–136.
- Guan, Q.; Wang, F.; Xu, C.; Pan, N.; Lin, J.; Zhao, R.; Yang, Y.; Luo, H. Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere 2018, 193, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, Z.J.; Zhang, P.P.; Liu, P.; Liu, J.Z.; Sun, J.; Wang, L.L. Pollution Characteristics and Source Apportionment of Heavy Metals in Farmland Soils Around the Gangue Heap of Coal Mine Based on APCS-MLR and PMF Receptor Model. Environ. Sci. 2023, 44, 2192–2203. [Google Scholar] [CrossRef]
- Shen, C.Y.; Yan, Y.; Yu, R.L.; Hu, G.R.; Cui, J.Y.; Yan, Y.; Huang, H.B. APCS-MLR Combined with PMF Model to Analyze the Source of Metals in Sediment of Xinglin Bay Suburban Watershed, Xiamen. Environ. Sci. 2022, 43, 2476–2488. [Google Scholar] [CrossRef]
- Wang, Y.N.; Li, Y.R.; Yang, S.Y.; Liu, J.; Zheng, W.; Xu, J.M.; Cai, H.M.; Liu, X.M. Source apportionment of soil heavy metals: A new quantitative framework coupling receptor model and stable isotopic ratios. Environ. Pollut. 2022, 314, 120291. [Google Scholar] [CrossRef]
- Xia, Z.S.; Bai, Y.R.; Wang, Y.Q.; Gao, X.L.; Ruan, X.H.; Zhong, Y.X. Spatial Distribution and Source Analysis of Soil Heavy Metals in a Small Watershed in the Mountainous Area of Southern Ningxia Based on PMF Model. Environ. Sci. 2022, 43, 432–441. [Google Scholar] [CrossRef]
- Zhu, X.L.; Xue, B.Q.; Li, X.; Wang, J.Q.; Shang, X.Q.; Chen, C.; Geng, P.Y.; Kou, Z.J.; Ma, X.J. Sources apportionment of heavy metals in farmland soil around lead-zinc tailings reservoir based on PMF model. J. Northwest Univ. 2021, 51, 43–53. [Google Scholar] [CrossRef]
- Muller, G. Index of geoaccumulation in sediments of the Rhine River. Geojournal 1969, 2, 108–118. [Google Scholar]
- Wu, J.T.; Margenot, A.J.; Wei, X.; Fan, M.M.; Zhang, H.; Best, J.L.; Wu, P.B.; Chen, F.R.; Gao, C. Source apportionment of soil heavy metals in fluvial islands, Anhui section of the lower Yangtze River: Comparison of APCS–MLR and PMF. J. Soils Sediments 2020, 20, 3380–3393. [Google Scholar] [CrossRef]
- Akoto, R.; Anning, A.K. Heavy metal enrichment and potential ecological risks from different solid mine wastes at a mine site in Ghana. Environ. Adv. 2021, 3, 100028. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control-A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ni, S.J.; Tuo, X.G.; Zhang, C.J. Calculation of Heavy Metals’ Toxicity Coefficient in the Evaluation of Potential Ecological Risk Index. Environ. Sci. Technol. 2008, 31, 112–115. [Google Scholar] [CrossRef]
- Chen, Y.X.; Jiang, X.S.; Wang, Y.; Zhuang, D.F. Assessment of ecological environment and human health of heavy metals in mining area based on GIS. Acta Sci. Circumst. 2018, 38, 1642–1652. [Google Scholar] [CrossRef]
- Agency UTUSEP. Exposure Factors Handbook Edition (Final); U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- Li, C.F.; Cao, J.F.; Lu, J.S.; Yao, L.; Wu, Q.Y. Ecological Risk Assessment of Soil Heavy Metals for Different Types of Land Use and Evaluation of Human Health. Environ. Sci. 2018, 39, 5628–5638. [Google Scholar] [CrossRef]
- Agency USEP. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part A); U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- Yang, S.; He, M.; Zhi, Y.; Chang, S.X.; Gu, B.; Liu, X.; Xu, J. An integrated analysis on source-exposure risk of heavy metals in agricultural soils near intense electronic waste recycling activities. Environ. Int. 2019, 133, 105239. [Google Scholar] [CrossRef]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar] [CrossRef]
- Liu, X.; Gu, S.; Yang, S.; Deng, J.; Xu, J. Heavy metals in soil-vegetable system around E-waste site and the health risk assessment. Sci. Total Environ. 2021, 779, 146438. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.X.; Zhang, Y.M.; Li, S.; Fang, Q.L.; Miao, F.F.; Lin, Q.G. An integrated method of health risk assessment based on spatial interpolation and source apportionment. J. Clean. Prod. 2020, 276, 123218. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wu, J.; Wang, J. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 2016, 144, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chao, S.; Liu, J.; Yang, Y.; Chen, Y.; Zhang, A.; Cao, H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017, 168, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Agency USEP. The Office of Solid Waste and Emergency Response; United States Environmental Protection Agency: Washington, DC, USA, 1991.
- Kamunda, C.; Mathuthu, M.; Madhuku, M. Health Risk Assessment of Heavy Metals in Soils from Witwatersrand Gold Mining Basin, South Africa. Int. J. Environ. Res. Public Health 2016, 13, 663. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Liu, G.; Yousaf, B.; Zia-Ur-Rehman, M.; Ali, M.U.; Rashid, M.S.; Farooq, M.R.; Javed, Z. Characterizing pollution indices and children health risk assessment of potentially toxic metal(oid)s in school dust of Lahore, Pakistan. Ecotoxicol. Environ. Saf. 2020, 190, 110059. [Google Scholar] [CrossRef] [PubMed]
- Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. 2018. Available online: https://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/t20180703_446029.shtml (accessed on 5 January 2024).
- Yang, X.Y.; Sun, L.G.; Zhang, Z.F.; Cai, Z.Y. General study on soil pollution in Huainan area, Anhui Province. Chin. J. Geol. Hazard Control 1995, 6, 37–43. [Google Scholar]
- Liu, Y. Spatial Distribution and Pollute Evaluation of Trace Elements in Surface Soil of Mining City. Master’s Thesis, AnHui University of Science and Technology, Huainan, China, 2015. [Google Scholar]
- Phil-Eze, P.O. Variability of soil properties related to vegetation cover in a tropical rainforest landscape. J. Geogr. Reg. Plan. 2010, 3, 177. [Google Scholar]
- Cai, L.-M.; Wang, Q.-S.; Wen, H.-H.; Luo, J.; Wang, S. Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicol. Environ. Saf. 2019, 168, 184–191. [Google Scholar] [CrossRef]
- Liang, J.; Feng, C.; Zeng, G.; Gao, X.; Zhong, M.; Li, X.; Li, X.; He, X.; Fang, Y. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China. Environ. Pollut. 2017, 225, 681–690. [Google Scholar] [CrossRef]
- Chen, H.; Wang, Y.; Wang, S. Source Analysis and Pollution Assessment of Heavy Metals in Farmland Soil Around Tongshan Mining Area. Environ. Sci. 2022, 43, 2719–2731. [Google Scholar] [CrossRef]
- Zeng, Q.Q.; Fu, T.L.; Zou, H.Q.; Teng, L.; Wu, K.; Xie, T.; He, T.B. Spatial distribution characteristics and sources of heavy metals in soil in a pepper growing area of county in Guizhou Province, China. J. Agro-Environ. Sci. 2021, 40, 102–113. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, X.; Wang, L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province. Sci. Total Environ. 2020, 710, 134953. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Liu, X.; Zhang, Q.; Liu, X.X.; Qiao, Y.H.; Su, D.C.; Chen, J.S.; Li, H.F. Evaluating the Environmental Risk and the Bioavailability of Cd in Phosphorus Fertilizers. Environ. Sci. Technol. 2016, 39, 156–161. [Google Scholar]
- Li, F.; Liu, S.Y.; Li, Y.; Shi, Z. Spatiotemporal Variability and Source Apportionment of Soil Heavy Metals in a Industrially Developed City. Environ. Sci. 2019, 40, 934–944. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, X.; Meng, Y.; Fei, Y.; Teng, M.; Song, F.; Wu, F. Identification priority source of soil heavy metals pollution based on source-specific ecological and human health risk analysis in a typical smelting and mining region of South China. Ecotoxicol. Environ. Saf. 2022, 242, 113864. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Guo, D.; Ali, A.; Mi, S.; Liu, T.; Ren, C.; Li, R.; Zhang, Z. Accumulation, ecological-health risks assessment, and source apportionment of heavy metals in paddy soils: A case study in Hanzhong, Shaanxi, China. Environ Pollut. 2019, 248, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zhang, J.; Huang, J.; Huang, D.; Yang, J.; Song, Y.; Zeng, G. Heavy metals in road dust from Xiandao District, Changsha City, China: Characteristics, health risk assessment, and integrated source identification. Environ. Sci. Pollut. Res. 2016, 23, 13100–13113. [Google Scholar] [CrossRef] [PubMed]
- Qu, M.; Wang, Y.; Huang, B.; Zhao, Y. Source apportionment of soil heavy metals using robust absolute principal component scores-robust geographically weighted regression (RAPCS-RGWR) receptor model. Sci. Total Environ. 2018, 626, 203–210. [Google Scholar] [CrossRef]
- Zhang, H.Z.; Cui, W.G.; Huang, Y.M.; Li, L.Y.L.; Zhong, X.; Wang, L. Evaluation and source analysis of heavy metal pollution of farmland soil around the mining area of karst region of central Guizhou Province. Acta Sci. Circumst. 2022, 42, 412–421. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, X.Y.; Lei, M.; Yang, J.; Ma, J.; Qiao, P.W.; Chen, T.B. Migration and transformation of arsenic: Contamination control and remediation in realgar mining areas. Appl. Geochem. 2017, 77, 44–51. [Google Scholar] [CrossRef]
- Chen, J.F.; Fang, H.D.; Wu, J.J.; Lin, J.M.; Lan, W.B.; Chen, J.S. Distribution and source apportionment of heavy metals in farmland soils using PMF and lead isotopic composition. J. Agro-Environ. Sci. 2019, 38, 1026–1035. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Wu, X.J.; Dong, Y.; Zhao, J.; Liu, J. Quantitative analysis of ecological risk sources of heavy metals in river sediments of northern Shaanxi Mining area, China. Acta Sci. Circumst. 2023, 43, 238–246. [Google Scholar] [CrossRef]
Project | Min | Max | Mean | Standard Deviation (SD) | Coefficient of Variation (CV) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
pH | 4.96 | 6.43 | 5.422 | 0.490 | 0.090 | 1.318 | 0.581 |
CEC(cmol(+)/kg) | 10.80 | 21.60 | 15.464 | 3.704 | 0.240 | 0.291 | −0.986 |
SOM (g/kg) | 17.50 | 31.80 | 26.291 | 5.250 | 0.200 | −0.542 | −1.296 |
TN (%) | 0.109 | 0.164 | 0.139 | 0.016 | 0.115 | −0.482 | 0.089 |
Moisture (%) | 16.17 | 29.39 | 23.620 | 3.360 | 0.142 | 0.001 | −0.80 |
Sand (%) | 0.01 | 100.00 | 27.980 | 38.271 | 1.368 | 1.257 | −0.135 |
Silt (%) | 0.03 | 32.99 | 2.840 | 6.929 | 2.440 | 2.952 | 8.652 |
Clay (%) | 0.01 | 100.00 | 69.181 | 37.906 | 0.548 | −1.085 | −0.405 |
Igeo Range | <0 | 0–1 | 1–2 | 2–3 | 3–4 | 4–5 | >5 |
---|---|---|---|---|---|---|---|
Level | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
Contamination level | No contaminated | Light to moderate contamination | Moderate contamination | Moderate to strong contamination | Strong contamination | Strong to extreme contamination | Extreme contamination |
Ei Range | Level of Potential Ecological Risk | RI Range | Compound Potential Ecological Risk Level |
---|---|---|---|
Ei < 40 | Low | RI < 150 | Low |
40 ≤ Ei <80 | Medium | 150 ≤ RI < 300 | Medium |
80 ≤ Ei < 160 | Medium-high | 300 ≤ RI < 600 | Medium-high |
160 ≤ Ei < 320 | High | RI ≥ 600 | High |
Ei ≥ 320 | Extremely high |
Parameter | Meaning | Unit | Value | References | |
---|---|---|---|---|---|
Child | Adult | ||||
IngR | Ingestion rate | mg/day | 200 | 100 | [54,57,58] |
InhR | Inhalation rate | mg/cm2 | 20 | 20 | |
AF | Skin adhesion coefficient | mg/cm2 | 0.07 | 0.2 | |
CF | Switching frequency | kg/mg | 1.00 × 10–6 | 1.00 × 10–6 | |
EF | Exposure frequency | days/year | 180 | 180 | |
ED | Exposure duration | years | 6.00 | 24.00 | |
BW | Average body weight | kg | 15 | 70 | |
AT (carcinogenic) | Mean duration of exposure (carcinogenic) | days | 70 × 365 | 70 × 365 | |
AT (non-carcinogenic) | Average exposure time (non-carcinogenic) | days | 6 × 365 | 24 × 365 | |
PEF | Particle emission factor | m3/kg | 1.36 × 109 | 1.36 × 109 | |
SA | Exposed skin surface area | cm2 | 1150.00 | 2145.00 | |
ABS | Dermal absorption factor | unit less | 0.001 | 0.001 | |
(As: 0.03) | (As: 0.03) |
Heavy Metals | RfD/mg/(kg·d) | SF/(kg·d)/mg | References | ||||
---|---|---|---|---|---|---|---|
Oral Ingestion | Oral and Nasal Inhalation | Skin Contact | Oral Ingestion | Oral and Nasal Inhalation | Skin Contact | ||
Cu | 4.00 × 10–2 | 4.02 × 10–2 | 1.20 × 10–2 | [54,61,62,63,64] | |||
Hg | 3.00 × 10–4 | 3.00 × 10–4 | 2.10 × 10–5 | ||||
As | 3.00 × 10–4 | 3.00 × 10–4 | 1.23 × 10–4 | 0.15 × 101 | 0.15 × 101 | 0.15 × 101 | |
Pb | 3.50 × 10–3 | 3.25 × 10–3 | 5.23 × 10–4 | 8.50 × 10–3 | 4.20 × 10–2 | ||
Cr | 3.00 × 10–3 | 2.86 × 10–5 | 6.00 × 10–5 | 5.00 × 10–1 | 4.10 × 101 | ||
Cd | 1.00 × 10–4 | 1.00 × 10–4 | 1.00 × 10–5 | 3.80 × 10–1 | 0.63 × 101 | ||
Zn | 3.00 × 10–1 | 3.00 × 10–1 | 6.00 × 10–2 | [54,61,62,65] |
Project | Cu | Hg | As | Pb | Cr | Cd | Zn |
---|---|---|---|---|---|---|---|
Min/mg/kg | 28.26 | 0.01 | 2.66 | 10.27 | 0.00 | 0.05 | 23.57 |
Max/mg/kg | 78.35 | 0.13 | 253.43 | 40.99 | 232.50 | 0.31 | 51.36 |
Mean/mg/kg | 42.24 | 0.04 | 111.41 | 28.97 | 117.95 | 0.14 | 37.27 |
Median/mg/kg | 41.58 | 0.04 | 140.37 | 30.29 | 111.71 | 0.12 | 38.01 |
SD/mg/kg | 10.17 | 0.03 | 98.13 | 7.31 | 40.00 | 0.06 | 7.41 |
CV(%) | 0.24 | 0.68 | 0.88 | 0.25 | 0.34 | 0.45 | 0.20 |
K–S test 1 | 0.055 | 0.075 | 0.090 | 0.061 | 0.081 | 0.074 | |
Risk screening value/mg/kg 2 | 50 | 1.3 | 40 | 70 | 150 | 0.3 | 200 |
Risk management values/mg/kg 2 | 2.0 | 200 | 400 | 800 | 1.5 | ||
Huainan background value/mg/kg 3 | 24.16 | 0.02 | 13.81 | 30.47 | 64.93 | 0.06 | 58.35 |
Mean/background value | 1.75 | 2.17 | 8.07 | 1.01 | 2.02 | 2.29 | 0.63 |
Proportion of points exceeding background values | 100.00% | 83.33% | 64.81% | 50.00% | 98.15% | 94.44% | 1.85% |
Element | Fitting Model | Block Gold Value | Abutment Value | Variation Range/km | Judgement Factor | Block-to-Base Ratio | Residuals |
---|---|---|---|---|---|---|---|
C0 | C+C0 | Range (A) | R2 | C0/C + C0 | RSS | ||
Cu | Gaussian model | 1.00 × 10−3 | 6.55 × 10−1 | 1.91 × 10−2 | 5.43 × 10−1 | 9.98 × 10−1 | 8.99 × 10−2 |
Hg | Gaussian model | 1.00 × 10−3 | 6.91 × 10−1 | 2.89 × 10−2 | 9.77 × 10−1 | 9.99 × 10−1 | 5.61 × 10−3 |
Pb | Gaussian model | 1.00 × 10−1 | 34.67 | 2.20 × 10−2 | 7.83 × 10−1 | 9.97 × 10−1 | 114.00 |
Cr | Gaussian model | 1.00 × 10−3 | 6.61 × 10−1 | 1.94 × 10−2 | 6.17 × 10−1 | 9.98 × 10−1 | 7.97 × 10−2 |
Cd | Spherical model | 3.15 × 10−1 | 6.62 × 10−1 | 3.97 × 10−2 | 3.89 × 10−1 | 5.24 × 10−1 | 5.57 × 10−2 |
Zn | Gaussian model | 2.00 × 10−3 | 2.54 × 10−1 | 1.84 × 10−2 | 4.67 × 10−1 | 9.92 × 10−1 | 9.55 × 10−3 |
Project | Type | Ei | RI | ||||||
---|---|---|---|---|---|---|---|---|---|
Cu | Hg | As | Pb | Cr | Cd | Zn | |||
Potential Ecological Risk Index Statistics | Min | 5.85 | 20.17 | 1.92 | 1.69 | 0.00 | 26.21 | 0.40 | 105.81 |
Max | 16.21 | 258.67 | 183.51 | 6.73 | 7.16 | 156.69 | 0.88 | 508.02 | |
Mean | 8.74 | 86.81 | 80.67 | 4.75 | 3.63 | 67.83 | 0.64 | 253.08 | |
Distribution of potential ecological risk indices/% | Low | 100.00% | 18.52% | 46.30% | 100.00% | 100.00% | 14.81% | 100.00% | 14.81% |
Medium | 44.44% | 61.11% | 57.41% | ||||||
Medium-high | 24.07% | 38.89% | 24.07% | 27.78% | |||||
High | 12.96% | 14.81% | |||||||
Extremely high |
Indicators | Cu | Hg | As | Pb | Cr | Cd | Zn | |
---|---|---|---|---|---|---|---|---|
Child | ADDing | 2.78 × 10−4 | 2.85 × 10−7 | 7.33 × 10−4 | 1.90 × 10−4 | 7.76 × 10−4 | 8.92 × 10−7 | 2.45 × 10−4 |
ADDinh | 2.04 × 10−8 | 2.10 × 10−11 | 5.39 × 10−8 | 1.40 × 10−8 | 5.70 × 10−8 | 6.56 × 10−11 | 1.80 × 10−8 | |
ADDdermal | 1.12 × 10−7 | 1.15 × 10−10 | 8.85 × 10−6 | 7.67 × 10−8 | 3.12 × 10−7 | 3.59 × 10−1 | 9.86 × 10−8 | |
HQing | 3.75 × 10−1 | 5.14 × 10−2 | 1.32 × 102 | 2.94 | 1.40 × 101 | 4.82 × 10−1 | 4.41 × 10−2 | |
HQinh | 2.74 × 10−5 | 3.78 × 10−6 | 9.70 × 10−3 | 2.33 × 10−4 | 1.08 × 10−1 | 3.54 × 10−5 | 3.24 × 10−6 | |
HQdermal | 5.03 × 10−4 | 2.95 × 10−4 | 3.88 | 7.88 × 10−3 | 2.81 × 10−1 | 1.94 × 10−3 | 8.88 × 10−5 | |
HI | 3.76 × 10−1 | 5.17 × 10−2 | 1.36 × 102 | 2.95 | 1.44 × 101 | 4.84 × 10−1 | 4.42 × 10−2 | |
Adults | ADDing | 2.98 × 10−5 | 3.06 × 10−8 | 7.85 × 10−5 | 2.04 × 10−5 | 8.31 × 10−5 | 9.56 × 10−8 | 2.63 × 10−5 |
ADDinh | 4.38 × 10−9 | 4.50 × 10−12 | 1.15 × 10−8 | 3.00 × 10−9 | 1.22 × 10−8 | 1.41 × 10−11 | 3.86 × 10−9 | |
ADDdermal | 1.28 × 10−7 | 1.31 × 10−10 | 1.01 × 10−5 | 8.75 × 10−8 | 3.56 × 10−7 | 4.10 × 10−10 | 1.13 × 10−7 | |
HQing | 4.02 × 10−2 | 5.50 × 10−3 | 1.41 × 101 | 3.15 × 10−1 | 1.50 | 5.16 × 10−2 | 4.73 × 10−3 | |
HQinh | 5.88 × 10−6 | 8.09 × 10−7 | 2.08 × 10−3 | 4.63 × 10−5 | 2.31 × 10−2 | 7.59 × 10−6 | 6.95 × 10−7 | |
HQdermak | 5.75 × 10−4 | 3.37 × 10−4 | 4.43 | 9.00 × 10−3 | 3.21 × 10−1 | 2.21 × 10−3 | 1.01 × 10−4 | |
HI | 4.08 × 10−2 | 5.84 × 10−3 | 1.85 × 101 | 3.24 × 10−1 | 1.84 | 5.38 × 10−2 | 4.83 × 10−3 |
Indicators | Child | Adults | ||||||
---|---|---|---|---|---|---|---|---|
As | Pb | Cr | Cd | As | Pb | Cr | Cd | |
ADDing | 6.28 × 10−5 | 1.63 × 10−5 | 6.65 × 10−5 | 7.65 × 10−8 | 2.69 × 10−5 | 7.00 × 10−6 | 2.85 × 10−5 | 3.28 × 10−8 |
ADDinh | 4.62 × 10−9 | 1.20 × 10−9 | 4.89 × 10−9 | 5.62 × 10−12 | 3.96 × 10−9 | 1.03 × 10−9 | 4.19 × 10−9 | 4.82 × 10−12 |
ADDdermal | 7.58 × 10−7 | 6.57 × 10−9 | 2.68 × 10−8 | 3.08 × 10−11 | 3.46 × 10−6 | 3.00 × 10−8 | 1.22 × 10−7 | 1.41 × 10−10 |
CRing | 5.09 × 10−3 | 7.49 × 10−6 | 1.79 × 10−3 | 1.57 × 10−6 | 2.18 × 10−3 | 3.21 × 10−6 | 7.69 × 10−4 | 6.72 × 10−7 |
CRinh | 3.74 × 10−7 | 3.21 × 10−7 | ||||||
CRdermal | 6.14 × 10−5 | 1.49 × 10−8 | 5.92 × 10−5 | 1.05 × 10−8 | 2.81 × 10−4 | 6.81 × 10−8 | 2.71 × 10−4 | 4.78 × 10−8 |
CR | 5.15 × 10−3 | 7.50 × 10−6 | 1.85 × 10−3 | 1.58 × 10−6 | 2.46 × 10−3 | 3.28 × 10−6 | 1.04 × 10−3 | 7.20 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shen, W.; Fan, K.; Pei, W.; Liu, S. Spatial Distribution, Source Analysis, and Health Risk Assessment of Heavy Metals in the Farmland of Tangwang Village, Huainan City, China. Agronomy 2024, 14, 394. https://doi.org/10.3390/agronomy14020394
Liu Y, Shen W, Fan K, Pei W, Liu S. Spatial Distribution, Source Analysis, and Health Risk Assessment of Heavy Metals in the Farmland of Tangwang Village, Huainan City, China. Agronomy. 2024; 14(2):394. https://doi.org/10.3390/agronomy14020394
Chicago/Turabian StyleLiu, Ying, Wenjing Shen, Kaixuan Fan, Weihao Pei, and Shaomin Liu. 2024. "Spatial Distribution, Source Analysis, and Health Risk Assessment of Heavy Metals in the Farmland of Tangwang Village, Huainan City, China" Agronomy 14, no. 2: 394. https://doi.org/10.3390/agronomy14020394
APA StyleLiu, Y., Shen, W., Fan, K., Pei, W., & Liu, S. (2024). Spatial Distribution, Source Analysis, and Health Risk Assessment of Heavy Metals in the Farmland of Tangwang Village, Huainan City, China. Agronomy, 14(2), 394. https://doi.org/10.3390/agronomy14020394