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Abstract: In greenhouses, plant growth is directly influenced by internal environmental conditions,
and therefore requires continuous management and proper environmental control. Inadequate
environmental conditions make plants vulnerable to pests and diseases, lower yields, and cause
impaired growth and development. Previous studies have explored the combination of greenhouse
actuator control history with internal and external environmental data to enhance prediction accuracy,
using deep learning-based models such as RNNs and LSTMs. In recent years, transformer-based
models and RNN-based models have shown good performance in various domains. However, their
applications for time-series forecasting in a greenhouse environment remain unexplored. Therefore,
the objective of this study was to evaluate the prediction performance of temperature, relative
humidity (RH), and CO2 concentration in a greenhouse after 1 and 3 h, using a transformer-based
model (Autoformer), variants of two RNN models (LSTM and SegRNN), and a simple linear model
(DLinear). The performance of these four models was compared to assess whether the latest state-of-
the-art (SOTA) models, Autoformer and SegRNN, are as effective as DLinear and LSTM in predicting
greenhouse environments. The analysis was based on four external climate data samples, three
internal data samples, and six actuator data samples. Overall, DLinear and SegRNN consistently
outperformed Autoformer and LSTM. Both DLinear and SegRNN performed well in general, but were
not as strong in predicting CO2 concentration. SegRNN outperformed DLinear in CO2 predictions,
while showing similar performance in temperature and RH prediction. The results of this study do
not provide a definitive conclusion that transformer-based models, such as Autoformer, are inferior
to linear-based models like DLinear or certain RNN-based models like SegRNN in predicting time
series for greenhouse environments.

Keywords: Autoformer; DLinear; LSTM; SegRNN; greenhouse; time series

1. Introduction

Plant growth in greenhouses is greatly influenced by internal environmental condi-
tions, and therefore requires continuous management and proper environmental control.
Inadequate environmental conditions make plants vulnerable to pests and diseases, result
in decreased yields, and cause impaired growth and development [1–3]. To ensure optimal
growing conditions, monitoring is critical to predict changes in the greenhouse environ-
ment. However, environmental factors in the greenhouse exhibit complex and non-linear
dynamics, making prediction a particularly challenging task. As a result, simple models
and formulas are often insufficient to accurately predict environmental changes [4,5].

In previous studies, researchers have primarily used the internal and external environ-
mental data of the greenhouse to predict the conditions inside, or they have combined the
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data with the control history of the actuators in the greenhouse. As an example of the use of
only greenhouse environmental data to predict indoor conditions, Moon et al. [6] utilized
nine environmental parameters that were recorded at 10 min intervals to predict changes
in the carbon dioxide (CO2) concentration, using an artificial neural network (ANN) model.
These authors reported high accuracy even in the absence of ventilation data, demonstrat-
ing the potential of a neural network-based model for predicting CO2 in greenhouses.
Subsequently, Moon et al. [7] used an LSTM model to predict the CO2 concentration and
achieved promising accuracy despite the rapid and inconsistent fluctuations in CO2 levels
in the greenhouse. As an alternative to neural network-based approaches, Cao et al. [8]
implemented a tree-based machine learning model combined with time-series features.
Their proposed model demonstrated high predictive performance even though the model
was simple and fast to train, in contrast with deep learning-based models such as RNNs
and LSTMs.

Recent studies have attempted to predict greenhouse conditions by integrating in-
ternal and external environmental data, as well as data from actuator control history.
Choi et al. [9] used a combination of environmental data and operating values of control
devices to predict the temperature and relative humidity in a greenhouse 10–120 min in
advance. Jung et al. [10] conducted a comparative analysis of RNN-LSTM-based models
and NARX models and obtained satisfactory forecasts for temperature and CO2 concentra-
tion. However, the models did not perform as well in predicting relative humidity in the
greenhouse, particularly under unusual outdoor weather conditions such as heavy rainfall
and storms. Ullah et al. [11] attempted to predict three greenhouse environmental factors:
temperature, CO2 concentration, and relative humidity. To improve the prediction accuracy,
they proposed an ANN-based model using a refined Kalman filter and reported high
accuracy even with noisy sensor readings in the greenhouse. Cai et al. [12] utilized a light
gradient boosting machine learning (LightGBM) model. They reported that LightGBM was
applicable not only to the prediction of the greenhouse environment but also to real-time
predictive control applications. Jung et al. [13] used an LSTM model to predict two crucial
factors related to moisture in greenhouses: relative humidity and evapotranspiration. Their
study validated the feasibility of applying data-driven deep learning models and demon-
strated that the model was able to predict greenhouse conditions in real-world applications,
assuming a consistent and extensive collection of sufficient environmental data.

Overall, the above-mentioned studies have shown that incorporating the greenhouse
actuator control history with indoor and outdoor environmental data tends to achieve
enhanced prediction performance. Various approaches ranging from machine learning
models to neural network-based deep learning models have been investigated, and most of
them have demonstrated satisfactory performance in the context of the given experiment.
However, to the best of our knowledge, there are no reports using transformer-based models
for time-series prediction in greenhouse environments, despite their superior performance
over conventional deep learning models in many applications across various domains.

In recent years, the transformer has demonstrated exceptional performance in many
fields, including natural language processing [14], speech recognition [15], and computer
vision [16]. Consequently, many transformer-based models have been proposed, and
the performance of these models has been continuously enhanced [17,18]. Research on
transformer-based models is also gaining popularity in the field of time-series forecast-
ing [19]. Along with this trend, the comparative advantage of transformer-based models
over non-transformer-based models has become a primary focus of investigation [20–22].
Nonetheless, transformer-based models have not yet been explored to address time-series
forecasting in a greenhouse environment.

In addition, recent research indicated that the SegRNN model, an enhanced version
of the conventional RNN model for time-series prediction, has achieved remarkable per-
formance. The conventional RNN often suffers from performance degradation due to
excessively long look-back windows and forecast horizons. The SegRNN model coun-
ters this by integrating segment-wise iterations and parallel multi-step forecasting, which
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greatly reduces the number of RNN iterations required. These changes have led to sig-
nificant improvements in both prediction accuracy and inference speed. However, just
like transformer-based models, the SegRNN model has not yet been tested for time-series
prediction in greenhouse environments.

Therefore, the objective of this study was to evaluate the predictive performance
of temperature, relative humidity (RH), and CO2 concentration in a greenhouse after
1 and 3 h, using a transformer-based model (Autoformer) [23], variants of two RNN
models (LSTM [24] and SegRNN [25]), and a simple linear model (DLinear) [21]. The
performance of these four models was compared to assess whether the transformer-based
model (Autoformer) and RNN-based model (SegRNN) are as effective as the linear-based
model in predicting greenhouse environments. The models were trained and tested using
inputs from greenhouse climate conditions and the status of the greenhouse actuators,
collected over the previous three days. Prediction performance was evaluated with four
metrics: the mean absolute error (MAE), mean squared error (MSE), root-mean-squared
error (RMSE), and coefficient of determination (R2).

2. Materials and Methods
2.1. Data Acquisition and Preprocessing

The dataset for this study was obtained from a Venlo-type tomato greenhouse operated
by the Korea Institute of Science and Technology (KIST) in Gangneung, Gangwon-do,
Republic of Korea, with coordinates 37.79868 N, 128.85617 E (Figure 1). An internal sensor
module (SH-VT260, Soha Tech, Seoul, Republic of Korea) for measuring temperature,
humidity, and CO2 inside the greenhouse was installed in height-adjustable positions
according to the height of the tomato plants. In addition, an external weather station
(Vantage Pro2, Davis Instruments, Hayward, CA, USA) was installed 2 m above the
roof of the greenhouse. From 22 September 2020 to 29 June 2021, data were collected
on an hourly basis from an internal sensor module as well as from an external weather
station, and included the status of various greenhouse actuators. This resulted in a total of
6744 records being included in the dataset.
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Figure 1. External view of the Venlo-type experimental greenhouse located at KIST, Gangneung,
Republic of Korea.

For model training, a set of 13 sensor and actuator values was used (Table 1): four
measurements from an external weather station (temperature, relative humidity, wind direc-
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tion, and wind speed), three measurements from an internal sensor module (temperature,
relative humidity, and CO2 concentration), and the statuses of six actuators (circulating fan,
fogging valve, CO2 injection valve, window opening ratio, shading curtain opening ratio,
and heat retention curtain opening ratio). The range of each value is shown in Table 2.

Table 1. Data description for model training. Thirteen features were obtained, comprising four
external climate data samples, three internal climate data samples, and six actuator data samples.
Each feature was collected every hour.

Input Variables (Unit) Description

Environmental values
Outside temperature (◦C) Temperature acquired from an external weather station
Outside relative humidity (%) Relative humidity acquired from an external weather station
Outside wind direction (◦) Wind direction acquired from an external weather station
Outside wind velocity (m·s−1) Wind speed acquired from an external weather station
Temperature (◦C) Air temperature acquired from an internal sensor module
Relative humidity (%) Relative humidity acquired from an internal sensor module
CO2 concentration (ppm) Carbon dioxide concentration acquired from an internal sensor module

Actuator values
Fan (on/off) Circulating fan status
Fogging (on/off) Fogging valve status
CO2 injection (on/off) CO2 injection valve status
Window openness (%) Lee-side window opening ratio
Shade curtain (%) Shading curtain opening ratio
Heat retention curtain (%) Heat retention curtain opening ratio

Table 2. Range of environmental values and actuator values.

Input Variables (Unit) Range

Environmental values
Outside temperature (◦C) −16.3–29.9
Outside relative humidity (%) 1–100
Outside wind direction (◦) 0–355
Outside wind velocity (m·s−1) 0–0.5
Temperature (◦C) 8.4–36.9
Relative humidity (%) 27.3–94.1
CO2 concentration (ppm) 359–582

Actuator values
Fan (on/off) 0 or 1
Fogging (on/off) 0 or 1
CO2 injection (on/off) 0 or 1
Window openness (%) 0–12.5
Shade curtain (%) 0–100
Heat retention curtain (%) 0–100

Collected data were preprocessed to handle missing values and outliers. In the
raw dataset, missing values accounted for 0.38% of the internal environmental variables
and 0.69% of the external environmental variables and actuators. Missing values were
interpolated from the previous and subsequent observations, under the assumption that
there were no substantial changes in the values within an hour. Outliers were identified as
values 1.5 times higher or lower than the interquartile range of the 25th and 75th percentiles
of the raw data distribution and were then removed. After preprocessing, the dataset was
divided into train, validation, and test sets in a ratio of 7:1:2, respectively.



Agronomy 2024, 14, 417 5 of 15

2.2. Transformer-Based Model: Autoformer

Over the past few years, transformers have demonstrated outstanding performance
in a wide range of applications, such as natural language processing (NLP) and computer
vision (CV) [14–16]. In NLP, the GPT and BERT models are representative transformer-
based models that have received considerable attention in recent years [17,26]. In CV,
transformer-based models have been increasingly applied and shown to outperform con-
ventional convolutional neural networks (CNNs) in classification, detection, and segmenta-
tion tasks [27–29].

Researchers have recently applied transformers to time-series forecasting. Unlike
RNNs, which rely on recurrent mechanisms, or CNNs, which use convolutions, the trans-
former is based purely on an attention mechanism. This mechanism allows it to capture
long-range dependencies more effectively than RNN-based models, and thus provides an
advantage in predicting time series [30]. However, the transformer’s self-attention makes it
difficult to efficiently handle long sequences of input and output, which is a drawback for
time-series prediction.

To address these issues, Autoformer was proposed [23]. Designed to improve pre-
diction performance, Autoformer incorporates features specific to time-series data. It
discriminates between seasonals and trends (series decomposition) before feeding the
time-series data to the decoder (Figure 2a), allowing in-depth learning of complex temporal
patterns during training. In addition, Autoformer uses an auto-correlation mechanism to
overcome the inefficiencies of the self-attention in existing transformers (Figure 2b). As a
result, Autoformer has demonstrated better prediction performance compared to current
state-of-the-art (SOTA) models [23]. In particular, for weather forecasting such as outdoor
temperature and humidity, which show a similar pattern to greenhouse time-series data,
Autoformer outperformed the previous SOTA model, LSTM, by 21% in terms of MSE.
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2.3. RNN-Based Model: (1) Long Short-Term Memory (LSTM)

RNN-based models have been widely used in time-series forecasting, mainly due
to their ability to incorporate sequential data flows in making predictions [31–35]. In
particular, LSTM is designed to solve the vanishing and exploding gradient problems
of conventional RNNs, which is advantageous for addressing long-term memory loss.
Accordingly, numerous studies have demonstrated the effectiveness of LSTM for time-
series prediction [10,13,24,36–43]. LSTM consists of a forget gate (Figure 3a), an input
gate (Figure 3b), and a sigmoid output gate (Figure 3c). Hochreiter and Schmidhuber [24]
provide a detailed description of their computations. In this study, LSTM was used as a
baseline, along with DLinear, to evaluate the performance of Autoformer and SegRNN.



Agronomy 2024, 14, 417 6 of 15

Agronomy 2024, 14, x FOR PEER REVIEW  6  of  16 
 

 

auto-correlation  mechanism  to  overcome  the  inefficiencies  of  the  self-attention  (green  blocks) 

(adapted from [23]). 

2.3. RNN-Based Model: (1) Long Short-Term Memory (LSTM) 

RNN-based models have been widely used in time-series forecasting, mainly due to 

their ability to incorporate sequential data flows in making predictions [31–35]. In partic-

ular, LSTM is designed to solve the vanishing and exploding gradient problems of con-

ventional RNNs, which is advantageous for addressing long-term memory loss. Accord-

ingly, numerous studies have demonstrated the effectiveness of LSTM for time-series pre-

diction [10,13,24,36–43]. LSTM consists of a forget gate (Figure 3a), an input gate (Figure 

3b), and a sigmoid output gate (Figure 3c). Hochreiter and Schmidhuber [24] provide a 

detailed description of their computations. In this study, LSTM was used as a baseline, 

along with DLinear, to evaluate the performance of Autoformer and SegRNN. 

 

Figure 3. LSTM architecture: (a) forget gate (blue block); (b) input gate (red block); (c) sigmoid out-

put gate (green block) (adapted from [44]). 

2.4. RNN-Based Model: (2) Segment RNN (SegRNN) 

Despite their widespread use, RNN-based models have fallen behind transformer-

based models in terms of their prediction performance for time-series data. However, re-

cent research has revealed that SegRNN, an improved version of the conventional RNN, 

achieves remarkable performance in time-series prediction [25]. Conventional RNNs typ-

ically  face performance  issues due  to excessively  long  look-back windows and  forecast 

horizons. SegRNN addresses this by reducing the number of iterations through segment-

wise  iteration  (Figure 4a) and parallel multistep  forecasting  (Figure 4b), which can en-

hance the prediction performance for time series. 

Figure 3. LSTM architecture: (a) forget gate (blue block); (b) input gate (red block); (c) sigmoid output
gate (green block) (adapted from [44]).

2.4. RNN-Based Model: (2) Segment RNN (SegRNN)

Despite their widespread use, RNN-based models have fallen behind transformer-
based models in terms of their prediction performance for time-series data. However,
recent research has revealed that SegRNN, an improved version of the conventional RNN,
achieves remarkable performance in time-series prediction [25]. Conventional RNNs
typically face performance issues due to excessively long look-back windows and forecast
horizons. SegRNN addresses this by reducing the number of iterations through segment-
wise iteration (Figure 4a) and parallel multistep forecasting (Figure 4b), which can enhance
the prediction performance for time series.
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2.5. Linear-Based Model: DLinear

DLinear is proposed to preserve the fundamental properties of time-series data while
avoiding the complexity associated with the transformer. Similar to Autoformer, DLinear
uses a time-series decomposition approach, and its structure is straightforward: (1) it splits
the input time series into trend and remainder components (Figure 5a), and (2) it applies
a single-layer linear network (Figure 5b). The formula for this procedure is outlined in
Equations (1)–(3).
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Internally, DLinear operates as a linear model where the weights corresponding to
the seasonality and trend of the time series are multiplied by its decomposition inputs
(Equations (2) and (3)). This approach allows an intuitive interpretation by analyzing the
weights. In addition, the single-layer linear network reduces computational time, memory
usage, and the number of parameters compared to transformer-based models, and thus
efficiently performs without the need for hyperparameter tuning [21]. Recent studies
have suggested that this approach can predict time series better than transformer-based
models [45,46].

X̂ = Hs + Ht (1)

Hs = WsXs ∈ RT×C (remainder component) (2)

Ht = WtXt ∈ RT×C (trend component) (3)

where X̂ is the prediction values, Ws ∈ RT×L and Wt ∈ RT×L are two linear layers, T is the
future timesteps, and L is the history timesteps, as shown in Figure 3.

2.6. Impliementation Details and Model Evaluation

The models were trained using the Adam optimizer with an initial learning rate of
5 × 10−3. Model training was performed with 100 epochs and 16 batch sizes. The default
value of the Gaussian Error Linear Unit (GELU) was set to the activation function.

Model performance was evaluated using four metrics, MAE (mean absolute error),
MSE (mean squared error), RMSE (root-mean-squared error), and R2 (R-squared coefficient
of determination), as shown in Equations (4)–(7):

MAE =
∑n

i=1|yi − ŷi|
n

(4)

MSE =
1
n ∑n

i=1(yi − ŷi)
2 (5)

RMSE =

√
1

n ∑n
i=1(yi − ŷi)

2 (6)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (7)

where n is the number of values, yi are the observed values, ŷi are the predicted values,
and yi is the mean value of the observed outputs.

An overview of the experiments conducted in this study is presented in Figure 6.
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Figure 6. Schematic representation of this study. To predict temperature, relative humidity, and
CO2 concentrations inside the greenhouse after 1 and 3 h, seven environmental parameters and
six actuator data samples were used. The Autoformer, DLinear, LSTM, and SegRNN models were
trained and tested.

3. Results

Four models (Autoformer, DLinear, LSTM, and SegRNN) were compared to evaluate
prediction performance for greenhouse conditions using three days of time-series data as
input. Overall, a simple linear model, DLinear, consistently outperformed the others in
most of the metrics for the prediction after 1 h and 3 h. The RNN-based model, SegRNN,
showed an almost similar, but slightly lower, performance than DLinear.

Table 3 shows the predictions of the temperature, RH, and CO2 concentration inside the
greenhouse after 1 h. The R2 values of DLinear were considerably high with values of 0.938,
0.857, and 0.783 for temperature, RH, and CO2, respectively. SegRNN also showed a similar
performance, but slightly lower compared to DLinear. In terms of CO2 concentration,
SegRNN had the highest R2 value of 0.875, which was 11.7% better than that of DLinear
and 203% better than that of LSTM.

Table 3. A comparison of the 1 h prediction performance of temperature, relative humidity, and
CO2 concentration using the Autoformer, DLinear, LSTM, and SegRNN. The best results are shown
in bold.

Autoformer DLinear LSTM SegRNN

Temperature RH CO2 Temperature RH CO2 Temperature RH CO2 Temperature RH CO2

MAE 0.449 0.524 0.510 0.189 0.273 0.191 0.469 0.603 0.610 0.192 0.253 0.231
MSE 0.353 0.466 0.452 0.085 0.183 0.092 0.357 0.622 0.712 0.089 0.201 0.137

RMSE 0.594 0.683 0.672 0.293 0.427 0.304 0.597 0.776 0.844 0.299 0.449 0.371
R2 0.744 0.636 0.590 0.938 0.857 0.783 0.645 0.404 0.289 0.935 0.843 0.875

In contrast, both the transformer-based model, Autoformer, and another RNN-based
model, LSTM, showed poor performance. The R2 values for Autoformer were 0.744, 0.636,
and 0.590 for temperature, RH, and CO2, respectively. For LSTM, these values were 0.645,
0.404, and 0.289, respectively. In each case, these values were considerably lower than those
achieved by DLinear and SegRNN.
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Table 4 shows the predictions of the temperature, RH, and CO2 concentration inside
the greenhouse after 3 h. Again, the R2 values of DLinear were relatively high with
values of 0.833, 0.680, and 0.580 for temperature, RH, and CO2, respectively. SegRNN also
showed a similar performance, but slightly lower compared to DLinear. In terms of CO2
concentration, SegRNN had the highest R2 value of 0.711, which was 22% better than that
of DLinear and 299% better than that of LSTM.

Table 4. A comparison of the 3 h prediction performance of temperature, relative humidity, and
CO2 concentration using the Autoformer, DLinear, LSTM, and SegRNN. The best results are shown
in bold.

Autoformer DLinear LSTM SegRNN

Temperature RH CO2 Temperature RH CO2 Temperature RH CO2 Temperature RH CO2

MAE 0.608 0.695 0.566 0.312 0.458 0.279 0.580 0.684 0.671 0.343 0.477 0.354
MSE 0.614 0.754 0.562 0.229 0.410 0.178 0.557 0.755 0.823 0.298 0.477 0.305

RMSE 0.783 0.868 0.745 0.479 0.640 0.422 0.746 0.869 0.907 0.545 0.690 0.552
R2 0.554 0.411 0.488 0.833 0.680 0.580 0.447 0.253 0.178 0.786 0.628 0.711

In contrast, both the transformer-based model, Autoformer, and another RNN-based
model, LSTM, showed worse performance. The R2 values for Autoformer were 0.554, 0.411,
and 0.488 for temperature, RH, and CO2, respectively. For LSTM, these values were 0.447,
0.253, and 0.178, respectively. In each case, these values were considerably lower than those
achieved by DLinear and SegRNN.

This strong performance of DLinear and SegRNN supports their effectiveness in pro-
cessing complex greenhouse time-series data and illustrates their suitability for predicting
greenhouse conditions. However, there was a large decrease in the accuracy of both models
for the 3 h predictions compared to 1 h predictions. The largest decrease in performance, as
indicated by the R2 values, was observed for the DLinear CO2 prediction, where the 3 h
prediction decreased by 26% compared to the 1 h. Despite an 18% decrease, from 0.875 to
0.711 in R2 values, SegRNN’s CO2 prediction maintained the highest performance of all
models for both 1 h and 3 h.

Figures 7 and 8 show a detailed comparison of actual and predicted values by Auto-
former, DLinear, LSTM, and SegRNN. A visual analysis of these plots suggests that DLinear
and SegRNN generally displayed better prediction performance compared to the other
models. For temperature, both DLinear and SegRNN showed reasonable prediction. For
RH, LSTM showed a prediction curve that was considerably different from the other three
models and had the worst performance of all. In terms of CO2 concentration, SegRNN
appeared to display the best performance, closely matching the actual values.
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4. Discussion

This study evaluates the performance of four models—Autoformer, DLinear, LSTM,
and SegRNN—in predicting time-series data for greenhouse environments. Although
transformer-based models are known to perform very well in various domains, our results
indicate that a simpler model, DLinear, and an RNN-based model, SegRNN, perform
better in time-series prediction for greenhouses, compared to LSTM and Autoformer. This
finding is in line with other recent studies that have suggested that transformer-based
models may not be as effective in capturing the sequential characteristics of time-series
data [21,44]. Indeed, DLinear has demonstrated strong predictive performance, especially
when the time-series data have a clear trend and periodicity [20]. Moreover, DLinear’s
capability to capture short- and long-range temporal relationships in time-series data,
combined with its lower computational costs due to reduced memory and parameter
requirements compared to transformer-based models, could potentially make it a viable
baseline model for greenhouse environment prediction. In addition, SegRNN, which is
designed to overcome the limitations of conventional RNNs for time-series prediction,
demonstrated superior performance to LSTM, which is known for its robust performance
in numerous studies. Since only very few studies have evaluated the effectiveness of
SegRNNs in predicting greenhouse environmental time series, the result of this study is
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expected to have important implications in this field. Nevertheless, further studies are
needed to validate these findings.

The results of this study do not provide a definitive conclusion that transformer-based
models and RNN-based models, LSTM in particular, are inferior to linear-based models
in predicting time series for greenhouse environments. In general, transformer-based
models require extensive data for training [20]. However, the dataset used in this study
was collected from only a single growing season. With a more comprehensive set of
data collected over multiple growing seasons, the transformer-based model may perform
better. The observed poor predictive performance of the transformer-based model in this
study is likely due to incorrect trend prediction and over-fitting to sudden changes in
the training data, which may have led to the performance degradation [47]. Therefore,
there is potential to improve the performance of transformer-based models with larger and
more diverse greenhouse time-series datasets. In support of this, a recent study showed
that an improved variant of the transformer model outperformed DLinear in time-series
prediction on larger datasets [30]. Research is still underway to improve the prediction of
time series by developing a specialized structure of transformer variants that are focused
on application scenarios and data types.

The results of this study are similar to or slightly worse than those of previous studies
regarding the prediction of changes in a greenhouse environment. This may be due to
the comparatively shorter data collection period in this study compared to those of other
studies [9]. Nevertheless, our results with DLinear and SegRNN models were satisfactory in
predicting temperature and RH changes after 1 and 3 h. SegRNN was particularly effective
in predicting CO2 concentrations. CO2 concentrations in greenhouses are generally difficult
to predict as their concentrations fluctuate rapidly and are also influenced by the complex
interactions of various environmental factors within the greenhouse [7]. Factors such as
photosynthetic activity, ventilation, and external weather conditions can all affect CO2
concentration, which makes them more challenging to predict than other environmental
variables. Indeed, during the experimental greenhouse cultivation in this study, CO2 control
had to be manually adjusted for a period of time due to external market factors. Temporary
CO2 supply shortages and sudden price increases had occasionally led to restrictions on
its use in the real world. Such issues pose a significant challenge to predictive models and
suggest the need for a more sophisticated approach. Despite these conditions, SegRNN
performed relatively well at predicting CO2 concentrations. Future research could focus on
making these prediction models more robust to the factors mentioned above. This could be
achieved by including additional external variables that have a direct or indirect impact
on CO2 consumption. The investigation of advanced machine learning approaches for
dealing with high-frequency data fluctuations in time series could also possibly improve
the accuracy of predicting CO2 concentrations in greenhouse environments [48].

The implementation of time-series prediction models in greenhouse management can
potentially provide significant environmental and economic benefits [49]. First, integrating
these models with real-time control data allows for dynamic greenhouse management that
enables a rapid response to changing environmental conditions, thereby improving crop
yields. More accurate predictions of environmental conditions also allow for the more
efficient use of resources such as water and energy, thereby reducing waste and minimizing
environmental impact. Economically, such an approach can help reduce greenhouse
operating costs and increase profitability.

Finally, the applicability of our results to other types of greenhouses remains uncertain
because this research focused on a Venlo-type greenhouse. Therefore, future studies need to
include environmental datasets acquired from different types of greenhouses. Expanding
the dataset could potentially help develop more accurate models.

5. Conclusions

This study evaluated the prediction performance of temperature, relative humidity
(RH), and CO2 concentration in a greenhouse environment using a transformer-based
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model (Autoformer), variants of two RNN models (LSTM and SegRNN), and a simple linear
model (DLinear). Overall, DLinear and SegRNN consistently outperformed Autoformer
and LSTM. Both DLinear and SegRNN performed well in general but were not as strong in
predicting CO2 concentration. SegRNN outperformed DLinear in CO2 predictions while
showing similar performance in temperature and RH prediction. The results of this study
do not provide a definitive conclusion that transformer-based models, such as Autoformer,
are inferior to linear-based models like DLinear or certain RNN-based models like SegRNN
in predicting time series for greenhouse environments.
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