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Abstract: Northern China faces water scarcity, restricting water usage in place across Inner Mongolia’s
western region. The integrated irrigation and fertilization model for sugar beet is undergoing rapid
development and application in production. However, there is a concerning trend in production
where the frequency of irrigation and fertilization is being increased blindly, resulting in the wastage
of valuable water and fertilizer resources. Limiting water and fertilizer usage is an effective approach
to improve sugar beet production efficiency. Sugar beets are a significant sugar crop in China. A
split-plot design was employed to examine the impact of reducing water and fertilizer use on sucrose
metabolism in sugar beet root. Our study was performed at the Ulanqab Institute of Agricultural and
Forestry Sciences in Inner Mongolia from 2022 to 2023. Three levels of fertilization and irrigation were
utilized. We investigated the interactions between irrigation and fertilization on sucrose accumulation
in sugar beet root. We examined key enzyme activities involved in sucrose metabolism alongside
their gene expression levels. The findings suggested that reducing irrigation by 15%, fertilization
by 10%, or both irrigation by 15% and fertilization by 10%, increased sucrose concentrations of
sugar beets compared to the control group administered conventional water and fertilizer. Over the
two-year period, the average sucrose concentration increased by 0.45, 0.57, and 0.65 degrees, respec-
tively, under each treatment. Subsequent research verified that appropriately reducing water and
fertilizer can regulate the expression of enzyme genes, thus influencing enzyme activity. Moreover,
due to the higher efficiency of enzyme synthesis compared to decomposition, it contributed to an
increase in net enzyme activity. These findings suggest that an appropriate reduction of water and
fertilizer can improve sucrose synthesis rates and increase the sucrose concentration in sugar beets,
providing a theoretical basis for environmentally friendly generation and enhanced efficiency in
sugar beet growth.
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1. Introduction

Sugar beets (Beta vulgaris L.) are significant sugar crops in China, typically grown
across three primary regions: the Northeast, North, and Northwest [1]. Across these
regions, North China exhibits the largest sugar beet cultivation area, with Inner Mongolia
being the primary production location [2]. High water and fertilizer usage during sugar
beet farming [3–6] causes these two factors to be crucial in achieving high yield and sucrose
concentration. To achieve high yields, farmers have continuously increased irrigation
and fertilizer usage, leading to issues including water wastage and soil compaction [7,8].
Studies have demonstrated that a suitable reduction in water and fertilizer use can increase
crop yield and quality [9,10].

Sugar beets store sugar in their roots, acting as raw materials for sugar production.
Sugar metabolism is critical for determining sugar beet quality. Environmental conditions
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significantly impact the level of sugar metabolism during the growth of sugar beets. Never-
theless, the seedling stage generally possesses low sugar metabolism intensity, causing low
levels of monosaccharides and disaccharides in the root, petiole, and leaf. During plant
growth, sugar metabolism gradually intensifies, contributing to a corresponding increase
in the concentration of sucrose, monosaccharides, and total sugars in various sugar beet
organs [11]. Furthermore, sugar concentration is closely tied to the activity of sucrose
metabolism enzymes [12,13].

Research has demonstrated that the soluble sucrose concentration of different fleshy
fruits increases along with the severity of water deficit stress, and throughout different
growth stages [14,15], contributing to the enhancement of fruit quality [16]. For example,
it has been shown to increase the sucrose concentration in sweet orange leaves and thus
enhance disease resistance [17]. Water deficit can elevate the activity of sucrose synthetase
(SS) and sucrose phosphate synthase (SPS) enzymes in tomatoes and goji berries, while
reducing invertase (INV) activity during the ripening stage [18,19]. Studies on wheat in
Poland and India have shown that water deficiency can increase the activity of SPS [20,21].
Short-term drought stress in sugarcane is positively correlated to sucrose content and the
activity of SS/SPS enzymes. However, the functioning of the conversion enzyme has an
opposite trend [22]. A study by Liu et al. [23] indicated that a moderate deficit in irrigation
during rapid leaf growth significantly elevated the activity of SS enzymes and decreased
the activity of SPS enzymes in sugar beet root. Conversely, a severe deficit in irrigation
inhibited the activities of SS and SPS enzymes. Genes linked to SPS, SS, and invertase
(INVs) also exhibit significant roles in responses to environmental stresses [24,25]. For
instance, Lingwu jujube exhibited upregulation of ZjSPS 1, ZjSPS 4, ZjSS 1, and ZjSS 3
gene expression levels following water stress [26]. In contrast, the expression levels of
the CWIN, soluble invertase (INV), and CIN genes were lowered in maize [27]. Research
on tomatoes in Brazil has demonstrated that SlSPS1, SlCIN3, SlVIN2, and SlCWIN2 are
positively regulated under water deficit [28].

Research has suggested that the metabolism of sucrose in different crops is impacted
by the availability of nitrogen, phosphorus, and potassium. Under low nitrogen conditions,
sucrose increases in tobacco, tomatoes, and Arabidopsis [29–31]. Correctly limiting the ap-
plication of nitrogen fertilizer (60 kg/hm2) can enhance the activity of conversion enzymes
in sweet potato root, contributing to an enhancement in sucrose concentration [32–34].
Spraying apple leaves with nitrogen fertilizer can augment the activities of SS-I and SPS,
enzymes involved in sucrose synthesis [35]. Liu Na et al. [36] uncovered that applying
nitrogen fertilizer at a rate of 120–160 kg/hm2 can improve the activities of SS-I and SPS in
sugar beet root. Low phosphorus (32 µmol/L) can increase the sucrose concentration of
rice [37]. The application of phosphorus fertilizer can improve the activity of vacuolar inver-
tase in cotton, promoting sucrose conversion [38]. Additionally, it can increase SS-I activity
in citrus [39]. Low phosphorus stress enhances sucrose hydrolyzing enzyme synthesis in
soybean root, accelerating sucrose degradation [40]. Liu et al. [41] demonstrated that an
increased application of phosphorus can increase the activity of sucrose phosphate synthase
in sugar beet leaves while also increasing the accumulation of sucrose in sugar beet root [42].
Potassium fertilizer has a vital regulatory function in sucrose metabolism [43]. Appro-
priate potassium treatment can increase the activities of sucrose synthase (SS), sucrose
phosphate synthase (SPS), acid invertase (AI), and neutral invertase (NI) in strawberries
(360 kg/hm2), melons (800 mg/L), and apples (200 g/plant), promoting the accumulation
of soluble sugars in fruits throughout their growth [44–46]. KNO3 can enhance the maize
to waterlogging stress, increase the activity of neutral conversion enzyme, acid conversion
enzyme and sucrose phosphate synthase [47]. An investigation by Liu C et al. [48] found
that under potassium deficiency, SPS activity in soybean leaves was reduced while acid
invertase activity increased [49]. Additionally, SPS activity decreased in potato leaves
(Solanum tuberosum L.) [50]. This study examined the influence of reduced water and
fertilizer on sucrose metabolism in sugar beets at varying growth stages by evaluating
the sucrose concentration, key enzyme activity, and gene expression. By examining the
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response of sugar beet root to water and fertilizer at varying growth stages, this study offers
a theoretical foundation for enhancing production efficiency and promoting sustainable
sugar beet cultivation practices.

2. Materials and Methods
2.1. Experimental Site Description

The experiment was performed at the Inner Mongolia Ulanqab Agricultural and
Forestry Science Research Institute (112◦27′ E, 40◦26′ N) over the course of two consecutive
years from 2022 to 2023. This area was selected due to its temperate, arid continental
monsoon climate. From May to October of 2022 and 2023, the average high temperatures
were 26.9 ◦C and 27.3 ◦C, respectively, and the average low temperatures were 4.3 ◦C and
6.4 ◦C, respectively. The mean monthly precipitation was 72 mm and 75.2 mm in 2022
and 2023, respectively. The soil type is Latosol and the soil texture is sandy loam. Table 1
outlines the soil nutrient content at the experimental site.

Table 1. Soil conditions of the test site.

Year Total N
(g·kg−1)

Total P
(g·kg−1)

Total K
(g·kg−1)

Available N
(mg·kg−1)

Available P
(mg·kg−1)

Available K
(mg·kg−1) pH Organic Matter

(g·kg−1)

2022 2.07 0.97 22.11 134.91 10.31 197.5 7.98 32.02
2023 0.71 0.46 16.31 111.07 9.23 153.01 7.71 18.21

2.2. Experimental Design
Test Materials

The sugar beet variety chosen was IM1162 (the main sugar beet cultivar in the area).
The applied fertilizers consisted of urea (N 46%), ammonium dihydrogen phosphate
(N 18%, P2O5 46%), and potassium sulfate (K2O 50%).

2.3. Experimental Treatments

This study employed a split-plot design under drip irrigation conditions, utilizing
water and fertilizer at normal levels as the control (CK). The primary plots were assigned to
treatment according to different fertilizer application rates, and each main plot had varying
irrigation levels. Fertilizer application rates were reduced by 10% (F2) and 20% (F1), and ir-
rigation levels were reduced by 15% (W2) and 30% (W1). Each plot was 6 m (length) × 5 m
(width) and replicated three times. A planting method of paper-pot cultivation with a row
spacing of 50 cm and a plant spacing of 18 cm was employed. Nitrogen (N) fertilizer was
initially applied at a rate of 30% as a basal dressing, followed by subsequent applications at
rates of 30%, 30%, and 10%. Phosphorus (P) and potassium (K) fertilizers were applied at a
rate of 50% as a basal dressing, followed by subsequent applications at rates of 20%, 20%,
and 10%. Drip fertigation was conducted using the Venturi system. Initial irrigation was
applied following sugar beet transplantation, and subsequent irrigations and fertilizations
were conducted 30, 70, and 110 days after transplanting. The irrigation volume was exam-
ined using a water meter. The specific irrigation and fertilizer application levels for each
treatment are outlined in Table 2. Other field management practices in the experimental
area adhered to traditional methods.

2.4. Collection of Plant Samples

Samples were harvested four times during the entire growth period at intervals
corresponding to 30 days after transplantation (seedling stage), one week after three
irrigation and fertilization treatments, 40 days after transplantation (rapid leaf growth
stage), 80 days after transplantation (root and sugar accumulation stage), and 120 days
after transplantation (sugar accumulation stage). Each treatment was conducted in three
replicates, and three plant roots were chosen from each plot. The samples were flash-frozen
in liquid nitrogen and stored at −80 ◦C in a freezer for subsequent enzyme activity analysis
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and RNA extraction. Additionally, 100 g of fresh samples was reserved, air-dried, and
dried at 80 ◦C to determine the sucrose concentration.

Table 2. The levels of fertilizer applied and the amount of irrigation administered in each treatment.

Treatment
Amount of Fertilizer Application (kg·hm−2) Total Irrigation Volume

(m3·hm−2)

N P(P2O5) K(K2O)

CK
135 150 150

1350
F3W2 1147.5
F3W1 945
F2W3

121.5 135 135
1350

F2W2 1147.5
F2W1 945
F1W3

108 120 120
1350

F1W2 1147.5
F1W1 945

2.5. Indicators and Methods
2.5.1. Sucrose Concentration Determination

The phenol–sulfuric acid method was used [51] (Li et al., 2012).
Extraction of supernatant: Weigh 50 mg of dried sugar beet root and add 4 mL of 80%

ethanol. Place the mixture in a water bath at 80 ◦C for 40 min, followed by centrifugation
at 2500× g for 6 min. Collect the supernatant and repeat the extraction process once.
Combine the supernatants and add 10 mg of activated charcoal. Decolorize the solution at
80 ◦C for 30 min, then bring the volume to 10 mL. The solution is filtered and ready for
further analysis.

Determination of sucrose content: Extract 150 µL and then add 150 µL of 2 mol/L
NaOH. Place the mixture in a water bath at 100 ◦C for 5 min; cool, then add 2.1 mL of
10 mol/L HCl and 0.6 mL of 0.1% resorcinol. Shake the solution evenly, heat in a water
bath at 80 ◦C for 10 min, and measure the absorbance at 480 nm after cooling.

2.5.2. Measurement of Sucrose Metabolism Enzyme Activity
Extraction of Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SS)

Take 1 g of sugar beet root and add it to 3 mL of extraction buffer (100 mM pH = 7.2
Tris-HCL, 10 mM MgCl2, 1 mM EDTA-Na2, 10 mM β-mercaptoethanol, 2% ethylene glycol,
1% PVPP) in a mortar. Quickly grind into a uniform paste, then wash the mortar twice
with 2 mL of extraction buffer. Transfer the mixture to a centrifuge tube and centrifuge at
12,000 rpm for 10 min in a low-temperature freezing centrifuge at 4 ◦C. Take the supernatant
for the determination of the activities of sucrose phosphate synthase, sucrose synthase in
the synthesis direction, and sucrose synthase in the decomposition direction. All the above
procedures are conducted at 4 ◦C. Medicines are purchased from (Thermo Fisher Scientific
Co., Ltd., Shanghai, China).

Determination of Sucrose Phosphate Synthase (SPS) Activity

Reaction mixture: 100 mM/L Tris-HCl at pH 7.2, 10 mM/L MgCl2, 5 mM/L UDPG,
5 mM/L Fru-6-P; 0.1% catechol: dissolve 0.1 g of catechol in 100 mL of 95% ethanol; 30%
HCl: mix 83.4 mL concentrated hydrochloric acid (36–37%) with 16.6 mL of water; add
0.1 mL of crude enzyme solution; then, add 0.4 mL of sucrose phosphate synthase reaction
mixture; incubate in a 30 ◦C water bath for 30 min, followed by a 5 min boil in a water bath;
cool and add 1 mL of 0.1% catechol and 3.5 mL of 30% HCl, shake well; heat in a 80 ◦C
water bath for 10 min, cool, and measure absorbance at 480 nm. Medicines are purchased
from (Thermo Fisher Scientific Co., Ltd., Shanghai, China).
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Determination of Sucrose Synthase Activity in the Synthesis Direction (SSII)

Reaction mixture: 100 mM/L Tris-HCl at pH 7.2, 10 mM/L MgCl2, 5 mM UDPG, 5 mM
D-fructose; add 0.1 mL of crude enzyme solution; then, add 0.4 mL of sucrose synthase
synthesis reaction mixture; incubate in a 30 ◦C water bath for 30 min, followed by a 5 min
boil in a water bath; cool and add 1 mL of 0.1% catechol and 3.5 mL of 30% HCl, shake well;
heat in an 80 ◦C water bath for 10 min, cool, and measure absorbance at 480 nm.

Determination of Sucrose Synthase Activity in the Decomposition Direction (SSI)

Reaction mixture: 100 mM/L Tris-HCl at pH 7.2, 10 mM/L MgCl2, 5 mM UDPG, 5 mM
D-sucrose; add 0.1 mL of crude enzyme solution; then, add 0.4 mL of sucrose synthase
synthesis reaction mixture; incubate in a 30 ◦C water bath for 30 min, followed by a 5 min
boil in a water bath; cool and add 0.5 mL of 5 mM DNS, then heat in a boiling water bath
for 5 min, cool; add 4 mL of distilled water, and measure absorbance at 540 nm.

Extraction of Invertase Enzymes

Take 1 g of pre-cooled sugar beet root in a mortar, add 3 mL of extraction medium
(0.05 M/L PBS at pH 7.5, 0.1 mM/L EDTA, 1 mM cysteine, 1 mM/L Na2SO3), quickly
grind, wash the mortar with 2 mL of extraction medium and transfer to a centrifuge tube.
Centrifuge at 20,000 rpm, 4 ◦C for 15 min, and take the supernatant for sucrose invertase
enzyme assay. All extraction steps are carried out at 4 ◦C.

Determination of Cytoplasmic Invertase (CINV)

Reaction system: containing 80 mM/L acetate-phosphate buffer at pH 7.5, 100 mM/L
sucrose, and 210 µL of crude enzyme solution. React at 37 ◦C for 30 min, add 490 µL of
3,5-dinitrosalicylic acid (DNS) reagent to stop the reaction, boil in a water bath for 5 min,
cool, and measure absorbance at 520 nm.

VINV and CWINV assays are similar to the CINV assay, but the pH of the acetate-
phosphate buffer is adjusted to 4.3 and 4.7, respectively. We used methods from Zhu
et al. [52], Guo Yan [53], and Xu Chuanqiang et al. [54].

2.5.3. Extraction of Total RNA and Synthesis of cDNA from Sugar Beet

Total RNA was extracted following the instructions of the TransZol Up Plus RNA Kit
(ER501), and RNA with a ratio of 2.15 ≥ A260/A280 ≥ 1.95 and A260/A230 ≥ 2.0 was
reverse transcribed to produce cDNA, which was diluted five-fold for use. The specific
steps were based on work by Yu Chao [55]. Medicines are purchased from (Jiangsu Kangwei
Century Biological Technology Co., Ltd., Taizhou, China).

2.5.4. Gene Expression Analysis through qRT–PCR

The cDNA of sugar beet root at four stages was utilized as a template. Actin was
used as an internal reference gene, and PerfectStart Green qPCR SuperMix fluorescent dye
(Jiangsu Kangwei Century Biological Technology Co., Ltd., Taizhou, China) was included.
The amplification procedure consisted of 2 min at 95 ◦C, followed by 10 s at 95 ◦C, 10 s
at 56 ◦C, and 1 min at 72 ◦C for a total of 40 cycles. Each stage included three biological
replicates and three technical replicates. The 2−∆∆Ct method was utilized to determine the
relative expression of genes [56], and the primer sequences are indicated in Table 3.

Table 3. RT-qPCR primer sequences.

Primer R 5′ to 3′ F 5′ to 3′

ACT TGCTTGACTCTGGTGATGGT AGCAAGATCCAAACGGAGAATG
SPS CGGCTTCTATCCTACGCATTATTT AACGGGGCATTCTCTTGG
CINV CACACAGACTCAACCCTCCTT GCAACCGAAAGACGATGCTG
VINV CTCCCATTGCTCATCCTCTTCC GCATCACATCCCGAGTTTACC
CWINV AAGGGTTTGTCTCCATTGCCT TAGTCCAGTTTCTCTCCACCAC
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2.6. Data Analysis

All data are presented as means and the standard deviation (SD). One-way analysis of
variance (ANOVA) and Duncan’s multiple-range test were conducted using SPSS version 20.
The significance level applied was p < 0.05. Each experiment comprised three replicates.
Statistical analysis was performed using Excel 2019, Origin2021 and GraphPad Prism 6.0
software was applied for graphing.

3. Results
3.1. Effect of Water and Fertilizer Reduction on Sugar Accumulation in Sugar Beet Root
Effect of Water and Fertilizer Reduction on Sucrose Concentration of Sugar Beet Root

During the early growth stages, the sucrose concentration of sugar beet root is low
and gradually increases. After 80 days post-transplantation, the accumulation rate rapidly
increases, peaking at 120 days post-transplantation (Figure 1). In 2022 and 2023, under
limited water conditions, sucrose accumulation at 40, 80, and 120 days following trans-
plantation was higher with a 15% reduction in irrigation (F3W2) and lower with a 30%
reduction in irrigation (F3W1), relative to the conventional water and fertilizer treatment
(CK). The trend was consistent over the two years under lowered fertilizer conditions.
Reducing fertilizer application caused lower sucrose concentration in the root 30 days after
transplantation. However, at 40, 80, and 120 days after transplantation, a 10% reduction in
fertilizer application (F2W3) contributed to increased sucrose accumulation relative to the
conventional water and fertilizer treatment (CK), with a significant rise 80 days after trans-
plantation. A 20% reduction in fertilizer application (F1W3) at 80 and 120 days following
transplantation significantly reduced sucrose accumulation compared to CK. These results
indicate that reducing basal fertilizer usage limits early sucrose accumulation, but reducing
fertilizer application during the later stages of growth can enhance sucrose accumulation.
Under reduced water and fertilizer conditions, a 10% reduction in fertilizer application and
a 15% reduction in irrigation (F2W2) 40 days post-transplantation contributed to elevated
sucrose accumulation compared to the conventional water and fertilizer treatment (CK),
with a significant rise in 2023 80 days post-transplantation. However, other treatments
exhibited a decrease beginning 40 days after transplantation. According to the sucrose
concentration findings of sugar beet root during the 2022 and 2023 harvest periods, the
F3W2 treatment (15% irrigation reduction), F2W3 treatment (10% fertilizer reduction), and
F2W2 treatment (15% irrigation reduction and 10% fertilizer reduction) exhibited higher
sucrose concentrations relative to the conventional fertilizer treatment (CK). The average
increases in sucrose concentration over the two years were 0.45, 0.57, and 0.65 degrees,
respectively. Notably, in 2023, there was a significant effect between water and fertilizer
interactions, with the F3W2 treatment demonstrating a sucrose concentration increase
of 0.87 degrees. These findings demonstrate that an appropriate reduction in water and
fertilizer can improve the sucrose concentration of sugar beet root.

3.2. Influence of Water and Fertilizer Reduction on Crucial Enzymes Associated with Sucrose
Metabolism in Sugar Beet Root

The concentration of sucrose is closely tied to the activity of enzymes involved in
its metabolism. Sucrose phosphate synthase (SPS) is an enzyme catalyzing the synthesis
of sucrose using fructose-6-phosphate and uridine diphosphate glucose (UDPG) as sub-
strates [12]. Sucrose synthase (SS) is a reversible enzyme catalyzing the synthesis and
degradation of sucrose [13]. During sucrose metabolism, invertase enzymes are necessary
for the irreversible hydrolysis of sucrose into fructose and glucose. These enzymes are
classified as neutral and acid invertases [12]. The expression level of the SPS gene in the
root is positively correlated with its activity. In the root, SPS typically catalyzes the sucrose
synthesis and exhibits relatively high expression levels, positively correlated with sugar
concentration. In the root, invertase genes exhibit low expression levels and activity [13].
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Figure 1. Impact of water and fertilizer reduction on sucrose concentration in sugar beet root across
different growth stages. (A) 2022, (B) 2023, (a) 30 days after transplanting (seedling stage), the normal
basal dressing is the (CK), basal dressing were reduced by 10% (F2) and 20% (F1), (b) 40 days after
transplanting (rapid leaf growth stage), (c) 80 days after transplanting (root and sugar accumulation
stage), (d) 120 days after transplanting (sugar accumulation stage), and (e) 140 days after transplanting
(harvest stage), where 30–120 days is the sucrose concentration of dry samples and 140 days is the
sucrose concentration of fresh samples. (CK)water and fertilizer at normal levels, (F3W2) irrigation
reduced by 15%, (F3W1) irrigation were reduced by 30%, (F2W3) fertilization reduced by 10%, (F2W2)
both irrigation reduced by 15% and fertilization reduced by 10%, (F2W1) both irrigation reduced
by 30% and fertilization reduced by 10%, (F1W3) fertilizer application rates were reduced by 10%,
(F1W2) both irrigation reduced by 15% and fertilization reduced by 20%, (F1W1) both irrigation
reduced by 30% and fertilization reduced by 20%, Letters indicate significance at the p < 0.05 level.

3.2.1. Sucrose Phosphate Synthase

Figure 2A illustrates the SPS activity. Under reduced irrigation conditions, the SPS
activity in the F3W2 treatment was significantly elevated compared to the conventional
water and fertilizer treatment (CK) at 40 days and 120 days after transplantation. This
indicates that limiting irrigation appropriately can encourage an increase in SPS activity and
enhance sucrose accumulation. Under limited fertilization conditions, the F2W3 treatment
exhibited no significant difference compared to the conventional fertilization treatment CK.
However, applying 20% less fertilizer (F1W3) significantly reduced SPS activity in the mid-
late stage compared to conventional fertilization treatment (CK). Under conditions of both
reduced irrigation and fertilization, SPS activity in the F2W2 treatment was significantly
elevated compared to the CK treatment at 80 days after transplantation. In contrast, SPS
activity was reduced in the F2W1, F1W2, and F1W1 treatments across all growth stages. In
summary, the F3W2 and F2W2 treatments increased SPS activity.

The measurement findings of SPS expression level (Figure 3A) suggested a consistent
change between SPS gene expression level and SPS activity across various treatments and
growth stages. However, at 30 days, the increase in SPS activity was not significant in the F1
treatment, while the gene expression level exhibited a significant upregulation, indicating
that a limited fertilization rate may cause SPS gene expression.

3.2.2. Sucrose Synthase

Figure 2B outlines the results of the SS-II (synthesis direction) activity. Under lowered
water and fertilizer exposure, the overall trend of enzyme activity throughout the entire
growth period was aligned with conventional water and fertilizer conditions, but differ-
ences were present among different water and fertilizer treatments. Specifically, under
reduced water conditions, no significant difference in SS-II activity was observed between
the F3W2 treatment and the conventional water and fertilizer treatment (CK). However,
SS-II activity significantly increased 80 days after transplanting compared to the CK treat-
ment and significantly decreased 120 days after transplanting. Under reduced fertilizer
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conditions, SS-II activity significantly increased 40 days and 80 days after transplanting
in the F2W3 treatment. Furthermore, under reduced water and fertilizer conditions, SS-II
activity was significantly higher in the F2W2 treatment compared to the conventional
water and fertilizer treatment (CK) 40 days and 80 days after transplanting. These findings
indicate that appropriately reducing fertilizer application can elevate SS-II activity.
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Figure 2. Impact of water and fertilizer reduction on the activity of key enzymes involved in su-
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and (d) 120 days after transplanting. Letters indicate significance at the p < 0.05 level.
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Figure 3. Impact of water and fertilizer reduction on the expression of sucrose metabolism enzyme
genes in sugar beet root. (A) SPS enzyme genes, (B) CINV enzyme genes, and (C) VINV enzyme
genes, (D) CWINV enzyme genes (a) 30 days after transplanting, (b) 40 days after transplanting,
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the p < 0.05 level.

Figure 2C depicts SS-I (decomposition direction) activity. Under lowered water and
fertilizer conditions, the overall activity trend across the entire growth period was similar
to that under conventional water and fertilizer conditions, but differences existed among
different water and fertilizer treatments. Specifically, under reduced water conditions,
no significant difference in SS-I activity was identified between the F3W2 treatment and
the conventional water and fertilizer treatment (CK) overall growth stages. However, in
the F3W1 treatment, the SS-I activity significantly decreased 40 days and 80 days after
transplanting. Under lowered fertilizer conditions, no significant difference in SS-I activity
was observed at the later growth stage between the F2W3 treatment and the conventional
fertilization treatment (CK). However, in the F1W3 treatment, the SS-I activity significantly
increased 120 days after transplanting. Moreover, under reduced water and fertilizer
exposure, there was no significant difference in SS-I activity between the F2W2 and F2W1
treatments and the CK treatment 40 days after transplanting. However, in the F1W2
and F1W1 treatments, SS-I activity significantly decreased 40 days and 80 days after
transplanting, while it significantly increased 120 days after transplanting. These findings
indicate that a 10% reduction in fertilizer application and a 15–30% reduction in irrigation
had a limited impact on activity. However, when fertilizer application was reduced by
20%, and irrigation was reduced by 15–30%, there were significant differences across all
time periods. Overall, SS-II activity increased 40 days and 80 days after transplanting in
the F2W3 and F2W2 treatments, while SS-I activity remained unaffected by water and
fertilizer conditions.
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3.2.3. Invertase
Cytoplasmic Invertase

The CINV activity findings (Figure 2D) demonstrated that under reduced water and
fertilizer conditions, the enzyme activity of sugar beet root remained constant during the
entire growth period, exhibiting a similar trend to the conventional fertilization treatment.
However, there were differences in enzyme activity changes at various growth stages under
different water and fertilizer conditions. Under lowered water conditions, the difference in
CINV activity between F3W2 and CK across each growth stage was not significant, except
for in F3W1, which exhibited a considerable difference. After 40 days, CINV activity was
significantly reduced, while at 80 days and 120 days, it was significantly higher than that
of CK. Moreover, under limited fertilizer conditions, a notable difference in CINV activity
was observed between each reduced fertilizer treatment and conventional fertilization.
Specifically, when the fertilization amount was reduced by 10–20% (F2W3, F1W3), the
activity significantly decreased after 40 days, but was significantly higher than that of CK
at 80 days and 120 days. Furthermore, under both reduced water and fertilizer conditions,
CINV activity at 40 days was significantly lower than that of CK, while at 80 days, all
treatments except F2W2 exhibited a significant increase, and at 120 days, all treatments
increased significantly. In summary, when the irrigation amount was reduced by 15%
(F3W2), the CINV activity was relatively stable compared to that of CK. However, when
the fertilization level was reduced, significant differences among treatments were observed,
particularly in the late growth period, during which the activity increased significantly.

The results of CINV gene expression levels of cytoplasmic invertase (CINV) (Figure 3B)
demonstrated an expression pattern consistent with CINV activity across each stage, but
variations existed among treatments. Specifically, after 40 days, significant downregulation
of expression level was identified in treatments with a 30% reduction in irrigation (F3W1)
or simultaneous 30% and 20% reductions in irrigation and fertilization (F1W1), compared
to other treatments. These findings highlight the significant influence of excessive water
and fertilizer reduction on gene expression levels.

Vacuolar Acid Invertase

During the growth period (Figure 2E), VINV activity varied under different water
and fertilizer treatments. Specifically, under reduced water conditions, VINV activity at
80 days was significantly higher in F3W2 than in CK. Furthermore, under reduced fertilizer
conditions, variations were identified in the pattern of changes with reduced fertilization
at different growth stages. For example, after 40 days, VINV activity was significantly
higher in F2W3 than in CK, and after 120 days, it significantly increased in F1W3. These
findings suggest that a 10% reduction in fertilization (F2W3) primarily promoted the early
growth of beet root, while an increase in activity during later stages after a 20% reduction
in fertilization (F1W3) disfavors sucrose accumulation. Moreover, under both reduced
water and fertilizer conditions, VINV activity after 40 days was significantly higher than
that in CK, while at 80 days, it was significantly lower. After 120 days, variations in
the pattern of changes were observed, with no significant difference in F2W2, while all
other treatments exhibited a significant increase in enzyme activity. This suggests that
excessive reduction in water and fertilizer can increase enzyme activity, disfavoring sucrose
accumulation in the later growth period. Overall, a 15% reduction in irrigation and a 10%
reduction in fertilization resulted in lower activity during the later growth period and
reduced sucrose decomposition.

The results of vacuolar acid invertase (VINV) gene expression level (Figure 3C) were
consistent with the alterations in enzyme activity across each stage.

Cell-Wall Binding Acid Invertase

CWINV primarily acts in sucrose decomposition during the unloading of phloem
tissue to maintain a balance between source and sink. While the overall trend of CWINV ac-
tivity remained unaltered irrespective of different water and fertilizer conditions, variations
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existed across different growth stages (Figure 2F). Specifically, under lowered water condi-
tions, CWINV activity after 80 days was significantly higher in F3W2 and F3W1 compared
to CK, suggesting that lowering water exposure can impact enzyme activity after 80 days
and promote sucrose accumulation. Furthermore, under reduced fertilizer conditions, the
activity of CWINV in each treatment was significantly elevated compared to in CK after
both 40 days and 80 days, indicating that a 10% reduction in fertilization enhanced enzyme
activity after 40 days and 80 days. Moreover, under both reduced water and fertilizer condi-
tions, the activity of CWINV in F2W2 was higher than in the other treatments with limited
water and fertilizer across various growth stages, and there was no significant difference
from that in CK across any other stage. This indicates that an appropriate reduction in
water and fertilizer will not influence enzyme activity. In summary, lowering irrigation by
15–30% or reducing fertilization by 10% can increase CWINV activity.

The gene expression level of the cell-wall acid invertase (CWINV) gene results (Figure 3D)
indicated that the expression level at each stage was correlated with the observed changes
in enzyme activity.

3.3. Correlation Analysis between Sucrose Accumulation and Crucial Enzyme Activities
Associated with Its Metabolism

Correlation analysis was conducted by analyzing the sucrose content of sugar beet root
and crucial enzyme activities associated with its metabolism at various growth stages. The
results demonstrated a strong positive correlation between sucrose content and SSII and
SPS, as well as a robust negative correlation with VINV (Figure 4A). Correlation analysis
was conducted at different growth stages, and the results exhibited a significant positive
correlation between sucrose content and CWINV activity at each stage. Additionally,
a strong positive correlation was observed between SPS and SSII activity after 80 days
and 120 days, a positive correlation with VINV activity after 80 days, and a negative
correlation after 120 days (Figure 4B,C). Moreover, sucrose content negatively correlated
with CINV and SSI activity after 80 days and 120 days, respectively. These findings
indicate a close relationship between critical enzymes involved in sucrose metabolism and
sucrose accumulation. During phloem tissue unloading, CWINV is essential in sucrose
decomposition to maintain a balance between source and sink. Moreover, it collaborates
with SSII and SPS to enable sucrose accumulation.
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4. Discussion

Sucrose concentration is a primary indicator of sugar beet root quality. Appropriate
levels of irrigation and fertilization can have different effects on the changes in sucrose
concentration. The present study uncovered that reducing irrigation by 15% (F3W2),
reducing fertilization by 10% (F2W3), or simultaneously reducing both by 15% and 10%,
respectively (F2W2), led to a higher sucrose concentration in harvested sugar beets. This
finding aligns with previous studies on sugar beet, tomato, and honey pomelo [14,15,41,57].
Moreover, further analysis exhibited a significant increase in sucrose concentration in the
F3W2 and F2W2 treatments after 80 days of root growth and in the F2W3 treatment after
40 days.

Key enzymes involved in sucrose metabolism play essential roles in its storage and
accumulation in the sugar beet root. In our study, we identified increased activities of SS
(sucrose synthase), SPS (sucrose phosphate synthase), and SSII (sucrose synthase II) in
the F3W2, F2W3, and F2W2 treatments relative to the conventional water and fertilizer
treatment (CK). Previous studies have demonstrated that limiting irrigation increases the
activities of SS (sucrose synthase) and SPS (sucrose phosphate synthase) in tomatoes and
goji berries [18,19]. Similarly, optimal fertilization improves the activities of SS and SPS in
melons [58], and is consistent with the results of our study. Our findings revealed a higher
SSII (sucrose synthase II) activity, involved in sucrose synthesis, compared to SSI (sucrose
synthase I), suggesting that sucrose synthase (SS) primarily functions in synthesis. However,
research on citrus fruits has revealed differences, showing SS (sucrose synthase) primarily
functions in sucrose degradation [59], attributed mainly to the distinctive nature of sugar
beet as a sugar crop, which enhances their capacity to accumulate sucrose. Invertase is the
primary enzyme responsible for sucrose degradation. It can be classified into two types
based on different pH values: acid invertase and neutral/alkaline invertase (CINV). Acid
invertase can be further divided into two categories: soluble invertase (VINV) and cell-wall
acid invertase (CWINV). This study demonstrated that a 15% reduction in irrigation (F3W2)
did not affect CINV activity. However, it did significantly increase VINV and CWINV
activities. Previous studies have shown that water deficiency can reduce the activities of
neutral invertase and acid invertase in tomatoes and goji berries during the late growth
stages [18,19]. The main difference between our study and previous ones is that other
crop experiments induced water deficiency as a treatment, which triggered physiological
responses in the crops. In contrast, in our study, the reduced irrigation did not induce
water stress, leading to these divergent results. This study found that reducing fertilizer
application by 10% (F2W3) led to a significant decrease in CINV activity at 40 days but
an increase at 80 days. Additionally, VINV and CWINV activities showed an increase.
Previous research has demonstrated that the proper application of nitrogen, phosphorus,
and potassium fertilizers can enhance invertase activity during the early growth stages
of crops, aligning with our findings [30,32,37,43,45]. RT-qPCR analysis further revealed
that SPS, CINV, VINV, and CWINV genes are regulated under reduced irrigation and
fertilization treatments, impacting their respective enzyme activities.

Furthermore, in our study, we characterized a positive correlation between the sucrose
content and the activities of SPS and SSII, alongside a negative correlation with VINV
activity. The findings of Shao et al. (2019) and Klotz et al. (2004) in sugar beet [60,61] are
consistent with this study, and similar trends were observed in sugarcane, soybean, and
apple [20,37,47]. However, correlation analysis across different growth stages revealed a
strong positive correlation between the sucrose concentration and CWINV activity after 40,
80, and 120 days. Subsequent research verified the crucial role of CWINV (cell-wall acid
invertase) in sucrose unloading, as its activity is closely associated with sucrose input [62].
This finding further supports its significance in sugar beet root. The study revealed that
both sucrose synthase and sucrose decomposing enzyme activities increased to varying
degrees after appropriate irrigation and fertilization reduction, with the former showing a
greater increase than the latter. This enhancement in sucrose synthesis capacity increased
sucrose accumulation in sugar beet root. Takayanagi and Yokotsuka (1997) and Zhang



Agronomy 2024, 14, 539 13 of 16

et al. (2012) reported that augmenting the activity of sucrose synthesis enzymes enhanced
sucrose accumulation throughout tissues [63,64]. These findings provide insights into the
mechanisms underlying the elevation of sucrose concentration with limited water and
fertilizer treatments.

In the future, further in-depth research could explore the impact of different growth
stages on the activity of key enzymes. This will allow for a more precise control of fertiliza-
tion and irrigation strategies to enhance the efficiency of sucrose synthesis. Furthermore,
continued investigation into the expression regulation mechanisms of key enzyme genes,
including SPS, SSII, and SAI, as well as their relationship with enzyme activity, could reveal
a more intricate regulatory network. These studies aim to provide more scientific and
efficient cultivation management schemes for sugar beet production, ultimately increasing
sugar beet yield and quality to meet market demands.

5. Conclusions

Reducing irrigation by 15% and fertilizer application by 10% can increase sucrose
content in sugar beet root, with the average sucrose concentration increasing by 0.45, 0.57,
and 0.65 degrees in F3W2, F2W3, and F2W2, respectively. The sugar accumulation was
significantly positively correlated with SPS and SSII, but the enzyme efficiency exhibited
differences with various water and fertilizer treatments at diverse growth stages. The
elevation in synthetic enzymes outperformed the increase in decomposition enzymes.
Moreover, the changes in gene expression analysis of key enzyme genes, including SPS,
CINV, VINV, and CWINV, were consistent with enzyme activity. This process promotes
sucrose synthesis in sugar beet root, enhancing their storage capacity for sucrose. This
study offers a theoretical foundation for enhancing production efficiency and promoting
sustainable sugar beet cultivation practices.
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