
Citation: Hacinas, E.A.S.; Querol, L.S.;

Santos, K.L.T.; Matira, E.B.; Castillo,

R.C.; Arcelo, M.; Amalin, D.; Rustia,

D.J.A. Rapid Automatic Cacao Pod

Borer Detection Using Edge

Computing on Low-End Mobile

Devices. Agronomy 2024, 14, 502.

https://doi.org/10.3390/

agronomy14030502

Academic Editor: Luca Ruiu

Received: 30 January 2024

Revised: 19 February 2024

Accepted: 27 February 2024

Published: 29 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

agronomy

Article

Rapid Automatic Cacao Pod Borer Detection Using Edge
Computing on Low-End Mobile Devices
Eros Allan Somo Hacinas 1, Lorenzo Sangco Querol 1, Kris Lord T. Santos 2 , Evian Bless Matira 2,
Rhodina C. Castillo 3 , Mercedes Arcelo 4, Divina Amalin 2 and Dan Jeric Arcega Rustia 5,*

1 Department of Computer Technology, De La Salle University, Manila 0922, Philippines;
eros_hacinas@dlsu.edu.ph (E.A.S.H.); renzo_querol@dlsu.edu.ph (L.S.Q.)

2 Department of Biology, De La Salle University, Manila 0922, Philippines; kris.santos@dlsu.edu.ph (K.L.T.S.);
matiraevianbless@gmail.com (E.B.M.); divina.amalin@dlsu.edu.ph (D.A.)

3 College of Agriculture, Sultan Kudarat State University, Tacurong 9800, Philippines;
rhodinacastillo@sksu.edu.ph

4 Bureau of Plant Industry—Davao, Davao City 1004, Philippines; mercy_arcelo@yahoo.com
5 Wageningen Plant Research, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
* Correspondence: dan.rustia@wur.nl

Abstract: The cacao pod borer (CPB) (Conopomorpha cramerella) is an invasive insect that causes
significant economic loss for cacao farmers. One of the most efficient ways to reduce CPB damage
is to continuously monitor its presence. Currently, most automated technologies for continuous
insect pest monitoring rely on an internet connection and a power source. However, most cacao
plantations are remotely located and have limited access to internet and power sources; therefore,
a simpler and readily available tool is necessary to enable continuous monitoring. This research
proposes a mobile application developed for rapid and on-site counting of CPBs on sticky paper
traps. A CPB counting algorithm was developed and optimized to enable on-device computations
despite memory constraints and limited capacity of low-end mobile phones. The proposed algorithm
has an F1-score of 0.88, with no significant difference from expert counts (R2 = 0.97, p-value = 0.55,
α = 0.05). The mobile application can be used to provide the required information for pest control
methods on-demand and is also accessible for low-income farms. This is one of the first few works
on enabling on-device processing for insect pest monitoring.

Keywords: mobile computing; mobile application; insect pest; sticky trap; deep learning

1. Introduction

The cacao pod borer (CPB), Conopomorpha cramerella (Snellen) (Lepidoptera: Gracil-
lariidae), is a major insect pest of cacao (Theobroma cacao L.) in the Philippines and other
Southeast Asian countries [1,2]. Females lay eggs on the surface of pods. Newly hatched
larvae then bore through the pod to feed on the pulp and the placenta surrounding the
beans. Feeding is characterized by tunnels and scars on tissues, which result in premature
fruit ripening and clumping of beans making them difficult or even impossible to extract [3].
Economic thresholds have been established based on the percentage of pod infestations
that were related to yield loss [1]. Almost no loss was observed with infestations up to 60%,
but losses increase rapidly with higher infestation. Monitoring adult populations using
pheromone traps may also provide some basis for setting thresholds; however, data must
be based on entire cropping periods. Previous studies [1,2] indicated that application of
insecticides during the low crop period kept populations of CPB below economic damage
levels during the subsequent peak season. On the other hand, spraying during peak crop
season had little effect on infestations. This suggests that the best return from pod spraying
is likely to come from applications during the early stage of a rising crop, soon after the
low-crop period. In the Philippines, the low-crop period is around May–July and peak

Agronomy 2024, 14, 502. https://doi.org/10.3390/agronomy14030502 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14030502
https://doi.org/10.3390/agronomy14030502
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-6262-8862
https://orcid.org/0000-0002-5855-8109
https://doi.org/10.3390/agronomy14030502
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14030502?type=check_update&version=1


Agronomy 2024, 14, 502 2 of 16

season starts in August. Based on our previous data on seasonal abundance of CPB in the
Philippines [3], the average male CPB trap catch during the early stages of a rising crop
period was around 30, which was the basis of the density thresholds used in this study.
At low density (<10 CPB), no control is needed. At medium density (10–30 CPB) and high
density (>30 CPB), appropriate control measures need to be employed before the peak
population density.

In severe infestations, pods become completely unusable and yield losses can range
from 30 to 50% [4]. Due to the detrimental impact of CPB on cacao production, farmers
resort to various management strategies. Its management has relied heavily on the use of
synthetic insecticides [5]; however, concerns of its adverse effects to human health and the
environment directed efforts to develop alternative methods as part of an integrated pest
management (IPM) system [6]. An alternative solution is the use of sex pheromones to
trap adult male CPBs. The sex pheromone components of CPB were identified in 1986 [7]
and have been successfully used in monitoring the population of CPB in Southeast Asian
countries, including the Philippines [1]. Monitoring, one of the pillars of IPM, ensures
a guided decision-making process [8]. Currently, monitoring by trapping involves the
use of delta traps with removable sticky paper traps and sex pheromone-impregnated
lures [9]. After the trapping period, sticky paper traps are collected to manually count the
trapped CPBs. This may lead to inaccuracies since manual counting is often error-prone.
More errors arise when a large number of insects are collected or when the farm manager
lacks the technical expertise to recognize and differentiate CPBs from other insect species.
An automated method that can accurately identify and count CPB in a short amount of
time is therefore necessary for routine pest monitoring.

There are two digital approaches in monitoring insect pests: automated and semi-
automated. A fully automated approach entails the use of wireless sensor nodes, which are
equipped with cameras that capture sticky paper trap images [10]. The sticky paper trap
images are analyzed locally or through cloud computing. This allows close to real-time
monitoring of insect pest presence. However, its main bottleneck is its cost, which makes it
difficult for low to middle income farmers to afford. On the other hand, semi-automated
insect pest monitoring systems collect sticky paper trap images using mobile phones in
controlled or uncontrolled environments [11]. The main advantage of this method is
reduced equipment cost, which makes it more viable for use of most farmers. But currently,
there is still limited work on developing mobile applications for insect pest counting.

Most mobile applications related to insect pest detection perform computations on the
cloud, which requires a user to upload an image to a cloud server to receive image analysis
results. Unfortunately, this approach necessitates a user’s mobile phone to have an internet
connection, which is not always feasible, especially for remote farming areas such as cacao
plantations. Ref. [12] developed a mobile application that can detect insect pests from
close up images of insects on leaves. They trained a Faster-RCNN object detection model
then processed images in a cloud server with GPU support. Similarly, ref. [13] detected
scale pests by employing multiple object detector models then used a cloud platform for
computing. Ref. [14] tested model-centric, data-centric, and deployment-centric strategies
to train object detector models for insect pest detection in viticulture. They presented
optimization approaches so that each model will work on different mobile device models.
The above-mentioned works reveal that mobile computing is a niche topic and several
approaches have been taken to develop a convenient and reliable mobile application for
insect pest detection. However, it also shows that more work must be carried out to achieve
better performance in terms of speed and accuracy.

This work presents novel approaches for enabling mobile computing on low-end
mobile devices. This work has three objectives: (1) Develop an insect pest detection
algorithm that can locally run on low-end mobile devices without cloud server support;
(2) Propose novel approaches for optimizing an edge-based insect pest detection algorithm;
and (3) Design and develop a mobile application that can rapidly count cacao pod borers on



Agronomy 2024, 14, 502 3 of 16

sticky paper traps. This work demonstrates the potential of mobile computing in integrated
pest management, especially for managing remote farming environments.

2. Materials and Methods
2.1. Imaging Devices

Three mobile phones were used for image collection, as shown in Table 1. The three
mobile phones were selected since they were found to be commonly owned by Filipino
phone users due to their affordability and usability [15]. Out of the three, Realme C30
was used to extensively test the developed mobile application. The testing was focused
on two mobile phone specifications that affect detection performance and application
compatibility: camera resolution and RAM size; Realme C30 has the poorest of these
two mobile phone specifications.

Table 1. Mobile phones used for capturing sticky paper trap images.

Device Camera Resolution (px) CPU RAM USD PHP

Cherry Mobile Flare S8 Deluxe (Cherry Mobile,
Manila, Philippines) 3456 × 4608 Octa-Core A55 @1.6 GHz 4 GB 90 5000

Huawei Nova Y7 (Huawei, Shenzhen, China) 4000 × 3000 Octa-Core A53 @2.2 GHz 4 GB 155 8500
Realme C3 (Realme, Guangdong, China) 3264 × 2448 Octa-Core A75 @1.8 GHz 2 GB 90 5000

2.2. Dataset Collection

The sticky paper traps were collected from two different sites in Mindanao, Philippines:
Davao City, Calinan and Cotabato, Makilala, as depicted in Figure 1. Figure 1b,c shows
a sticky paper trap housed inside the delta trap. These delta traps were hung 1 m above
cacao trees (Figure 1a,d) to attract CPBs using a sex pheromone-impregnated lure [1].
The pheromone components are produced by female CPBs; hence, only male CPBs will
be caught by the traps. The sticky paper traps inside the delta traps were collected and
replaced monthly from the field by farm managers. The traps were then assessed by experts
to observe the level of CPB infestation over time and to evaluate the effectiveness of the
lure. Two sizes of sticky paper traps were used: a short grid trap with 17 cm width and
height, and a longer gridless trap with 18 cm width and 28.5 cm height. These traps had
varying sizes and presence of grids since the trap design was also optimized during the
collection. A plastic cover was put on top of the sticky side of each sticky paper trap; this
prevents the sticking of papers to one another. Recommended working distances were
determined by attaching the mobile phones to a phone stand. It was found that the optimal
height for capturing complete images of a short sticky paper trap was 181 mm, and up to
231 mm for longer traps. Meanwhile, phone to stand distance of the phone stand arm was
optimal at 150 mm for both sizes of paper traps, as illustrated in Figure 2. The working
distances were determined for recommending an image acquisition setup for the users of
the presented mobile application. The sticky paper trap images were taken under varying
indoor and outdoor lighting conditions.

All datasets presented in Table 2 were manually annotated by experts using Roboflow
image annotation platform [16]. Data collected from all sites between 2017 and 2020 were
used for training and validation, while the more recent ones from 2022 to 2023 were used
for testing. This temporal split between datasets ensures that the model is able to detect
unseen data and simulate their performance during deployment. Furthermore, the CPB
dataset was split based on density: low, medium, and high, which were based on economic
thresholds determined from previous research. The ratios of the low, medium, and high
CPBs on the training and validation have approximately the same proportion to ensure
a balanced dataset. Images from training and validation were captured using all phones
from Table 1, while the testing dataset is composed of images from Realme C30.



Agronomy 2024, 14, 502 4 of 16

Table 2. Dataset statistical summary, where n is the number of CPBs in the sticky paper trap.

Dataset Collection Date
Number of Images Based on CPB Density

Low (n < 10) Medium (10 ≤ n < 30) High (n ≥ 30)

Training 2017–2021 226 107 56
Validation 2017–2021 60 25 14

Testing 2022–2023 56 25 31

(a) Cacao tree (b) Delta trap

(c) Sticky paper trap inside the delta trap (d) Delta trap hung at a cacao tree

Figure 1. Data collection methods in the field showing the cacao tree and delta traps housing both
sticky paper trap and pheromone lure.

(a) Schematic diagram (b) Actual setup
Figure 2. Cont.



Agronomy 2024, 14, 502 5 of 16

(c) Sample image
Figure 2. Sticky paper trap image acquisition setup.

2.3. Mobile CPB Detection Algorithm

An automatic CPB detection algorithm was developed for mobile devices, as shown in
Figure 3. The algorithm was developed using Python 3.7, PyTorch 1.13.0, ultralytics 8.0.0,
OpenCV 4.6.0, and Open Neural Network Exchange (ONNX) Runtime (ORT) 1.15.0.

Figure 3. Automated CPB detection algorithm.

First, downsampling is applied to the original image of 3264 × 2448 px (relative to the
Realme C30) to the nearest resolution divisible by 640 px, resulting in a pre-tiling shape of
3200 × 1920 px. This step is carried out in order to make the original resolution a divisible



Agronomy 2024, 14, 502 6 of 16

size according to the model’s input of 640 × 640 px. Tiling is applied to minimize the
downsampling factor and improve the overall performance to detect small objects [17,18].
This produces 15 tiled images, with a size of 640 × 640 px each. Finally, each tiled image is
padded with 100px on each side, resulting in a final 740× 740 px resolution. This reinforces
the model’s learning ability by having overlapping tiles in which an object might be more
partially visible in one tile than the other; this gives it better context on how each object is
spatially related.

The object detector model used in this work is You Only Look Once version 8
(YOLOv8). YOLOv8 is a one-stage model that performs a single pass on input images [19],
making it lightweight in contrast with two-stage models such as the RCNN family [20,21].
The fundamental components of YOLOv8 include the following: backbone, bottleneck,
and detection head [22]. The backbone is a modified Cross Stage Partial (CSP) Network
Darknet used for extracting high-dimensional features from input images. The bottleneck
receives these features and learns the relation between low-level and high-level features
at various scales through a pyramid feature network (FPN). This is especially useful in
making the model robust to varying object scales due to camera distance [23,24]. The best
representative features of the target object are passed to the YOLO head made of dense and
convolutional layers to predict coordinates and classes.

The raw output of the YOLOv8 model has coordinates relative to the padded input
images (740 × 740 px). Stitching is used to compile all model detections and translate
it relative to the original image resolution. The excess bounding boxes due to tiling are
filtered using non-max suppression (NMS). NMS works by removing bounding boxes that
have an intersection-over-union (IoU), as shown in Equation (1), values above a pre-defined
threshold and keeps only the one with the highest confidence. The pre-defined threshold
was determined through model-centric optimizations discussed in a later section.

IoU =
area(B1 ∩ B2 ∩ . . .Bn)

area(B1 ∪ B2 ∪ . . .Bn)
(1)

2.4. Algorithm Optimization

The optimization pipeline in Figure 4 shows the different variables optimized to
maximize algorithm performance. The description of each optimization step in Figure 4 is
shown in the succeeding sub-sections.

Figure 4. Optimization pipeline.

2.4.1. Data-Centric Optimization

Initially, the model was optimized based on data by controlling the number of training
images using different augmentation operations. Image augmentation is a technique
that improves model invariance and model generalizability by increasing dataset size
based on specific image features [25]. All augmentations that were applied to the original
images were based on geometric features, such as by translating object orientation, to give



Agronomy 2024, 14, 502 7 of 16

the model extra learnable features while preserving the image’s color space. This type
of augmentation is preferred over color-based, as it provides an overall better model
invariance during training [26]. Firstly, the training images were rotated 90°, 180°, and 270°
to change each object’s angular orientation. Secondly, flipping was applied to mirror the
image horizontally, vertically, and both. Applying these geometrical operations generates
two new datasets that were used to see how the lack or presence of these additional features
(rotated and flipped objects) affect model performance, as shown in Table 3. Meanwhile,
the testing dataset was retained and were independent of the augmentations applied on
the training and validation.

Table 3. Augmented dataset statistical summary.

Augmentation Method Training Validation Testing

None 389 99 112
Rotation: 90°, 180°, 270° 1556 396 112

Flip: Horizontal, Vertical, Origin 1556 396 112

2.4.2. Model-Centric Optimization

Model-centric optimization aims to optimize different network structure and model
hyperparameters. First, four YOLOv8 network structure variants based on increasing
learnable parameters were tested: nano (n) (3.2 million), small (s) (11.2 million), medium
(m) (25.9 million), and large (l) (43.7 million). Each variant was tested using different input
resolutions: 640 × 640 px (default pre-trained resolution) and 320 × 320 px. The former
serves as the baseline against which the latter is compared in terms of accuracy and
execution speed in mobile devices; it also aims to test the plausibility of reducing input
image size for better runtime on low-end phones without sacrificing performance.

The trained models were evaluated using an independent dataset and evaluated
through a range of confidence threshold (confthres) values: 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and NMS
threshold (NMSthres) values: 0.2, 0.3, 0.4, 0.5, 0.6. The confthres was used to decide the
minimum value of how confident the model was in its detections to be classified as a true
positive. Meanwhile, NMSthres was used to filter redundant detections due to tiling.

2.4.3. Deployment-Centric Optimization

Major bottlenecks in deploying deep learning models are limited mobile phone mem-
ory and compatibility. Deployment-centric optimization focuses on converting the trained
model to a compatible format for mobile devices, while minimizing performance degra-
dation. In so doing, compression was applied by reducing the floating-point precision of
the model weights; this is accomplished by converting the uncompressed (PyTorch) model
to Open Neural Network Exchange (ONNX) runtime (ORT) format by replacing selected
mathematical operations in the former model to custom ones. This operation also reduces
the memory requirement and power consumption when deployed on mobile phones [27].
An uncompressed PyTorch model served as a point of comparison against two of its
derivatives: retained floating-point 32 precision (fp32) and halving of it to floating-point
16 precision (fp16), with both types of models converted to ONNX format. This method
ensures that there is minimal decrease in performance compared to INT quantization, while
decreasing the computational load [28]. Furthermore, it improves the mobile application’s
compatibility for low-end mobile phones.

2.4.4. Operations-Centric Optimization

Operations-centric optimization aims to boost computation speed by using differ-
ent types of processing operations. Two operations were tested: synchronous and asyn-
chronous. Figure 5 shows which processing operations were applied for each step of the
algorithm. Three steps of the algorithm were processed asynchronously: tiling, padding,
and model inference. Tiling and padding operations were processed asynchronously by pre-



Agronomy 2024, 14, 502 8 of 16

computing the start and end coordinates of each tile. Algorithm 1 shows the pseudo-code
on how the asynchronous processing of tiling and padding was improved for memory-
constrained devices. For example, the initial height (H0) and width (W0) were set to Realme
C30’s raw resolution. Image data between these coordinates were then obtained and passed
on to the next step. Encoding from image data to tensors was kept synchronous to make it
run on low-end phones with limited memory, since it requires allocation of random-access
memory (RAM) proportional to the number and shape of tiles. The pre-computed start and
end coordinates of each tile were re-used for stitching and NMS to translate all detections
relative to the original image resolution. This saves time by avoiding the cost of recomput-
ing these values. Lastly, model inference was also made asynchronous, as each input was
independent from other tiles.

Algorithm 1: Asynchronous preprocessing, detection, and post-processing in the mo-
bile application

Inputs :H0 : original height of the image
W0 : original width of the image
tileSize : size for tiling the image
overlapSize : size of intersection between tiles for each side

Outputs :finalOutputs : final detected objects after NMS
Functions :AsyncProcessTile(originX, originY, padSize) : asynchronously extract tile at

(originX, originY) then add padding
AsyncInferenceModel(tile) : performs asynchronous model inference on tile
StitchDetections(outputs, originX, originY) : stitches detections based on their
origin
PerformNMS(allOutputs) : performs Non-Maximum Suppression on all outputs

H0← 3264; W0← 2448; tileSize← 640; overlapSize← 50;
H← H0− (H0%tileSize); W←W0− (W0%tileSize);
rows← []; cols← [];
for i← 0 to H/tileSize do

rows.append(i× tileSize);

for i← 0 to W/tileSize do
cols.append(i× tileSize);

padSize← 2× overlapSize+ tileSize; tilesPromises← [];
foreach originX in rows do

foreach originY in cols do
tilesPromises.append(AsyncProcessTile(originX, originY, padSize));

tilesArray← tilesPromises when finished executing asynchronously;
outputsPromises← [];
foreach tile in tilesArray do

outputsPromises.append(AsyncInferenceModel(tile));
outputs← outputsPromises when finished executing asynchronously;
allOutputs← [];
for index← 0 to length of outputs do

originX← rows [index/length of cols]; originY← cols [index%length of cols];
stitchedOutput← StitchDetections(outputs [index ], originX, originY);
allOutputs.append(stitchedOutput);

finalOutputs← PerformNMS(allOutputs);

2.5. Algorithm Evaluation

The performance of each trained model was evaluated using four metrics: precision,
recall, F1-score, and MAPE. Precision Equation (2) checks the model’s ability to predict
how many CPBs are correctly detected, compared to the number of detected CPBs in each
image [29]. Meanwhile, recall Equation (3) measures how many actual positives were
correctly identified by the model [29]. Precision and recall are measured from 0 to 1.0,
where values closer to 1.0 indicate better performance.



Agronomy 2024, 14, 502 9 of 16

Precision =
TP

number of detected CPB objects
(2)

Recall =
TP

actual number of CPB images
(3)

where

TP = true positive detections

Figure 5. Mobile application flowchart. Each process marked with a * was performed asynchronously.

F1-score Equation (4) incorporates both precision and recall, forming a single metric
through harmonic mean [30]. This metric penalizes the model if it has high false positives
or false negatives, making it a more robust measure of performance.

F1 score = 2× precision× recall
precision + recall

(4)

Mean absolute percentage error (MAPE) [31] in Equation (5) is the performance loss
due to model compression by evaluating the difference in the number of detected CPBs
between the compressed (16-bit) and uncompressed (32-bit) model.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ Ai − Pi
Ai

∣∣∣∣× 100% (5)

where

Ai = number of predictions from a 32-bit uncompressed model
Pi = number of predictions from a 16-bit compressed model

Both F1-score and MAPE provide a holistic evaluation in obtaining the best uncom-
pressed model’s configuration (dataset-augmentation, model variant, input size, confthres,
and NMSthres) when detecting CPBs and how compression affects it.

Linear regression was used to assess the correlation between the predicted and manual
CPB counts, determining the viability of the algorithm as an alternative counting method.
A two-tailed t-test (α = 0.05) was used to evaluate whether the predicted CPB count
significantly differs from the manual CPB count. These statistical analyses were performed
using Python libraries: SciPy [32] and Pandas [33].



Agronomy 2024, 14, 502 10 of 16

2.6. Mobile Application Development and Usage

The optimized algorithm was deployed in a mobile application. Screenshots of the
mobile application are shown in Figure 6. The algorithm processes images of sticky paper
traps captured by farmers and experts, identifying the number and location of CPBs present
in each image. This information allows users to assess the severity of infestation. Users then
input additional data such as sticky paper ID, site information, and collection date, which
are stored in a database along with the extracted CPB count. Both components operate
on-device, which offers cost savings by eliminating the need for a centralized database
and internet connectivity, which is most especially beneficial in remote areas. Furthermore,
the mobile application aims to reduce the manpower and time required for data processing
by automating these tasks. Rapid access to information about insect severity at specific
sites provides an advantage by enabling prompt responses to CPB severity without special
hardware requirements other than a compatible phone. This can help in reducing potential
crop losses and facilitating decisions based on quantitative data. The mobile application
was developed using TypeScript v5.2.2, React Native v0.72.3, Expo v6.3.7, and SQLite
v3.36.0 to ensure cross-platform compatibility.

The mobile application can be installed on a mobile phone by request. While the
minimum specifications of the mobile phones are shown in Table 1. The steps to use the
application are as follows: first, the user clicks the “camera” button. Second, the phone
is positioned from the sticky paper trap at the recommended distance in Figure 2. Third,
the user clicks the capture button and enters the necessary details related to it (Site, Paper,
Pheromone, and Date). Lastly, Algorithm 1 is performed and the results are saved in the
local database for viewing, as shown in Figure 6.

(a)

(b)

Figure 6. Mobile application user interface for automated CPB counting and database. (a) Sample
mobile application algorithm output, (b) Database output.



Agronomy 2024, 14, 502 11 of 16

3. Results and Discussion
3.1. Algorithm Optimization Results
3.1.1. Data-Centric Optimization

The F1-scores obtained after applying augmentations on 640 × 640 px tiled images
showed improvements in model performance. It was observed that the model trained
with rotation augmentation had consistently better performance (F1-score: 0.81) than when
flipping (F1-score: 0.80) or no-augmentation (F1-score: 0.79) was applied. Similar F1-scores
were measured when 320 × 320 px tiled images were used, in all augmentation cases.
This means that reducing the input image size did not have a detrimental effect on model
performance. Based on the results obtained, the models trained with rotation augmentation
were used for testing in the next optimization steps.

3.1.2. Model-Centric Optimization

Different model hyperparameters including input resolution, network size, confthres,
and NMSthres, were iteratively tested, as shown in Table 4.

Table 4. Best model-centric optimization results.

Model Size Input Size (px) confthres NMSthres F1-Score

Nano 320 × 320 0.2 0.2 0.86
640 × 640 0.3 0.2 0.86

Small 320 × 320 0.2 0.2 0.88
640 × 640 0.2 0.2 0.88

Medium 320 × 320 0.2 0.2 0.88
640 × 640 0.2 0.2 0.87

Large 320 × 320 0.2 0.2 0.88
640 × 640 0.2 0.2 0.89

The trained nano YOLOv8 model showed that increasing the NMSthres and confthres
resulted in worse F1-scores for both input resolutions. Therefore, a value of 0.2 was used
for both thresholds, while using input resolutions of 320 × 320 px and 640 × 640 px had the
same best F1-scores of 0.86. The results showed that most detected objects, using the nano
YOLOv8 model, have low confidence scores. Therefore, the nano YOLOv8 models do not
have enough learnable parameters to capture the more complex relationship of the features
in the dataset. On the other hand, the small YOLOv8 model achieved a better F1-score of
0.88 using the minimum NMSthres and confthres, indicating an improvement in detection
performance due to having more learnable parameters regardless of input size. For medium
models, a higher input size leads to a small decrease in F1-score. The model performance of
the large YOLOv8 model converged at an F1-score of 0.89, indicating that the extra features
provided by rotation were sufficiently captured starting with the small model.

Based on the testing results, it was concluded that the small YOLOv8 model with
320 × 320 px input size contains the optimal amount of learnable parameters, which leads
to faster processing time due to less resource requirement, and was therefore used for
model deployment with confthres of 0.2 and NMSthres of 0.2. It was found that increasing
the model size does not provide much improvement in performance, which converged at an
F1-score of 0.89. Furthermore, the majority of the best F1-scores were obtained at confthres
and NMSthres of 0.2 in all input resolutions. This suggested that most detections have low
confidence scores and bounding boxes with an IoU of at least 0.2 were removed. This
was attributed to tiling and padding due to redundant bounding boxes in the overlapping
regions. Another reason why these two variables do not have much influence on the
model’s performance was due to feature drift, in which the images between the training
and testing dataset vary caused by temporal difference. This can be mitigated by testing
for color-based augmentations and using a more recent dataset for training.



Agronomy 2024, 14, 502 12 of 16

3.1.3. Deployment-Centric Optimization

The results of model conversion for cross-platform deployment are shown in Table 5.
Using an uncompressed fp32 model’s number of predictions as baseline, Table 5 shows
that compression increases model size from 22.5 MB to 44.7 MB at fp32 precision. This was
due to the large metadata embedded in the model to make it cross-platform compatible
for edge devices. Such metadata include the following: graph structure, node connections,
and layer information in the model that ORT uses to dynamically execute and optimize
based on the edge-device on which it is deployed [34]. Furthermore, the metadata were
also used to interact with the execution environment by knowing the device’s memory and
processing power constraints.

Table 5. MAPE-based performance loss due to model compression.

Model Precision Compressed Size MAPE

YOLOv8-s fp32 No 22.5 MB Baseline
YOLOv8-s fp32 Yes 44.7 MB 3.48%
YOLOv8-s fp16 Yes 22.6 MB 3.31%

Both compressed models achieved a low MAPE of less than 5%, indicating that their
predictions closely follow the uncompressed one. Surprisingly, decreasing the precision
to fp16 led to less performance loss due to compression, even if it was a small difference.
This was attributed to multiple variables, such as model robustness, in which it was able
to effectively learn the objects’ features; regularization effect, as precision reduction can
be used as a regularization method in some cases, therefore having better generalizability;
and randomness, in which reduction in precision was trivial. Given these results, the com-
pressed model with reduced precision (fp16) was used since it has a smaller storage size
and closest detection performance relative to the baseline model.

3.1.4. Operations-Centric Optimization

Table 6 shows the results of testing different input sizes and processing operations
using the Realme C30 mobile phone.

Table 6. Algorithm performance metrics as tested on a Realme C30 mobile phone.

Model Input Size (px) Operation Avg. Computation Time

YOLOv8-s 320 × 320 Asynchronous 33.5 s (7.24 × faster)
YOLOv8-s 640 × 640 Asynchronous 113.70 s (2.15 × faster)
YOLOv8-s 320 × 320 Synchronous 158.2 s (1.54 × faster)
YOLOv8-s 640 × 640 Synchronous 243.8 s (baseline)

Using the small YOLOv8 model with 640 × 640 px input size and synchronous
operations as baseline, Table 6 shows that reducing the image input size to 320 × 320 px
alone improves the execution speed to 158.2 s. Meanwhile, solely using asynchronous
operations decreased the execution speed to 113.7 s. Lastly, an execution speed of 33.5 s
was achieved by utilizing both input size downscaling and asynchronous operations. It
was concluded that the use of 320 × 320 px as input size on the small YOLOv8 model both
maximizes the execution speed and detection performance in low-end mobile phones. This
was because the detection performance of 320 × 320 px and 640 × 640 px models did not
differ much while the former provided 1.54 × to 7.24× speed-up on execution. The results
proved that the optimization efforts made it possible to execute the algorithm in a low-end
mobile phone.

3.2. Qualitative Algorithm Evaluation

A sample output from the best configuration of the small YOLOv8 model is shown
in Figure 7. The algorithm was able to detect most CPBs in the sticky paper trap even



Agronomy 2024, 14, 502 13 of 16

if they were composed of both fresh and decayed ones. Furthermore, it was also able to
avoid classifying other insects as a CPB even if they look similar (True Negative). However,
the algorithm missed CPBs that overlap each other, while falsely detected non-CPBs with
similar outlines from those that are. Both false positive and false negative detections
suggested that the model heavily relied on the learned outlines of CPBs. Despite that,
the algorithm still remained robust against these types of errors especially in high density
sticky papers. A low NMSthres also solved the redundant detections due to tiling from our
previous research [35].

Figure 7. Sample optimized algorithm results.

3.3. CPB Count Comparison

Figure 8a shows that the best model has an R2 of 0.97 with the manually annotated
test dataset. It was presented that the algorithm had a strong correlation with sticky paper
traps containing up to 60 CPBs. Meanwhile, it starts to slightly underestimate the CPB
count for sticky paper traps with more than 60 CPBs. This was most likely due to CPBs
that overlap each other. Nevertheless, the two-tailed t-test showed that the model’s count
has no significant difference with the actual count (t-statistic = 0.60, p-value = 0.55, α = 0.05,
N = 112, degrees of freedom = 110). Figure 8b further validated these findings, showing
that the actual count and predicted count had comparable median, variability, and spread.
Finally, it is also more important for the model to detect CPBs from sticky paper traps with
low and medium densities since it was more important for implementing IPM strategies.



Agronomy 2024, 14, 502 14 of 16

(a) (b)
Figure 8. Statistical analysis of actual CPB count vs predicted CPB count. (a) Correlation between
actual CPB count vs. predicted CPB count, (b) Box plot for actual CPB count vs. predicted CPB count.

3.4. Field Use and Cost-Benefit Analysis

Figure 9 illustrates the integration of the mobile application into the overall process of
data collection and insect control.

Figure 9. Field use diagram.

Farm managers and experts can visit various cacao plantations to assess the severity
of CPB infestations. By storing critical information such as CPB counts, sticky paper trap
images, and site data on the device, the application reduces the time required to take
necessary actions against CPBs. This leads to a decrease in the manpower needed for field
scouting and a reduction in human error, which is particularly beneficial for medium to
high-density sticky paper traps where it takes an expert an average of 147 s to manually



Agronomy 2024, 14, 502 15 of 16

count or annotate a trap. Lastly, the mobile application streamlines the consolidation of
these data to the experts, enabling efficient communication even in the absence of on-site
presence. This functionality diminishes the delay traditionally experienced between on-site
diagnosis and subsequent actions.

4. Conclusions

In this work, a mobile application was designed to assist farm managers and experts
in the monitoring and management of CPB infestation in CPB plantations. The proposed
algorithm demonstrated robustness for real-world applications, accurate detection of CPBs,
and showed a high correlation with expert counts in tests using recently collected sticky
papers. Further experiments also indicated minimal degradation in detection performance
when the application was deployed on low-end mobile phones. This application provides
on-demand, automated pest count information, facilitating efficient pest control methods.
The mobile application is accessible for low-income farms and remote locations without
internet access, due to its compatibility with low-end devices and on-device processing
capabilities. In the future, the mobile application shall be made available for other interested
users for implementing advanced IPM programs.

Author Contributions: Conceptualization, D.J.A.R. and D.A.; methodology, E.A.S.H. and D.J.A.R.;
software, E.A.S.H. and L.S.Q.; data curation, K.L.T.S., E.B.M., M.A. and R.C.C.; writing—original draft
preparation, D.J.A.R., E.A.S.H. and K.L.T.S.; writing—review and editing, D.J.A.R.; visualization,
E.A.S.H.; supervision, D.J.A.R.; project administration, D.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Department of Science and Technology (DOST), Philippine
Council for Agriculture, Aquatic, and Natural Resources Research and Development (PCAARRD)
(grant number QMSR-FERD-CACAO-541-0), and through the DOST Balik Scientist Program.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, D.J.A.R., upon reasonable request.

Acknowledgments: The authors would like to thank the staff members of the Philippine Bureau of
Plant Industry for providing the experimental sites.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Amalin, D.M.; Arcelo, M.; Almarinez, B.J.M.; Castillo, R.C.; Legaspi, J.C.; Santos, K.L.T.; Tavera, M.A.A.; Janairo, J.I.B.; Zhang, A.

Field evaluation of the sex pheromone of the cacao pod borer (Conopomorpha cramerella snellen) in the Philippines. Front. Agron.
2023, 5, 1165299. [CrossRef]

2. Shapiro, L.H.; Scheffer, S.J.; Maisin, N.; Lambert, S.; Purung, H.B.; Sulistyowati, E.; Vega, F.E.; Gende, P.; Laup, S.; Rosmana,
A.; et al. Conopomorpha cramerella (Lepidoptera: Gracillariidae) in the malay archipelago: Genetic signature of a bottlenecked
population? Ann. Entomol. Soc. Am. 2008, 101, 930–938. [CrossRef]

3. Conopomorpha Cramerella (Cocoa pod Borer)|CABI Compendium. Available online: https://www.cabidigitallibrary.org/doi/10.1
079/cabicompendium.7017 (accessed on 25 January 2024) . [CrossRef]

4. Teh, C.L.; Pang, J.T.Y.; Ho, C.T. Variation of the response of clonal cocoa to attack by cocoa pod borer Conopomorpha cramerella
(Lepidoptera: gracillariidae) in Sabah. Crop Prot. 2006, 25, 712–717. [CrossRef]

5. Beevor, P.S.; Mumford, J.D.; Shah, S.; Day, R.K.; Hall, D.R. Observations on pheromone-baited mass trapping for control of cocoa
pod borer, Conopomorpha cramerella, in Sabah, East Malaysia. Crop Prot. 1993, 12, 134–140. [CrossRef]

6. Vanhove, W.; Vanhoudt, N.; Bhanu, K.R.M.; Abubeker, S.; Feng, Y.; Yu, M.; Van Damme, P.; Zhang, A. Geometric isomers of
sex pheromone components do not affect attractancy of Conopomorpha cramerella in cocoa plantations. J. Appl. Entomol. 2015,
139, 660–668. [CrossRef]

7. Beevor, P.S.; Cork, A.; Hall, D.R.; Nesbitt, B.F.; Day, R.K.; Mumford, J.D. Components of female sex pheromone of cocoa pod
porer moth, Conopomorpha cramerella. J. Chem. Ecol. 1986, 12, 1–23. [CrossRef] [PubMed]

8. Rossi, V.; Sperandio, G.; Caffi, T.; Simonetto, A.; Gilioli, G. Critical success factors for the adoption of decision tools in IPM.
Agronomy 2019, 9, 710. [CrossRef]

9. Zhang, A.; Kuang, L.F.; Maisin, N.; Karumuru, B.; Hall, D.R.; Virdiana, I.; Lambert, S.; Bin Purung, H.; Wang, S.; Hebbar, P.
Activity evaluation of cocoa pod borer sex pheromone in cacao fields. Environ. Entomol. 2008, 37, 719–724. [CrossRef]

http://doi.org/10.3389/fagro.2023.1165299
http://dx.doi.org/10.1603/0013-8746(2008)101[930:CCLGIT]2.0.CO;2
https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.7017 
https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.7017 
http://dx.doi.org/10.1079/cabicompendium.7017
http://dx.doi.org/10.1016/j.cropro.2005.10.009
http://dx.doi.org/10.1016/0261-2194(93)90140-E
http://dx.doi.org/10.1111/jen.12212
http://dx.doi.org/10.1007/BF01045587
http://www.ncbi.nlm.nih.gov/pubmed/24306393
http://dx.doi.org/10.3390/agronomy9110710
http://dx.doi.org/10.1603/0046-225X(2008)37[719:AEOCPB]2.0.CO;2


Agronomy 2024, 14, 502 16 of 16

10. Rustia, D.J.A.; Chiu, L.Y.; Lu, C.Y.; Wu, Y.F.; Chen, S.K.; Chung, J.Y.; Hsu, J.C.; Lin, T.T. Towards intelligent and integrated pest
management through an AIoT-based monitoring system. Pest Manag. Sci. 2022, 78, 4288–4302. [CrossRef]

11. Liu, H.; Chahl, J.S. Proximal detecting invertebrate pests on crops using a deep residual convolutional neural network trained by
virtual images. Artif. Intell. Agric. 2021, 5, 13–23. [CrossRef]

12. Karar, M.E.; Alsunaydi, F.; Albusaymi, S.; Alotaibi, S. A new mobile application of agricultural pests recognition using deep
learning in cloud computing system. Alex. Eng. J. 2021, 60, 4423–4432. [CrossRef]

13. Chen, J.W.; Lin, W.J.; Cheng, H.J.; Hung, C.L.; Lin, C.Y.; Chen, S.P. A smartphone-based application for scale pest detection using
multiple-object detection methods. Electronics 2021, 10, 372. [CrossRef]

14. Gonçalves, J.; Silva, E.; Faria, P.; Nogueira, T.; Ferreira, A.; Carlos, C.; Rosado, L. Edge-compatible deep learning models for
detection of pest outbreaks in viticulture. Agronomy 2022, 12, 3052. [CrossRef]

15. StatCounter. Most Popular Phone Brands in the Philippines. 2023. Available online: https://www.statista.com/statistics/938806
/philippines-market-share-of-leading-mobile-brands// (accessed on 25 January 2024).

16. Dwyer, B.; Nelson, J.; Solawetz, J. Roboflow (Version 1.0). Software Available from Roboflow. Computer Vision. 2022. Available
online: https://roboflow.com/ (accessed on 28 January 2024).

17. Rustia, D.J.A.; Chao, J.J.; Chiu, L.Y.; Wu, Y.F.; Chung, J.Y.; Hsu, J.C.; Lin, T.T. Automatic greenhouse insect pest detection and
recognition based on a cascaded deep learning classification method. J. Appl. Entomol. 2021, 145, 206–222. [CrossRef]

18. Unel, F.O.; Ozkalayci, B.O.; Cigla, C. The power of tiling for small object detection. In Proceedings of the 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 582–591.
[CrossRef]

19. Cui, M.; Gong, G.; Chen, G.; Wang, H.; Jin, M.; Mao, W.; Lu, H. LC-YOLO: A lightweight model with efficient utilization of
limited detail features for small object detection. Appl. Sci. 2023, 13, 3174. [CrossRef]

20. Saleem, M.H.; Velayudhan, K.K.; Potgieter, J.; Arif, K.M. Weed identification by single-stage and two-stage neural networks: a
study on the impact of image resizers and weights optimization algorithms. Front. Plant Sci. 2022, 13, 850666. [CrossRef]

21. Zhang, D.; Zhang, W.; Li, F.; Liang, K.; Yang, Y. PNANet: Probabilistic two-stage detector using pyramid non-local attention.
Sensors 2023, 23, 4938. [CrossRef]

22. Jocher, G.; Chaurasia, A.; Qiu, J. Ultralytics YOLO (Version 8.1.18). Software Available from GitHub. Computer Vision. 2023.
Available online: https://github.com/ultralytics/ultralytics (accessed on 25 January 2024).

23. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. arXiv 2017,
arXiv:1612.03144.

24. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M. Deep learning for generic object detection: A survey.
Int. J. Comput. Vision 2020, 128, 261–318. [CrossRef]

25. Xu, M.; Yoon, S.; Fuentes, A.; Park, D.S. A comprehensive survey of image augmentation techniques for deep learning. Pattern
Recognit. 2023, 137, 109347. [CrossRef]

26. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
27. ONNX Runtime. Model Optimizations. Available online: https://onnxruntime.ai/docs/performance/model-optimizations/

(accessed on 16 January 2024).
28. Intel. Choose FP16, FP32 or Int8 for Deep Learning Models. Available online: https://www.intel.com/content/www/us/en/

developer/articles/technical/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html (accessed on 16 January 2024).
29. Padilla, R.; Netto, S.; da Silva, E. A Survey on Performance Metrics for Object-Detection Algorithms. In Proceedings of the 2020

International Conference on Systems, Signals and Image Processing (IWSSIP), Online, 1–3 July 2020. [CrossRef]
30. Alfonso-Francia, G.; Pedraza-Ortega, J.C.; Badillo-Fernández, M.; Toledano-Ayala, M.; Aceves-Fernandez, M.A.; Rodriguez-

Resendiz, J.; Ko, S.B.; Tovar-Arriaga, S. Performance Evaluation of Different Object Detection Models for the Segmentation of
Optical Cups and Discs. Diagnostics 2022, 12, 3031. [CrossRef] [PubMed]

31. Kim, S.; Kim, H. A New Metric of Absolute Percentage Error for Intermittent Demand Forecasts. Int. J. Forecast. 2016, 32, 669–679.
[CrossRef]

32. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.;
Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in python. Nat. Methods 2020, 17, 261–272. [CrossRef]

33. Pandas Development Team. Pandas-Dev/Pandas: Pandas. Available online: https://pandas.pydata.org (accessed on 25 January
2024). [CrossRef]

34. Model Metadata Struct Reference. Available online: https://onnxruntime.ai/docs/api/c/struct_ort_1_1_model_metadata.html
(accessed on 15 January 2024).

35. Hacinas, E.A.S.; Querol, L.S.; Acero, L.A.; Arcelo, M.; Amalin, D.M.; Rustia, D.J.A. Automated Cocoa Pod Borer Detection Using an
Edge Computing-Based Deep Learning Algorithm; American Society of Agricultural and Biological Engineers: St. Joseph Charter
Township, MI, USA, 2022. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/ps.7048
http://dx.doi.org/10.1080/08839514.2020.1831226
http://dx.doi.org/10.1016/j.aej.2021.03.009
http://dx.doi.org/10.3390/electronics10040372
http://dx.doi.org/10.3390/agronomy12123052
https://www.statista.com/statistics/938806/philippines-market-share-of-leading-mobile-brands//
https://www.statista.com/statistics/938806/philippines-market-share-of-leading-mobile-brands//
https://roboflow.com/
http://dx.doi.org/10.1111/jen.12834
http://dx.doi.org/10.1109/CVPRW.2019.00084
http://dx.doi.org/10.3390/app13053174
http://dx.doi.org/10.3389/fpls.2022.850666
http://dx.doi.org/10.3390/s23104938
https://github.com/ultralytics/ultralytics
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1016/j.patcog.2023.109347
http://dx.doi.org/10.1186/s40537-019-0197-0
https://onnxruntime.ai/docs/performance/model-optimizations/
https://www.intel.com/content/www/us/en/developer/articles/technical/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
https://www.intel.com/content/www/us/en/developer/articles/technical/should-i-choose-fp16-or-fp32-for-my-deep-learning-model.html
http://dx.doi.org/10.1109/IWSSIP48289.2020
http://dx.doi.org/10.3390/diagnostics12123031
http://www.ncbi.nlm.nih.gov/pubmed/36553037
http://dx.doi.org/10.1016/j.ijforecast.2015.12.003
http://dx.doi.org/10.1038/s41592-019-0686-2
https://pandas.pydata.org
http://dx.doi.org/10.5281/zenodo.3509134
https://onnxruntime.ai/docs/api/c/struct_ort_1_1_model_metadata.html
http://dx.doi.org/10.13031/aim.202200238

	Introduction
	Materials and Methods
	Imaging Devices
	Dataset Collection
	Mobile CPB Detection Algorithm
	Algorithm Optimization
	Data-Centric Optimization
	Model-Centric Optimization
	Deployment-Centric Optimization
	Operations-Centric Optimization

	Algorithm Evaluation
	Mobile Application Development and Usage

	Results and Discussion
	Algorithm Optimization Results
	Data-Centric Optimization
	Model-Centric Optimization
	Deployment-Centric Optimization
	Operations-Centric Optimization

	Qualitative Algorithm Evaluation
	CPB Count Comparison
	Field Use and Cost-Benefit Analysis

	Conclusions
	References

