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Abstract: The return of agricultural waste to the field is one of the most effective strategies of
increasing crop yield, improving the soil’s physicochemical properties, and improving the soil rhi-
zosphere environment. In the present study, sheep manure (SM), cow manure (CM), tail vegetable
(TV), mushroom residue (MR), and corn straw (CS) were used as raw materials, and no fertiliza-
tion (CK1) and local commercial organic fertilizer (CK2) treatments were used as controls. Eight
composts were set up using specific mass ratios of different compost materials. After fermentation,
field experiments were conducted to determine the cabbage yield, soil’s physicochemical properties,
and soil rhizosphere conditions. The eight composts increased the soil organic matter and nutrient
contents significantly. Among the eight fermentation formulas, T6 (CM:CS:TV:SM = 1:1:2:6), T7
(MR:CS:TV:SM = 1:1:2:6), and T8 (CM:MR:CS:TV:SM = 1:1:1:2:5) were relatively effective. Therefore,
high-throughput sequencing was performed on T6, T7, T8, CK1, and CK2. T6, T7, and T8 exhibited
increased relative abundance of Proteobacteria, Actinomycetes, and Firmicutes, while the Acidobac-
teria abundance was decreased. In addition, Ascomycota’s and Basidiomycetes’ relative abundance
decreased, and the oil chytrid and mortierella increased. The microbial community structure was
affected significantly by pH, electrical conductivity, available potassium, available nitrogen, and
organic matter. In general, the three composts increased yield by improving the soil’s physicochemical
properties, fertility, and microbial community structure. Among them, T6 had the most significant
effect and is the optimal formula for use as a local organic cabbage fertilizer, and it could facilitate
sustainable agricultural development.

Keywords: planting and breeding waste; compost; yield; cabbage; soil environment

1. Introduction

Agricultural waste is the non-product output of agricultural production and process-
ing. It is potentially toxic to plants, animals, and human beings in numerous direct and
indirect ways and has become one of the main sources of agricultural non-point source
pollution, threatening the environmental security of many countries globally. Today, most
of the agricultural waste is in the form of crop straw and livestock manure [1–3]. In China,
the annual output of livestock and poultry manure is up to 3.8 billion tons, and that of crop
straw is up to 1 billion tons [4]. However, due to a lack of proper environmental regula-
tions and poor waste treatment systems for agricultural waste, most of the agricultural
waste is not disposed of properly, or may be simply thrown away, which not only causes
environmental pollution but represents a waste of resources [5,6].

With an increase in people’s environmental awareness, the use patterns of agricul-
tural waste are changing, with carbonization, biodegradation, compost hydrolysis, and
pyrolysis being increasingly adopted to create fertilizers, feed, energy, base material, and
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other products. Such activities improve the economic value of agricultural waste by trans-
forming it into useful products [7,8]. Among them, compost hydrolysis is a sustainable
approach that can be used to fix organic matter into material that can be used to promote
soil improvement.

Soil ecosystems are vital for the functioning of the Earth’s biosphere [9]. The soil’s
microbial community is diverse, and the microbiome structure is one of the indexes for
soil health. The microbiome plays vital roles in nutrient cycling and energy flows in soil
ecosystems [10,11]. Moreover, soil’s microbial community composition and diversity, which
play key roles in soil’s ecosystem function, are sensitive indexes of microenvironmental
changes in soil. The functional diversity of the soil’s microbial community is an index that
can reflect the ecological characteristics of soil microorganisms, providing a reliable basis
for understanding microbial diversity. Organic fertilizer can affect the function of various
agroecosystems by altering the composition and abundance of functional genes [12,13].

Previous field studies have concluded that organic fertilizer can maintain soil structure,
improve soil’s nutrient contents, and promote pathogen antagonists [14]. In addition, soil’s
microbial community structure and diversity can improve following organic fertilizer appli-
cation, and the amount of plant growth promoting rhizobacteria, such as Azospirillum [15],
Enterobacter [16], Pseudomonas [17], Bacillus [18,19], and Trichoderma [20], increases.
Organic fertilizer application has been considered a partial substitute for inorganic nitro-
gen (N) and to provide longer-term nutrient release [21]. Furthermore, organic fertilizer
amendment to soil can improve the growth of plant roots and the absorption efficiency of
nutrients and water [22,23]. Moreover, organic fertilizers can increase soil’s organic matter
contents and, in turn, available nutrients to support crop growth [24].

Previous studies on organic fertilizers have focused mainly on the application of
organic fertilizer alone or increased organic fertilizer in combination with reduced chemical
fertilizer application [25,26]. Only a few studies have investigated the effects of agricultural
waste compost on crop yield and the rhizosphere. In addition, the interactions between
crop yield and shifts in microbial community diversity and compost application systems,
in addition to the underlying mechanisms, remain unclear.

Lanzhou, China, is an important summer vegetable production area at the northern
margin of the Tibetan plateau. The region is also rich in agricultural waste resources.
At present, local, commercial, and organic vegetable fertilizer is mainly produced by
compost fermentation mixed with tail vegetable/sheep manure = 3.5:6.5 (mass ratio),
and there are still other types of crop and animal waste that are not properly recycled.
Therefore, in the present study, some of the agricultural waste resources (corn straw, CS;
tail vegetable, TV; mushroom residue; MR; sheep manure, SM; cow manure, CM) were
used as fermentation materials. The compost fermentation formulas were based on local,
commercial, and organic fertilizer formulas. By studying the effects of different agricultural
waste composts on cabbage yield and the rhizosphere, the organic fertilizer production
formula was optimized, which could provide a reference formula for application in the
cultivation of cabbage or other vegetables. The results of the present study could provide
a theoretical basis for the sustainable disposal and exploitation of agricultural waste and
environmental management.

2. Materials and Methods
2.1. Experimental Site Condition

The present study was conducted in Yuzhong, Gansu Province, China. Average annual
temperature, precipitation, and evaporation are 6.6 ◦C, 300~400 mm, and 1343 mm, respec-
tively. The pH and electrical conductivity (EC) of the surface soil (0~20 cm depth) were
8.12 and 0.242 µS·cm−1, respectively. In addition, the alkali-hydrolyzable N (AHN), avail-
able phosphorus (P; AP), available potassium (K; AK), and organic matter (OM) contents
were 76.42 mg·kg−1, 117.40 mg·kg−1, 237.70 mg·kg−1, and 14.03 g·kg−1, respectively.
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2.2. Composting

Agricultural waste raw materials (corn straw, CS; tail vegetable (leafy vegetable), TV;
mushroom residue; MR; sheep manure, SM; cow manure, CM) were crushed and weighed
and mixed at specific mass ratios. The basic physicochemical properties of the composted
agricultural waste are listed in Table 1. Before composting, the water content of the compost-
ing pile was adjusted to 60~65%. Subsequently, 1 kg of compost bacteria (colony forming
unit [CFU] ≥ 50 billion/g, protease activity ≥ 70 µg/g, cellulase activity ≥ 60 µg/g) pur-
chased from Renyuan biotechnology company (Hebi, China) was added to every 15 tons of
agricultural waste. After the composting materials and bacteria were mixed completely,
the mixture was stacked into strip ridges with widths of 1.5~3.0 m and heights of 0.8~1.5 m.
During the composting process, the temperature 25~30 cm away from the top of the pile
was monitored. After the temperature reached 55~60 ◦C, stacks were turned for the first
time. Subsequently, the stacks were turned every 5~7 d until composting was complete,
when the color of the stack was dark brown. The measured composting temperature was
close to room temperature (20~30 ◦C), and the smell of rotten soil was perceived, which
took about 38~40 d. The basic physicochemical properties of compost fertilizers with
different agricultural waste are listed in Table 2.

Table 1. Basic chemical properties of different agricultural waste raw materials. Note: AN (available
nitrogen) = AHN (alkali-hydrolyzable nitrogen)

Raw Material TN
(g/kg)

TP
(g/kg)

TK
(g/kg)

AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg) OM (g/kg)

Sheep Manure 8.99 6.61 11.8 658.58 304.87 9320 945.67
Cow Manure 9 5.71 13.3 686.58 383.29 6786.67 510.76
Tail Vegetable 11.09 5.41 139.6 971.25 391.25 13,886.67 614.43

Mushroom Residue 9.1 6.65 11.4 630.58 284.33 9253.33 470.31
Corn Straw 10.04 7.79 15.09 546.58 385.61 8246.67 998.77

Table 2. Basic physicochemical properties of compost with different agricultural waste formulations.
Note: AN (available nitrogen) = AHN (alkali-hydrolyzable nitrogen)

Treatments TN
(g/kg)

TP
(g/kg)

TK
(g/kg)

AN
(mg/kg)

AP
(mg/kg)

AK
(mg/kg)

OM
(g/kg)

pH
Value

EC
Value

(ms/cm)

CK2 9.19 4.27 14.60 434.58 122.11 7596.67 227.57 8.14 4.81
T1 8.09 3.40 15.35 429.92 143.29 8123.33 195.33 7.95 4.92
T2 9.37 4.12 13.76 415.92 100.87 7013.33 132.75 8.07 5.33
T3 9.19 4.38 11.68 476.58 93.33 6856.67 176.37 8.03 5.63
T4 10.13 4.54 14.99 504.58 165.40 8860.00 394.45 8.25 6.35
T5 10.17 4.27 10.11 411.25 96.54 7453.33 195.33 8.08 5.32
T6 10.49 4.50 14.28 415.92 166.01 8240.00 244.64 8.13 5.91
T7 11.34 4.86 13.77 555.92 161.93 9746.67 384.97 8.18 6.19
T8 10.90 4.64 14.00 448.58 173.55 8530.00 252.22 8.24 6.65

2.3. Test Materials and Field Management

“Shuangkang 58” cabbage (an early-maturing variety), purchased from Tianjin Shuofeng
Seed Industry Co., Ltd. (Tianjin, China), was used as the experimental material. Seedlings
were raised on 15 June 2022 and planted on 25 July 2022.

The field trial was conducted based on a random block design with three replicates. Two
control groups were set up, with eight treatments: CK1 (no fertilizer), CK2 (local organic fertil-
izer fermentation formula, TV:SM = 3.5:6.5), T1 (TV:SM = 4.5:5.5), T2 (CM:TV:SM = 1:3:6), T3
(MR:TV:SM = 1:3:6), T4 (CS:TV:SM = 1:3:6), T5 (MR:CM:TV:SM = 1:1:2:6), T6 (CS:CM:TV:SM
= 1:1:2:6), T7 (CS:MR:TV:SM = 1:1:2:6), and T8 (CS:MR:CM:TV:SM = 1:1:1:2:5). The appli-
cation amounts of all the eight fermented organic fertilizer treatments and the CK2 were
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6000 kg/ha. The organic fertilizer was evenly applied in strips, the soil on both sides
was turned over for 25~30 cm to cover the base fertilizer, and ridges were set up. Each
experimental plot was 20 m long, 1.1 m wide, and 22 m2 in area. The width of each planting
row was covered with film, and the width of the planting row was 1 m. Two rows of
cabbage were cultivated on each planting row, and the plant spacing and row spacing were
20~25 cm and 35~40 cm, respectively.

2.4. Measurement of Yield and Soil Sampling

The planted cabbage was harvested on 7 October 2022. During the harvest period,
75 cabbage plants from each treatment were selected randomly to measure yield, and the
soil samples from the 15~20 cm depth of three labeled cabbages were collected and used
for rhizosphere microbial diversity analysis. Soil samples from the three cabbage roots
were mixed. Debris such as stones, roots, and film fragments were sieved and removed
with a 2 mm sieve. Afterward, the soil was divided into two parts; one part was used for
subsequent microbial DNA extraction, and the other part was air-dried and used for the
determination of soil’s physicochemical properties.

2.5. Composting Fertilizers and Soil Physicochemical Property Analysis

The pH and EC of the soil were determined using the soil filtrate [16]. PHS-3E (Jinko,
Shanghai, China) was used to determine the filtrate pH, and the EC was determined using
a DSJ-308A conductivity meter (Jinko, Shanghai, China). After oxidation with potassium
dichromate (K2Cr2O7), OM content was measured using the titration method. Before the
determination of total N (TN), total P (TP), and total K (TK) contents, wet digestion was
performed with the H2SO4-H2O2 method. Subsequently, the TN content was determined
using an automatic Kjeldahl N analyzer K1100F, TP was determined using a UV-1780
spectrophotometer (Shimadzu, Suzhou, China), and TK was determined using a ZEEnit
700P flame atomic spectrophotometer (Analytik Jena, Jena, Germany). The determination of
AN, AP, and AK contents are in accordance with the methods used in previous studies [27].
All the above indexes were measured in triplicate.

2.6. Soil DNA Extraction and PCR Amplification

Soil microbial DNA was extracted using the EZNA kit (Omega Bio-tek, Norcross, GA,
USA). Primers ITS1F and ITS2R were used to amplify the ITS2 region of the fungal DNA,
while the s338F and 806R primers were used to amplify the V3–V4 region of bacterial DNA.
The reaction mixture volume was 20 µL, including 4 µL buffer, 2 µL dNTPs, 1.5 µL of each
primer, 10 ng DNA, and sufficient ddH2O. The ABI GeneAmp 9700 PCR amplifier (Applied
Biosystems, Foster City, CA, USA) was used for PCR. The amplification procedure was
initial denaturation at 95 ◦C for 3 min, then denaturation for 30 s, annealing at 55 ◦C for 30 s,
extension at 72 ◦C for 45 s, and final extension at 72 ◦C for 10 min, and the amplification
cycle was 27. After amplification, the procedure was terminated at 4 ◦C. PCR products
were electrophoresed on 2% agarose gel, purified using an AxyPrep DNA gel extraction kit,
and quantified using the Promega quantum fluorometer (Promega, Madison, WI, USA).

2.7. Illumina MiSeq Sequencing

Purified amplified PCR amplification fragments were collected and sequenced by
Shanghai Meiji Biomedicine Technology (Shanghai, China) on the Illumina MiSeq sequenc-
ing platform. The original 16s rRNA and ITS gene were sequenced through multi-channel
separation. Trimmomatic was used to perform quality filtering, and FLASH merge was
used to merge the data according to the standard. Sequence similarity > 97% was specified
as an Operational Taxonomic Unit and used for UPARSE clustering. The fungal ITS (Unite
8.0) sequences and bacterial 16S rRNA (Silva SSU128) sequences were evaluated using RDP
classifier (confidence threshold = 0.7).
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2.8. Data Analysis

Microbial data analysis was performed in R v.3.5.2 [28]. Shannon, Simpson, and Chao
indexes were calculated using QIIME2, accessed on 11 July 2023 (https://qiime2.org/).
Principal Coordinate Analysis (PCoA) was performed based on Bray–Curtis distance to
evaluate similarity in microbial community composition. Relationships among physic-
ochemical properties and soil microbial community were analyzed using redundancy
analysis (RDA) and Spearman rank correlation. Soil microbial communities in different
treatments were evaluated by substitution multiple variance analysis (Per MANOVA).
PCoA, RDA, and Per MANOVA analyses were implemented using the vegan package
in R (version 2.0-5;) [29]. Circos-0.67-7 was accessed on 16 July 2023 (https://bioweb.
pasteur.fr/packages/pack@circos@0.67-7) to draw Circos diagrams (version 0.67-7) [30].
One-way Analysis of Variance and Pearson correlation analysis were performed in IBM
SPSS Statistics 21 (IBM Corp., Armonk, NY, USA). p ≤ 0.05 indicated a significant difference
among treatments.

3. Results
3.1. Soil’s Physicochemical Properties under Different Composting Treatments

Different agricultural waste composts had significant effects on the physicochemical
indexes of the cabbage rhizosphere soil (Figure 1). Compared with CK1 (no fertilizer),
the total available and available nutrients in the soil were increased significantly after
the organic fertilizer application. TN, TP, and TK contents were the highest under the T6
treatment, at 0.65 g/kg, 1.41 g/kg, and 11.48 g/kg, respectively. Compared with those in
the CK2 (local commercial fertilizer) treatment, the TN, TP, and TK in the T6 treatment were
5.36%, 28.24%, and 15.49% higher, respectively. In addition, the AN, AP, and AK contents in
T6 were the highest, at 89.86 mg/kg, 98.78 mg/kg, and 173.94 mg/kg, respectively, which
were 5.26%, 11.97%, and 18.44% higher than those in the CK2 treatment, respectively.
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Both soil pH and EC were the highest under the CK1 treatment and the lowest under
the T6 treatment, and the difference was significant. However, the total OM was the highest
in the T6 treatment, and the lowest in the CK1 treatment, which was significantly lower
than those in the other treatments.

3.2. Cabbage Yield under Different Composting Treatments

The yields of all agricultural waste compost treatments were significantly higher
than that in the CK1 treatment. The biological yields (overground weight) and economic
yields (sphere weight) of the T6 treatment were the highest, reaching 98.058 ton/ha and
71.263 ton/ha, followed by those in the T4 treatment. The biological and economic yields
of the T6 treatment were significantly higher than those of the CK1 treatment, by 79.94%
and 88.24%, respectively. In addition, compared with those of the CK2 treatment, the bio-
logical and economic yields of the T6 treatment were 7.18% and 5.38% higher, respectively
(Figure 2).
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3.3. Soil’s Microbial Diversity under Different Treatments

The ACE, Chao 1, Simpson, and Shannon indexes of fungi and bacteria under differ-
ent treatments were measured to study the microbial community’s diversity. The ACE
and Chao 1 indexes were proportional to the microbial abundance, the Simpson index
was inversely proportional to the diversity, and the Shannon index was proportional to
the diversity.

The soil bacteria’s ACE index of the T6 treatment was the highest, and there was no
significant difference between T6 and the other treatments (Figure 3A). The T6 treatment
had the highest Chao 1 index, which was 8.13% higher than that of the CK1 treatment, and
the difference was significant (Figure 3B). Compared with that of the CK1 treatment, the
Simpson index of the bacteria in the CK2, T6, T7, and T8 treatments decreased by 3.70, 12.00,
7.69, and 3.70%, respectively. In addition, the Simpson index in the T6 treatment was the
lowest and significantly different from that of the CK1 treatment (Figure 3C). The Shannon
index of the soil bacteria in the T6 treatment was the highest and was 2.22% higher than
that of the CK1 treatment (Figure 3D).

T6 and T7 had the highest soil fungal ACE indexes, which were 19.12% and 20.36% higher
than those in the CK1 treatment, respectively (Figure 3E). The Chao 1 index of soil fungi
under the T6 treatment was the highest and 13.18% higher than that of the CK1 treatment
(Figure 3F). T6 had the lowest Simpson index, but there were no significant differences
among the treatments (Figure 3G). Compared with that of the CK1 treatment, the bac-
terial Shannon indexes of the CK2, T6, T7, and T8 treatments were 3.75, 4.50, 1.25, and
1.00% higher, respectively. The Shannon index of the T6 treatment was the highest, although
there were no significant differences among the treatments (Figure 3H).
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3.4. Soil’s Microbial Community Structure under Different Fertilization Conditions

Different compost formulas altered the bacterial and fungal community’s structure
significantly. PCoA divided the bacterial community into two groups, namely, CK2, T6,
and T7 and CK1 and T8 (Figure 4A). The bacterial community structures under the CK2,
T6, and T7 treatments were clustered far from those of the other treatments, indicating
that the bacterial community structure was changed significantly by compost application
(Figure 4A). PCoA divided the fungal community into three groups, namely, CK2, T6, and
T7; CK1; and T8 (Figure 4B). The fungal community structures in the CK2, T6, and T7
treatments were clustered at a distance from those of the other treatments (Figure 4B), while
CK1 existed in one quadrant alone, indicating that compost application changed the fungal
community structure significantly.
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3.5. Relative Abundance of Major Bacterial and Fungal Groups

As shown in Figure 5A,C, the main bacterial phyla under each treatment were Pro-
teobacteria (25.22~29.49%), Actinobacteria (18.46~23.49%), Firmicutes (10.76~17.64%), and



Agronomy 2024, 14, 413 8 of 18

Acidobacteria (10.29~14.48%), and their relative abundances in the treatments were in the
64.73~85.10% range. The other bacterial phyla were Chloroflexi (7.51~11.22%), Bacteroidota
(3.82~5.10%), Myxococcota (2.89~3.87%), Gemmatimonadetes (2.30~2.77%), and Nitro-
spirota (1.02–1.24%). The abundances of Proteobacteria, Actinomycetes, and Firmicutes
in the T6, T7, and T8 treatments were higher than that in the CK1 treatment, and the
Acidobacteria abundances were lower than that in the CK1 treatment. Proteobacteria abun-
dance was the highest in the T7 treatment, accounting for 29.49% of the total bacteria (TB),
and its abundance was 16.93% higher than that in the CK1 treatment. The Actinomyces
abundance was the highest in the T8 treatment, accounting for 23.49% of the TB, which was
21.96% higher than that in the CK1 treatment. The relative abundance of Firmicutes was
the highest in the CK2 treatment, accounting for 17.64% of the TB, and it was 21.96% higher
than that in the CK1 treatment. CK1 had the highest Acidobacteria abundance, which
accounted for 14.48% of the TB, followed by those in the T8 and T6 treatments, accounting
for 12.13% and 12.03% of the abundance, respectively.

Agronomy 2024, 14, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Relative abundances of major taxonomic groups of bacteria (A,C) and fungi (B,D) at the 
phylum level (others accounted for <0.01). The data are visualized using Circos, and the widths of 
bars indicate the relative abundance of the phyla. 

The major fungal groups under different treatments were Ascomycota (71.61–
81.34%), Olpidiomycota (3.44–15.19%), Mortierellomycota (5.89–10.44%), and Basidiomy-
cota (5.89–10.44%). Basidiomycota (3.35–5.02%) was with lower concentrations in other 
unclassified phyla (Figure 5B,D). The abundances of Ascomycetes and Basidiomycetes un-
der fertilization treatments were lower than those under the CK1 treatment, whereas Chy-
tromycetes and Sporoides abundances were higher than those under the CK1 treatment. 
Ascomycota abundances under the CK2, T6, T7, and T8 treatment were lower than those 
under the CK1 treatment and the lowest in the T6 treatment, with abundances that were 
71.61% and 13.59% lower than that in the CK1 treatment. Basidiomycota abundances un-
der the CK2, T6, and T8 treatments were lower than those of the CK1 treatment, and the 
lowest in the T6 treatment, which was 3.35% and 44.78% lower than that in the CK1 treat-
ment. Ochrochytridia in the CK2, T6, and T7 treatments were higher than those in the CK1 
treatment, and was the highest in the T6 treatment, being 15.19% and 238.31% higher than 
that in the CK1 treatment. Sporinae abundances in the CK2, T6, and T8 treatments were 
higher than those in the CK1 treatment and the highest in the CK2 treatment. The abun-
dance in the CK2 treatment was 10.44% and 59.15% higher than that in the CK1 treatment. 

3.6. Relationships among Soil Microbial Communities and Environmental Factors 

Figure 5. Relative abundances of major taxonomic groups of bacteria (A,C) and fungi (B,D) at the
phylum level (others accounted for <0.01). The data are visualized using Circos, and the widths of
bars indicate the relative abundance of the phyla.

The major fungal groups under different treatments were Ascomycota (71.61–81.34%), Ol-
pidiomycota (3.44–15.19%), Mortierellomycota (5.89–10.44%), and Basidiomycota (5.89–10.44%).
Basidiomycota (3.35–5.02%) was with lower concentrations in other unclassified phyla
(Figure 5B,D). The abundances of Ascomycetes and Basidiomycetes under fertilization
treatments were lower than those under the CK1 treatment, whereas Chytromycetes and
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Sporoides abundances were higher than those under the CK1 treatment. Ascomycota
abundances under the CK2, T6, T7, and T8 treatment were lower than those under the CK1
treatment and the lowest in the T6 treatment, with abundances that were 71.61% and 13.59%
lower than that in the CK1 treatment. Basidiomycota abundances under the CK2, T6, and
T8 treatments were lower than those of the CK1 treatment, and the lowest in the T6 treat-
ment, which was 3.35% and 44.78% lower than that in the CK1 treatment. Ochrochytridia
in the CK2, T6, and T7 treatments were higher than those in the CK1 treatment, and was
the highest in the T6 treatment, being 15.19% and 238.31% higher than that in the CK1
treatment. Sporinae abundances in the CK2, T6, and T8 treatments were higher than those
in the CK1 treatment and the highest in the CK2 treatment. The abundance in the CK2
treatment was 10.44% and 59.15% higher than that in the CK1 treatment.

3.6. Relationships among Soil Microbial Communities and Environmental Factors

The effects of environmental factors on the microbial community composition of the
cabbage rhizosphere were evaluated using RDA (Figure 6). The soil properties under
different agricultural waste compost applications influenced the microbial community
structure. In Figure 6A, the first two axes of the RDA explain 47.37% and 20.81% of the
total variation in bacterial community structure, respectively; for fungi, the first two axes
explained 53.98% and 15.87% of the total variation, respectively (Figure 6C). Moreover, for
bacteria, the first axis was positively correlated with TN, TP, TK, AN, AP, OM, and EC
but negatively correlated with AK and pH; the second axis was positively correlated with
AN, AK, and EC but negatively correlated with TN, TP, TK, AP, pH, and OM. In fungi, the
first axis was positively correlated with TN, TP, TK, AN, AP, OM, and EC and negatively
correlated with AK and pH. The second axis was positively correlated with TN, TP, TK,
AN, AP, AK, pH, and OM and negatively correlated with EC. The environmental factors
were significantly correlated to the bacterial and fungal community composition and were
key factors influencing the bacterial community composition.

The relationships among physicochemical properties and bacterial communities were
also assessed based on Spearman rank correlation (Figure 6B). We observed that Actinobac-
teriota was significantly positively correlated with EC, and Cyanobacteria was significantly
positively correlated with AK (p ≤ 0.01), whereas Myxococcota, Desulfobacterota, and
Cyanobacteria were negatively correlated with EC. In addition, the microbes were corre-
lated with other soil factors. Desulfobacterota was significantly positively correlated with
AK and OM; Dependentiae was significantly negatively correlated with AN; Bacteroidota
had a negative correlation with AN; Armatimonadota, Abditibacteriota, and Entotheonel-
laeota were positively correlated with pH; Hydrogenedentes and Dependentiae were
negatively correlated with OM and TK; Hydrogenedentes were negatively correlated with
AP; Dependentiae was negatively correlated with TN; and Dependentiae and Bacteroidota
were negatively correlated with TP.

The Spearman correlation between the fungal community and physicochemical prop-
erties showed that unclassified fungi and AK were significantly positively correlated
(Figure 6D). Unclassified-k-Fungi and Ascomycota were significantly negatively corre-
lated with EC; Kickxellomycota was positively correlated with EC. Blastocladiomycota
and Rozellomycota were negatively correlated with EC. Glomeromycota was positively
correlated with pH and negatively correlated with TN, TK, AN, AP, TP, and OM. AK were
positively correlated with Blastocladiomycota, Rozellomycota, and Aphelidiomycota.
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3.7. Bacterial Function in Agricultural Waste Compost Soil

Tax4Fun transforms the 16S taxonomic lineages based on the Silva database into
taxonomic lineages of prokaryotes in the KEGG database and predicts the KEGG function
of prokaryote microbial communities by combining the correspondence between the two
databases. The first level of the metabolic pathway database classifies biological metabolic
pathways into six broad types: cellular processes, environmental information processing,
genetic information processing, human diseases, metabolism, and organismal systems. The
second level divides the 6 categories into 40 subcategories, and the 21 subclasses in Figure 7
are derived from 4 major classes and selected according to the second-level biological
metabolic pathways.

In the genetic information processing pathway, there were four subcategories: cell
growth and death, cell motility, cell community—prokaryote, transport, and catabolism.
Bacterial communities under the T7 and T8 treatments had the highest functional abun-
dance in the four subcategories. Bacterial communities under the CK2 treatment had the
highest functional abundance in cellular motility. There were 11 subclasses of metabolic
pathways, and the bacterial community under the CK2 treatment had the highest functional
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abundance in carbohydrate metabolism, glycan biosynthesis metabolism, and nucleotide
metabolism; the bacterial community under the T8 treatment had the highest functional
abundance in biosynthesis of other secondary metabolites, energy metabolism, metabolism
of other amino acids, and biodegradation and metabolism of heterotrophic organisms. The
bacterial community under the T7 treatment had the highest functional predictive abun-
dance in amino acid metabolism, energy metabolism, and cofactor and vitamin metabolism,
while carbohydrate metabolism, terpenes, and polyketones metabolism were the highest
under the T6 treatment. The results indicated that soil bacteria accounted for the highest
proportion and functional abundance in biological metabolic pathways. Meanwhile, the
application of agricultural waste compost improved the abundance of cellular processes,
genetic information processing, and soil bacteria metabolism significantly.
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3.8. Fungal Function in Soil Treated with Agricultural Waste Composts

FUNGuild (Fungi Functional Guild) can classify fungal community function based
on the trophic level, and functional prediction was conducted in the present study by
associating species classification and functional guild classification using bioinformatics
methods. Fungal communities can be divided into seven classes (saprotrophs, pathotrophs,
saprotroph-symbiotrophs, symbiotrophs, pathotroph-symbiotrophs, pathotroph-saprotrophs,
and pathotroph-saprotroph-symbiotrophs) according to the nutrition mode. A total of
81 functional groups were detected through functional classification and identification.
According to the abundance ratio > 0.01 principle, 14 functional groups were identified.
FUNGuild was used to predict changes in the composition of functional groups of fungi
under different treatments (Figure 8).

Compared with the no fertilization CK1 treatment, the abundances of a variety of
microbes changed after fertilization. The undefined saprotroph abundance in the CK2, T7,
and T8 treatments increased by 19.81%, 4.98%, and 7.92%, respectively. The plant pathogen
abundance in the CK2, T6, and T8 treatments decreased by 22.47%, 16.51%, and 56.77%,
respectively. The abundances of Animal Pathogen–Endophyte–Plant Pathogen–Wood
in the CK2, T6, and T7 treatments decreased by 223.38%, 289.06%, and 362.83%, respec-
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tively. The Animal Parasite–Fungal Parasite abundances increased by 73.16%, 340.52%, and
82.34%, respectively. Moreover, the abundances of Animal Pathogen–Dung Saprotroph–
Endophyte–Epiphyte–Plant Saprotroph–Wood Saprotroph under the CK2, T6, T7, and
T8 treatments increased by 56.19%, 146.32%, 26.30%, and 85.12%, dung Saprotroph abun-
dances increased by 97.19%, 405.62%, 444.28%, and 140.60%, while the Saprotroph–Wood
Saprotroph abundances decreased by 580.44%, 491.26%, 523.23%, and 55.04%, respectively.
In addition, Dung Saprotroph–Ectomycorrhizal–Soil Animal Pathogen–Endophyte–Lichen
Parasite–Plant Pathogen–Soil Saprotroph–Wood Saprotroph abundances in the T6 and T7
treatments increased by 0.43% and 114.69%, respectively. According to the results, the
agricultural waste compost application increased the number of saprophytic bacteria and
saprophytic–symbiotic fungi significantly and reduced the number of pathogenic bacteria
and pathogenic fungi to some extent.
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4. Discussion
4.1. Effects of Agricultural Waste Composts on Cabbage Yield and Soil’s Physicochemical Properties

Fertilization is critical for sustainable agricultural development. The rational applica-
tion of crop waste compost improves soil’s OM, which influences plant growth and yield
by directly providing nutrients or indirectly by altering soil’s physicochemical proper-
ties [31,32]. In the present study, the OM content was the highest under the T6 treatment
and the lowest under the CK1 (no fertilizer) treatment, which was significantly lower
than those in the other treatments, indicating that compost can increase the OM content
significantly. Compared with the status in the CK1 treatment, the OM, total available
nutrients, and available nutrient contents in the soil were significantly increased following
the application of crop waste compost. Organic fertilizer can stimulate the production
of root exudates and promote the activation of insoluble nutrients. In addition, organic
fertilizers contain high amounts of nutrients, and the constituent carbon (C) and N can
be decomposed and released relatively easily [33]. Moreover, biological organic fertilizers
have high OM contents, which enhance microbial activities and can promote nutrient
transformation and cycling [34]. Compared with those in the CK2 treatment, the OM, total
available nutrient, and available nutrient contents in the T6, T7, and T8 treatments were in-
creased significantly. The compost formulas in the T6, T7, and T8 treatments contained corn
straw, and the OM, TN, and TP contents of corn straw are high, which could increase soil’s
N and P contents, indicating that the addition of appropriate amounts of corn straw can
improve soil’s N content and soil’s N fixation ability [35]. After organic materials (including
crop residues and organic fertilizers) are applied to the soil, mineral N is fixed by microbes
due to the addition of energy materials, and soil N will increase correspondingly [36,37].

pH is one of the key indexes influencing soil’s microbial community diversity; the
closer the soil value is to a neutral pH (pH = 7), the greater the bacterial diversity is [38]. In
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the present study, the soil pH was the lowest under the T6 treatment and the highest under
the CK1 treatment. The pH in the CK1 treatment was higher than those in other waste
compost fertilization treatments, indicating that compost fertilizer application could reduce
soil’s pH, prevent soil salinization, and improve bacterial diversity. In addition to pH, soil’s
EC in the present study was the lowest under the T6 treatment and the highest under the
CK1 treatment, which was higher than those in other fertilization treatments, indicating that
compost application could effectively decrease soil’s EC value, reduce salt ions, decrease
reverse osmotic pressure in soil, and minimize the toxic effect of soluble minerals on
cabbage yield. Among all treatments, the T6 treatment had the most significant effect.

4.2. Effects of Agricultural Waste Compost on Soil’s Microbial Richness and Diversity

Soil’s microbial richness and diversity are two key indexes of soil quality, and they
can be increased by inorganic or organic fertilizer application [39,40]. Organic fertilizer
application enhances acid phosphatase and dehydrogenase enzyme activity in the maize
rhizosphere, in addition to bacterial abundance and mycorrhizal infection [41]. In the
present study, the ACE, Chao1, and Shannon indexes were the highest in the T6 treatment,
while the Simpson index was the lowest in the T6 treatment. Opposite trends were observed
in the CK1 treatment, indicating that T6 could improve the bacterial richness and diversity
significantly. Similar to the T6 treatment, the T7 treatment increased the soil’s microbial
richness significantly. In addition, similar to the findings of Ji et al. [42], we observed
that organic fertilizer application improved the soil’s bacterial community diversity and
evenness. The results could be attributed to the addition of corn straw to the T6 and
T7 formulas, which decomposed and provided C and N sources for microorganisms,
which facilitate microbial growth and reproduction [43,44]. The straw application can
improve soil’s physicochemical properties and structure, which in turn promotes microbial
metabolic activities in soil [45]. Some studies have shown that the application of biochar
that is produced from straw to a field can reduce competition among microorganisms,
protect beneficial soil microbes, and improve the soil’s microbial community structure [46].

Bacterial abundance, community structure, and diversity affect soil’s sustainability
and productivity [47,48]. Soil bacteria facilitate nutrient absorption and soil-borne disease
resistance, and they activate plant defense systems against pathogens [49,50]. In the present
study, Proteobacteria, Actinomyces, Firmicutes, and Acidobacteria were the dominant bac-
terial populations. The Proteobacteria abundance was the highest under the T7 treatment,
followed by the T8 treatment. This may be due to differences in the OM content between
the T7 and T8 formulas. Under higher OM and nutrient conditions, Proteobacteria, which
are eutrophic bacteria, can grow and reproduce rapidly [51].

The T8 treatment had the highest Actinomycetes richness, followed by T6. Actino-
mycetes can produce numerous substances that can promote plant and animal residue
decomposition and influence soil’s microbial community structure and diversity [52]. In
addition, some Actinomycetes can secrete hormone substances in soil and stimulate the
release of more root secretions [53], providing rich energy resources for the growth and
propagation of microbes and promoting the proliferation of beneficial bacteria. This is con-
sistent with the results of related studies showing that organic fertilizer alters the bacterial
and fungal community composition and increases the relative abundance of dominant
bacterial phyla (e.g., Bacteroidetes, Blastomonas, and Myxococcus) and fungal phyla (e.g.,
Basidiomycetes and Mycetes) [54]. Acidobacteria represent a group of bacteria that grow
slowly and accumulate in environments with low nutrient contents and that can degrade
complex organic materials [55–57]. In the present study, the Acidobacteria abundance was
the highest in the CK1 treatment, followed by the T6 and T8 treatments, indicating that T6
had a higher OM content and longer slow-release than the other treatments.

The Rhizosphere fungal community’s structure is affected by temperature, soil mois-
ture, and soil’s microbial sources, with interactions among microbial sources and abiotic
environments [44]. In the present study, the dominant fungal populations were Ascomycota,
Echinomycota, Sporoidiae, and Basidiomycota, which is consistent with the conclusion that
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the long-term application of inorganic and organic fertilizers could promote the succession
of fungal communities toward Ascomycota, Zygomycota, and Basidiomycota [58]. Basid-
iomycota and Olpidiomycota reportedly increased significantly in pig manure and sludge
compost treatments [59]. The Ascomycota abundance in the CK2, T6, T7, and T8 treatments
was lower than that in the CK1 treatment, with the lowest being identified for the T6
treatment. The highest relative abundance of Ascomycota being in the CK1 treatment may
be due to its saprophytic fungi, which are affected by plant species and fertilizer.

4.3. Relationships between Microbial Communities and Soil Environmental Factors

Soil’s microbial diversity and composition are key indexes of soil’s physicochemical
properties. Soil’s microbial diversity and composition are sensitive to shifts in soil’s en-
vironmental factors such as the pH and OM content [60]. Bacterial and fungal growth
and activity varied with crop yield, soil’s physicochemical properties, and soil’s biological
properties. pH is one of the key factors influencing the microbial community structure [61],
which is consistent with our results. In the present study, the RDA analysis results showed
that the major factors driving community differences among treatments were the pH, EC,
AK, AN, and OM. Although the pH varied over a small range, it still affected the microbial
community structure significantly. On the one hand, pH can affect the types of soil microbes
directly, and environmental pressures can screen out and retain species that have adapted
to a certain pH level [62]. On the other hand, pH affects physicochemical activities such as
enzyme activity, enzyme formation, membrane permeability, or metabolic pathways. In
addition, compared with fungi, bacteria are more responsive to pH [63,64]. Cyanobacte-
ria is a type of active N-fixing phylum that is critical for soil productivity improvement
and maintenance, and several studies have reported the biological N-fixing potential of
cyanobacteria (e.g., P bacteria) in dryland wheat fields [65]. The application of inorganic
fertilizer, especially phosphate fertilizer, can stimulate Cyanobacteria growth [66], which is
consistent with the results of the present study showing a significant positive correlation
between cyanobacteria and AK. Consistent with previous studies that have reported that
organic fertilizer can increase the relative abundance of Proteobacteria, Betaproteobacteria,
and Deltaproteobacteria significantly, high N environments are favorable for symbiotic
bacteria, and unfavorable for oligotrophic bacteria, whose capacity for OM degradation is
relatively low [51]. Proteobacteria, especially Betaproteobacteria, are favored by high OM
and high C contents in eutrophic environments [67], which is similar to our results.

As far as the compost formula is concerned, the addition of corn straw affected the
soil’s environmental factors significantly, and some studies have found that adding corn
straw alters the fungal community structure [68,69]. In the present study, T6 had significant
effects on the soil environment, which mainly changed the OM, AHN, and AP of the
soil. Therefore, it is hypothesized that compost formulas containing corn straw alter
soil’s physicochemical properties, thereby affecting soil’s microbial community structure
and diversity.

4.4. Effects of Waste Compost on Soil Microbial Community’s Function

In the present study, 4 major and 21 minor soil microbial community functions were
predicted using Tax4Fun. According to the results, the application of agricultural waste
compost enhanced cellular processes, genetic information processing, and soil bacterial
metabolism functions significantly. Previous studies have shown that the enhancement
of metabolic function improves a microbial community’s decomposition activities and
metabolic compound accumulation [70]. Amino acids and carbohydrates are the two main
C sources that are utilized by microorganisms, and the increased metabolism of the two
types of carbohydrates indicates that the microbial function diversity has increased [71].
It also indicates that OM decomposition and leaching have increased the substrate that is
required for bacterial metabolic activities, providing a more suitable habitat for microbial
metabolic activity [72,73]. An improvement in cellular processes and genetic information
processing functions will enhance gene expression, and the expression of some functional
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genes in turn enhances metabolic processes. In the present study, the addition of corn
straw in compost enhanced energy metabolism, amino acid metabolism, and carbohydrate
metabolism, which is consistent with the findings of previous research [74]. Such changes in
bacterial groups and functional genes may drive nutrient cycling in soil, in turn promoting
plant growth.

FUNGuild predicted that 12 out of 14 functional groups contained saprophytic fungi
with increased abundance. The application of agricultural waste composts increased
the number of saprophytic fungi and decreased the number of pathological fungi, and
the above results also indicated that compost enhanced the decomposition capacity of
soil fungi.

The Animal Pathogen–Dung Saprotroph–Endophyte–Epiphyte–Plant Saprotroph–
Wood Saprotroph and Animal Parasite–Fungal Parasite abundances in the T6 treatment
were significantly higher than those in the other treatments, indicating that that the T6
treatment could also increase the abundance of symbiotic fungi significantly. Some studies
have shown that the decrease in ectomycorrhizal fungi following N application is offset by
an increase in saprophytic fungi, and the saprophytic fungi are positively affected by soil’s
N content [75,76]. In the present study, the organic C input and change in soil aggregate size
distribution played important roles in fungi development. In addition, increasing the OM
content could increase the abundance of various fungi, improve the nutrient content and
nutrient utilization, and reduce the spread of soil-borne diseases [77], which is consistent
with the highest AN and OM contents being observed in soil that was treated with T6.

5. Conclusions

In conclusion, the use of agricultural waste composts can improve cabbage soil’s
environmental conditions and soil fertility and facilitate agricultural waste recycling. In the
eight experimental formulas, T6 (corn straw/cow manure/tail vegetable/sheep manure =
1:1:2:6) was the optimal formula, which increased the contents of AK, AHN, and soil OM,
reduced the soil’s saline alkalinity, regulated the soil’s microbial community structure, and
increased the cabbage yield. The results of the present study could facilitate sustainable
vegetable production and exploitation of agricultural waste resources.
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