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Abstract: Soil salinity affects nutrient uptake by cotton. The cotton bud stage is a very important
period in the process of cotton planting and directly affects the yield of cotton. The nutritional status
of the bud stage directly affects the reflectance spectra of cotton canopy leaves. Therefore, it is of great
significance to nondestructively monitor the nutritional status of the cotton bud stage on salinized
soil via spectroscopic techniques and perform corresponding management measures to improve
cotton yield. In this study, potted plants with different nitrogen application rates were set up to
obtain the reflection spectral curves of cotton bud stage leaves, analyze their spectral characteristics
under different nitrogen application rates, and establish spectral estimation models of chlorophyll
density. The results are as follows: in the continuum removal spectrum of the cotton bud stage,
the lowest point of the absorption valley near 500 nm shifted to the shortwave direction with an
increasing nitrogen application rate. The mean reflectance between 765 and 880 nm was significantly
different between nitrogen-stressed and nitrogen-unstressed cotton. The average reflectance of the
near-infrared band, the absorption valley depths near 500 nm and 675 nm, the first derivative of the
710 nm reflectance, and the second derivatives of the 690 nm and 730 nm reflectance increased with
increasing nitrogen application and chlorophyll density, and significant correlations were observed
with the chlorophyll density. These parameters were modeled using support vector regression (SVR)
and artificial neural network (ANN) methods, two commonly used algorithms in the field of machine
learning. The determination coefficients of the three chlorophyll samples via the ANN models were
0.92, 0.77, and 0.94 for the modeling set and 0.77, 0.69, and 0.77 for the verification set. The ratio of
quartile to root-mean-square error (RPIQ) of the ANN model was greater than 2.2, and the ratio of
the standard error of the measured value to the standard error of the predicted (SEL/SEP) was close
to 1, indicating that the chlorophyll density estimation models built based on the ANN algorithm
had robust prediction ability. Our model could accurately estimate the leaf chlorophyll density in the
cotton bud stage.

Keywords: cotton leaves; spectral characteristics; bud stage; nitrogen application rate

1. Introduction

Cotton is the main cash crop in Xinjiang, where 32.07% of the cultivated land is
salinized soil. Too much soil salt will not only affect the absorption of nutrients by cotton
but also cause osmotic stress to cells or other harm. Nitrogen is one of the essential mineral
elements of crops and an important component of chlorophyll, protein, and nucleic acid
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in crops [1,2]. Studies have shown that the chlorophyll content, net photosynthetic rate,
stomatal conductance, and transpiration rate of crops gradually increase with the increase
in nitrogen application in a certain range of nitrogen levels [3–5].

Spectral analysis of crop leaves was carried out using spectral technology to obtain
information on the reflectance and absorptivity of different bands to study the spectral
characteristics of crops under different nitrogen application rates as well as the relationship
between the crop’s nitrogen nutrition status and growth and yield, predict crop nitrogen
nutrition status, and optimize nitrogen application rates to improve crop growth and
yield [6–8]. The basis of crop nutrition monitoring via hyperspectral technology is to
clarify the relationship between crop nitrogen application and spectral and biochemical
parameters [9].

The spectral characteristics of cotton leaves are related to the plant growth state,
chlorophyll content, leaf area index, and other factors [10]. By analyzing the spectral
characteristics of cotton leaves with different nitrogen application rates, the growth state
and yield of cotton plants under different nitrogen nutrient states can be predicted, which
can provide technical support for cotton production. At present, the study of cotton leaf
physiological characteristics via spectral technology has become popular in the cotton
research field [11]. The study of the nitrogen application rate and spectral characteristics of
cotton mainly focuses on monitoring the cotton growth state via remote sensing and spectral
technology, predicting the cotton nutrition status via spectral technology, and optimizing
the nitrogen application rate. Wang et al. [12] constructed partial least squares regression
(PLSR) and principal component regression (PCR) models by using the hyperspectral
data of cotton leaves at the seedling, flowering, initial flowering, full flowering, and
boll stages and measured leaf nitrogen content (LNC) and oxidase activity (OA). Their
results showed that the accuracy and stability of the PLSR models were significantly
higher than those of the PCR models. Moreover, the combination of LNC- and OA-
sensitive bands could significantly improve the accuracy and universality of the LNC
estimation model. It was also believed that using hyperspectral technology to predict SPAD
(Soil and Plant Analyzer Development) values in the process of cotton growth and using
precise fertilization management measures were the key to achieving high yields of cotton
and improving fertilizer utilization rates [13]. Plot experiments with different nitrogen
application rates were performed; cotton leaves at the squaring stage, full budding stage,
flowering, boll stage, and boll opening stage were sampled, and spectral tests were carried
out. Two modeling methods of the characteristic band and spectral index were used to
establish cotton nitrogen estimation models, which showed that the inversion effect of the
characteristic band modeling SVR model was better than that of the spectral index [14].
Studies have used dried and ground cotton leaf samples to assess the ability of near-infrared
spectroscopy to predict leaf nutrient levels. The results show that NIR spectroscopy has
high accuracy in predicting essential elements (N, P, K, Ca, Mg, and S 0.76 ≤ R2 ≤ 0.98) and
most trace elements (Fe, Mn, Cu, Mo, B, Cl, and Na 0.64 ≤ R2 ≤ 0.81), and the application of
NIR spectroscopy on fresh leaves is also quite accurate [15]. Dedeoglu et al. [16] designed
hydroponics experiments on peach trees treated with different contents of nitrogen and
constructed nitrogen estimation models with reflectance at 425 nm, 574 nm, 696 nm, and
700 nm. The results showed that the models developed using hyperspectral reflectance
could distinguish different nitrogen nutrient states of plants with an accuracy of ≥70%.
These results provided a theoretical basis for the precise fertilization of cotton. There were
also studies on the relationship between cotton spectral characteristics and soil nitrogen
content, cotton photosynthetic parameters, cotton plant nutrient content, growth indices,
and yield factors under different nitrogen application rates [17–19]. These studies could
predict the physiological indices of cotton, optimize the application amount of nitrogen
fertilizer, and improve the growth and yield of cotton.

Few studies have studied the spectral changes of cotton leaves in specific growth
stages under nitrogen stress in salinized soil drip-irrigated cotton fields [20]. Studying the
spectral modeling of cotton leaf nutrition in salinized soil is the key to achieving accurate
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fertilization of cotton in southern Xinjiang, China. In this study, the spectral characteristics
of cotton leaves in the bud stage of salinized soil drip irrigation cotton fields were studied
in order to achieve precise fertilization management of cotton at the bud stage by spectral
technology. The bud stage is the period of the fastest growth of cotton nutrition and
the most sensitive period with the need for water and fertilizer. The nutrient index of
cotton in this period is important to monitor to guide fertilizer management. In this study,
hyperspectral technology was used for spectral characteristics analysis of cotton leaves at
the bud stage to obtain the spectral reflectances, and the growth and development of cotton
bud stage leaves were examined through spectral characteristics to achieve nondestructive
health monitoring of the cotton bud stage leaves.

2. Materials and Methods
2.1. Experiment Design

The Agricultural Test Station of Tarim University in Alar City, Xinjiang, China, was
selected as the test site (80◦45′ E, 40◦37′ N). This area is part of the extreme continental
arid desert climate of the warm temperate zone and is mainly irrigated. The area where
the experimental field is located has an annual precipitation of about 56 mm, an annual
evaporation of about 2000 mm, a frost-free period of about 220 days, an annual average tem-
perature of about 10.7 ◦C, an annual sunshine duration of about 2900 h, and a cumulative
temperature greater than 10 ◦C of about 4113 ◦C [21].

To study the quantitative relationship between the spectral vegetation index char-
acteristics of cotton leaves and chlorophyll density on salinized soil, different nitrogen
rates were applied to the field plot experiment in 2022. The synthesis of photosynthetic
pigments can be indirectly affected by controlling the application rate of nitrogen fertilizer
[22] so as to obtain the chlorophyll content of crops with different gradients in different
test plots. The total area of the experimental plot is 0.33 ha. The basic nutrient status of the
surface layer of the experimental field was as follows: available nitrogen, 36.75 mg kg−1;
available phosphorus, 10.48 mg kg−1; available potassium, 188.06 mg kg−1; organic matter,
14.15 g kg−1; total salt, 5.62 g kg−1; and pH 8.50. There were 5 treatments with 3 replicates
per treatment, and each treatment was 0.02 ha. Drip irrigation under film was used in the
experimental plot. Nitrogen application rate of 0 kg·hm−2 was used as the reference. Five
nitrogen application gradients of 0 kg·hm−2 (N0), 150 kg·hm−2 (N1), 300 kg·hm−2 (N2),
450 kg·hm−2 (N3), and 600 kg·hm−2 (N4) were set up, and they were set with 3 replicates
per treatment; the artificially controllable conditions were strictly controlled to reduce errors
(Figure 1). The nitrogen fertilizer applied in the test field was urea. The application method
was integrated with water and fertilizer. From N2 to N4, 100 kg hm−2 was applied as base
fertilizer, and the rest was applied as topdressing 6 times, respectively, at bud stage, initial
flowering stage, full flowering stage, full boll stage, and batting stage, according to 10%,
15%, 25%, 25%, 15%, and 10% of the remaining pure nitrogen applied in each treatment.

2.2. Acquisition of the Spectral Data and Plant Sample Collection

The spectral measurements were all carried out in clear and windless weather at the
bud stage of cotton with a time interval of 12:00–16:00. An ASD Fieldspec FR2500 spectrom-
eter (Kirkland, WA, USA) was used to measure the spectral reflectance of 350–1050 nm
cotton leaves with a spectral resolution of 1 nm. The probe field of view of this spectrometer
is 25◦, so the measurement height of this study was set to 25 cm. Radiometric correction
was performed with a whiteboard before spectral testing. Spectral data and plant samples
were collected on 15 June 2022, during the cotton bud stage. In each treatment, spectral
reflectance was measured on the functional leaves of 20 sample points. Five cotton plants
were selected at each sample point, and five spectral curves were measured, and the av-
erage value was used as the average reflectance of the cotton plant. Therefore, a total of
300 spectral reflectance curves were obtained. After obtaining spectral reflectance data
of the leaves of 5 cotton plants from each sample point, the corresponding leaves were
collected as a mixed sample, and 20 mixed samples were collected for each treatment, for a
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total of 300 mixed samples. After the cotton leaf mixed sample was collected, it was put
into 0–4 ◦C incubator and sent to the laboratory to determine the chlorophyll content.

Figure 1. Schematic of the experimental location and experimental design.

2.3. Methods for the Spectral Data Pretreatment

The Savitzky–Golay (SG) filter method was used to smooth and denoise spectral data
in the MATLAB 2016a environment. The calculation method of SG convolution smoothing
is as follows:

Xi,Savitzky−Golay =
∑m

j=−m cjXi+j

N
(1)

where Xi,Savitzky−Golay is the value after smoothing at wavelength i; X is the value before
smoothing; m is the number of smoothing windows on the wavelength side; N is the
normalized index; and ∑m

j=−m cjXi+j is the smoothing coefficient, which is obtained by
polynomial fitting [23].

In this study, other spectral transformation methods [24] are as follows:
Continuum removal is calculated as follows:

CRj =
Rj

RCj
(2)

where CRj is the spectral reflectance of continuum removal, Rj is the original spectral
reflectance, and RCj is the continuum line reflectance.

The first derivative is calculated as follows:

R′
i =

Ri+1 − Ri−1

2∆λ
(3)

where R′
i is the spectral value of the first derivative, Ri+1 is the original spectral reflectance

of band i + 1, Ri−1 is the original spectral reflectance of band i − 1, and ∆λ is the band
interval between wavelengths λi+1 and λi.

The second derivative is calculated as follows:

R′′
i =

R′
i+1 − R′

i−1

2∆λ
(4)

where R′′
i is the spectral value of the second derivative, R′

i+1 is the first derivative value
of band i + 1, R′

i−1 is the first derivative value of band i − 1, and ∆λ is the band interval
between wavelengths λi+1 and λi.
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2.4. Determination of Chlorophyll Density

The chlorophyll density was extracted via tris-acetone buffer solution and determined
via ultraviolet spectrophotometry using the following calculations:

Ca

(
µmol mL−1

)
= 0.01373A663 − 0.000897A537 − 0.003046A647 (5)

Cb

(
µmol mL−1

)
= 0.02405A647 − 0.0004305A537 − 0.005507A663 (6)

Chl a
(

mg m−2
)
= Ca × Ma × V/(1000 × WF × SLW) (7)

Chl b
(

mg m−2
)
= Cb × Mb × V/(1000 × WF × SLW) (8)

Chl a + b
(

mg m−2
)
= Chl a + Chl b (9)

where Ca and Cb are the molar concentrations of chlorophyll a and chlorophyll b, respec-
tively; Chl a, Chl b, and Chl a + b are the densities of chlorophyll a, chlorophyll b, and total
chlorophyll, respectively; A is absorbance; V is the colorimetric volume; Ma and Mb are the
molecular weights of chlorophyll a and chlorophyll b, respectively; WF is fresh leaf weight;
and SLW is the specific leaf weight [25].

2.5. Modeling and Accuracy Verification Methods

Two modeling methods were used to estimate chlorophyll density in this study, namely,
the artificial neural network (ANN) algorithm and support vector regression (SVR). These
two machine learning algorithms are the most common modeling methods at present [26].
In this study, chlorophyll density is the dependent variable y, and spectral variable is the
independent variable x. ANN’s multilayer perceptron (MLP) model was used for modeling;
the selected kernel function of SVR was polynomial, the regression precision ε was 0.1,
penalty parameter C was 6, and the γ value was 2.0.

In this study, R2, RMSE, RPIQ, and SEL/SEP were used as precision verification
parameters [27]. R2 is the determination coefficient of the model. RMSE is the root mean
square error. RPIQ is the ratio of the quartile distance to the RMSE. SEL/SEP is the ratio of
the standard error of the measured value to the standard error of the predicted value. The
closer that R2 and SEL/SEP are to 1 and a smaller RMSE correlate to a smaller deviation
between the measured value and the predicted value of the index and a higher accuracy
of the model. Moreover, it is generally believed that if RPIQ < 1.7, the reliability of the
model is low. If 1.7 ≤ RPIQ < 2.2, the model has relatively balanced forecasting ability. If
RPIQ ≥ 2.2, the model has good predictive ability.

3. Results
3.1. Variation Characteristics of Chlorophyll Density in Cotton Leaves at the Bud Stage

The densities of Chl a, Chl b, and Chl a + b in cotton leaves of different treatments
at the bud stage were measured, and descriptive statistics were performed for these data
(Table 1).

As shown in Table 1, within each treatment, the standard deviation and variance of
chlorophyll Chl a, Chl b, Chl a + b, and Chl a/Chl b values were low. From the perspective
of maximum and minimum values, the data in these groups were relatively concentrated
with a small degree of dispersion. From the perspective of standard error, the sampling
distribution and sampling error of the data were relatively low. Therefore, the samples
remained highly representative, and the data were relatively reliable. The coefficient of
variation (C. V.) could reflect the variation in chlorophyll density in cotton leaves within
the group. Usually, a CV ≤ 10% represents weak variation, 10% ≤ CV ≤ 100% represents
medium variation, and CV ≥ 100% represents strong variation (Kesteven, 1946) [28].
The maximum variation coefficient of all chlorophyll densities was 26.67. Therefore, the
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chlorophyll densities (Chl a, Chl b, Chl a + b, Chl a/Chl b) of all treatments were in the
degree of weak and medium variation.

Table 1. Descriptive statistics of leaf chlorophyll density at the cotton bud stage.

Type Treatment Minimum Maximum Mean S.D. SEM. VAR. C.V.

Chl a

N0 0.21 0.49 0.15 0.04 0.02 0.001 26.67
N1 0.35 0.57 0.28 0.06 0.03 0.004 21.43
N2 0.34 0.39 0.29 0.06 0.03 0.004 20.69
N3 0.38 0.38 0.36 0.01 0.01 0.000 2.78
N4 0.41 0.45 0.38 0.03 0.02 0.001 7.89

Chl b

N0 0.07 0.10 0.08 0.01 0.01 0.000 12.50
N1 0.09 0.14 0.11 0.02 0.01 0.000 18.18
N2 0.08 0.14 0.12 0.02 0.01 0.001 16.67
N3 0.14 0.15 0.15 0.01 0.00 0.000 6.67
N4 0.14 0.16 0.15 0.01 0.00 0.000 6.67

Chl a + b

N0 0.19 0.32 0.24 0.05 0.02 0.002 20.83
N1 0.27 0.49 0.39 0.08 0.04 0.007 20.51
N2 0.29 0.48 0.41 0.08 0.04 0.006 19.51
N3 0.49 0.53 0.51 0.02 0.01 0.000 3.92
N4 0.49 0.57 0.53 0.04 0.02 0.001 7.55

Chl a/Chl b

N0 1.71 2.05 1.85 0.12 0.05 0.015 6.48
N1 2.07 2.66 2.41 0.23 0.10 0.053 9.54
N2 2.12 2.98 2.48 0.33 0.15 0.107 13.31
N3 2.30 2.54 2.47 0.11 0.06 0.013 4.45
N4 2.39 2.68 2.48 0.14 0.07 0.018 5.65

Note: Chl a, Chl b, Chl a + b, and Chl a/Chl b are chlorophyll a density, chlorophyll b density, total chlorophyll
density, and ratio of chlorophyll a to chlorophyll b, respectively. S.D., SEM., VAR and C.V. are standard deviation,
standard error, variance and coefficient of variation respectively.

The cotton in the bud stage was mainly in a vegetative growth stage. Some differences
were observed in chlorophyll density among the treatments. Under nitrogen stress, the
chlorophyll concentration and photosynthetic rate of plant leaves significantly decreased,
and plant growth was inhibited [29,30]. The chlorophyll densities (Chl a, Chl b, Chl a + b)
of treatment N0 were the lowest, and the analysis of variance showed that the chlorophyll
density of treatment N0 was significantly different from those of the other treatments
(p < 0.05). Since N0 was the no-nitrogen fertilizer treatment, cotton had evident nitrogen
stress. The amount of chlorophyll synthesis in the cotton leaves under N0 was insufficient,
and led to its chlorophyll density always being at a low level, which was far lower than
those of other treatments. This may result in lower photosynthetic intensity and inadequate
plant nutrients supplied to unfertilized cotton leaves.

The amount of conventional pure nitrogen application is 300 kg·hm−2 in the cotton
planting area of Xinjiang [31]. Treatment N1 represents half of the traditional amount
of nitrogen application, and treatment N2 represents the traditional amount of nitrogen
application, respectively. Table 1 shows that the chlorophyll densities of N1 and N2
were higher than that of N0 and lower than that of N3 and N4. The analysis of variance
showed that there were no significant differences in the chlorophyll densities of N1 and
N2 (p > 0.05), but they were significantly lower than those of N3 and N4 (p ≤ 0.05). It
was indicated that the chlorophyll density of cotton leaves could reach the same level
with 0.5 times the conventional application rate compared with that of the conventional
application amount in the cotton planting area of Xinjiang. While the difference in chloro-
phyll density between N3 and N4 was not significant (p > 0.05), it was significantly higher
than the chlorophyll density of other treatments (p ≤ 0.05). It was also indicated that the
chlorophyll density of cotton leaves significantly increased when the nitrogen application
was more than conventional. Further, 1.5 times and 2 times the amount of conventional
fertilization had the same effect. From the measured net photosynthetic rate, the values
of N0 to N4 were 27.2 µmol CO2 m−2 s−1, 28.0 µmol CO2 m−2s−1, 22.5 µmol CO2 m−2s−1,



Agronomy 2024, 14, 662 7 of 16

19.4 µmol CO2 m−2 s−1, and 17.2 µmol CO2 m−2s−1, respectively. N3 and N4 were signifi-
cantly higher than other treatments. Specifically, the chlorophyll densities of the leaves of
cotton grown on the basis of the two fertilization amounts were not significantly different,
but their photosynthetic intensities and plant nutrient status were significantly better than
those of the other treatments. The Chl a/Chl b value of N0 was significantly lower than
those of other treatments (p ≤ 0.05), and the differences among other treatments were not
significant (p > 0.05). It was indicated that nitrogen stress occurred for the cotton without
fertilization treatment, and its physiological function had been affected. Because it is a
healthy plant, the ratio of Chl a to Chl b was constant [32]. In this study, the ratio of chl
a to chl b of cotton leaves at bud stage was about 2.5 (Table 1). A significant change in
the Chl a/Chl b value occurred, illustrating that the physiological function was affected.
Therefore, in Table 1, with the exception of N0, no nutrient stress occurred for the cotton of
other treatments, and their physiological functions remained at a healthy level.

3.2. The Spectral Characteristics of Cotton Leaves at the Bud Stage

The spectral reflectance of cotton leaves at 350~1050 nm was measured under different
treatments. The reflectance curves were smoothed, and then continuum removal was
carried out. Moreover, the reflectivity spectrum curves were resampled at 10 nm, and
the first- and second-order differential treatments were performed to analyze the spectral
characteristics of the cotton leaves at the bud stage.

Under nitrogen deficiency, the substrate area of plant leaf chloroplasts becomes larger,
the lamellar structure is loose, and the gap is serious [33]. Figure 2a shows that all the
original reflectance spectra curves of cotton leaves at the bud stage were consistent with
those of typical green plants. Moreover, all the reflectance peaks occurred in the green
band at approximately 550 nm and the near-infrared band between 750 nm and 1050 nm.
Two absorption valleys were observed in the blue–violet band at approximately 410 nm and
the red band at approximately 670 nm. The reflectance spectrum curve of vegetation sharply
increased in the red-edge band of 680–760 nm, forming a steep and nearly straight-line
shape. In the plateau area of the near-infrared waveband, the reflectivities of cotton leaves
at the bud stage of different treatments were significantly different. In the stable region
from 765 nm to 880 nm, the average reflectivities of N0, N1, N2, N3, and N4 were 0.265,
0.366, 0.379, 0.446, and 0.470, respectively. Multiple comparisons showed that there were
significant differences in leaf reflectance between N0 and the other treatments (p ≤ 0.05),
no significant differences between N1 and N2 (p ≥ 0.05), significant differences between
N1 and N2 with the other treatments (p ≤ 0.05), no significant differences between N3
and N4 (p ≥ 0.05), and significant differences between and N3 and N4 with the other
treatments (p ≤ 0.05). The size of the near-infrared spectral reflectance was related to the
tissue structure of the cotton leaves at the bud stage of each treatment. Certain differences
were apparent in the tissue structure of cotton leaves at the bud stage with the different
nitrogen application levels. The spectral reflectance of nitrogen-deficient cotton leaves was
low in this band range due to abnormal tissue structure development. However, in the
treatments with 1.5 times and 2 times the conventional fertilizer amount, the leaf tissue
structure was very healthy, and the spectral reflectance was at a high level in this band
range. The wavelength positions of the spectral curves of each treatment reaching the
plateau area were not significantly different (p > 0.5), which were all approximately 763 nm.

Figure 2b shows the continuum removal spectral curves of the five treatments of cotton
leaves at the bud stage, reflecting the spectral absorption characteristics of cotton leaves. As
shown in Figure 2b, there were two absorption valleys in the continuum removal curve of
leaves, which were located at wavelengths of 500 nm and 675 nm. In these two absorption
valleys, the absorption depth of N0 was the lowest, while the absorption depth of N4
was the largest. In the absorption valley near 500 nm, the leaf spectral absorption depth
of the N0 treatment was 0.597, which was significantly different from those of the other
treatments (p ≤ 0.05). There was no significant difference between N1 and N2 (p > 0.5),
and the absorption depths of N1 and N2 were 0.676 and 0.677, respectively; however, they
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were significantly different from those of N3 and N4 (p ≤ 0.05). No significant difference
was observed between N3 and N4 (p > 0.5), and their absorption depths were 0.719 and
0.723, respectively. No significant difference was observed in the lowest point wavelength
of the absorption valley of N1, N2, and N3 (p > 0.5), and their values were 500 nm, 502 nm,
and 502 nm, respectively, but there was a significant difference between N1, N2, and N3
(495 nm) and N4 (497 nm) (p ≤ 0.05). In the absorption valley near 675 nm, the leaf spectral
absorption depth of the N0 treatment was 0.775, which was significantly different from
those of the other treatments (p ≤ 0.05), and no significant differences were observed
between the other treatments (p > 0.5). The values of N1 to N4 were 0.825, 0.838, 0.852,
and 0.854, respectively. The absorption depth also showed an increasing trend. The lowest
point wavelengths of the absorption valley were 675 nm, 674 nm, 676 nm, 677 nm, and
677 nm. No significant differences were observed between the different treatments (p > 0.5).
Therefore, these two absorption valleys were within the visible light range, and the depth
of the absorption valleys near 675 nm was greater than that near 500 nm. However, the
lowest point of the absorption valley near 500 nm shifted to the shortwave direction with
increasing nitrogen.
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application levels. (a) Original reflectance spectral curve, (b) Continuum removal spectrum curve,
(c) The first-derivative spectrum, and (d) The second-derivative spectrum.

To show the essential characteristics of the plant spectrum, spectral differentiation
technology can be applied to reduce the influence of the noise spectrum on the target
ground object spectrum to a certain extent for environmental background and atmospheric
effects [34]. Spectral differential data are widely used in the extraction of vegetation
biochemical information. In this study, two stable peaks were observed (Figure 2c) in the
first-order differential spectral curve of cotton leaves at the bud stage: one at approximately
520 nm and the other at approximately 710 nm. The first-order differential values of
each treatment near 520 nm were all approximately 0.188, with no significant difference
(p > 0.5), forming an almost overlapping peak. For the first-order differential values near
710 nm, no significant difference between the other treatments was observed, except for the
significant difference between N0 and other treatments; the first-order differential peak of
the treatment N0 appeared at 700 nm, and for all other treatments, the peak appeared after
710 nm. The second-order differential spectrum curve had an evident peak and an evident
valley. No significant difference was observed in the second-order differential peak value
and the wavelengths of the peak value at approximately 690 nm among all treatments
(p > 0.5). However, no significant difference was observed in the second-order differential
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valley value and the wavelengths of the valley value near 730 nm among all treatments,
except for the significant difference between N0 and the other treatments. The valley
value of N0 was significantly higher than that of the other treatments, and the valley value
appeared at 720 nm, while those of the other treatments appeared at 730 nm. Therefore, the
leaf reflectance at approximately 520 nm and 690 nm was not sensitive to changes in the
amount of nitrogen application. The leaf reflectance near 710 nm and 730 nm was relatively
sensitive to changes in the amount of nitrogen application.

Prsa et al. [35] showed that the chlorophyll content of plant leaves increased with
increasing nitrogen application in a certain period. As shown in Figure 3, no significant dif-
ference was observed in the mean spectral reflectance of the near-infrared bands (Figure 3a)
and the absorption valley spectral absorption depth (Figure 3b) near 500 nm of cotton
leaves in the bud stage between N1 and N2 or between N3 and N4. Their values had a
significant upward trend with increasing nitrogen application. The absorption depth near
675 nm, the first-order differential peak value (Figure 3c) at 710 nm, and the second-order
differential valley value (Figure 3d) at 730 nm of the cotton leaves in treatment N0 were
significantly different from those of other treatments, while no significant difference was
observed in all other treatments. However, their values also tended to increase with in-
creasing nitrogen application. No significant difference was observed in the second-order
differential peak value near 690 nm among all treatments, but a certain increasing trend
occurred with increasing nitrogen application. Therefore, the mean spectral reflectance of
the near-infrared band, the spectral absorption depth of the absorption valleys near 500 nm
and 675 nm, the first-order differential peak near 710 nm, the second-order differential
peak near 690 nm, and the second-order differential valley near 730 nm of cotton leaves
with different treatments all had an increasing trend. As shown in Figure 3, these spectral
transformation values were consistent with the changing trend of chlorophyll density
(Chl a, Chl b, Chl a + b); specifically, with the increase in the nitrogen application, the leaf
chlorophyll density increased, and the spectral transformation values of some bands of
cotton leaves also changed accordingly at the bud stage.
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Figure 3. Variation trend of cotton leaf chlorophyll density and different spectral transformation val-
ues at the bud stage. (a) Variation trend of the near-infrared band average reflectance and chlorophyll
density, (b) Variation trend of the absorption valley depth at approximately 500 nm and 675 nm and
chlorophyll density, (c) Variation trend of the first derivative value at approximately 710 nm and
chlorophyll density, and (d) Variation trend of the second derivative value at approximately 690 nm
and 730 nm and chlorophyll density.
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Based on the correlation analysis between spectral transformation values and chloro-
phyll density and the ratio of chlorophyll a to chlorophyll b of cotton leaves at the bud stage
(Table 2), a very significant correlation was observed between Chl a, Chl b, Chl a + b and
ρnir, H500nm, H675nm, F710nm, λ710nm, S730nm, and λ730nm. Among them, ρnir, λ710nm, and
S730nm had the greatest correlation. However, the leaf Chl a/Chl b had a very significant
correlation with ρnir, F710nm, λ710nm, S730nm, and λ730nm, and the correlation was the most
significant with ρnir, λ710nm, and λ730nm. Therefore, an estimation of the four kinds of
chlorophyll density using these parameters should be possible.

Table 2. Correlation between the spectral transformation values and chlorophyll density and the
ratio of chlorophyll a to chlorophyll b in cotton leaves at the bud stage.

Spectral Variables Chl a Chl b Chl a + b Chl a/Chl b

ρnir 0.724 ** 0.664 ** 0.715 ** 0.657 **
λnir −0.100 −0.053 −0.089 −0.265
H500nm 0.558 ** 0.583 ** 0.591 ** 0.430 *
λ500nm −0.335 −0.385 −0.350 −0.092
H675nm 0.566 ** 0.645 ** 0.658 ** 0.480 *
λ675nm 0.163 0.288 0.194 −0.078
F710nm 0.694 ** 0.673 ** 0.694 ** 0.536 **
λF710nm 0.792 ** 0.634 ** 0.711 ** 0.795 **
S690nm 0.525 * 0.506 * 0.524 * 0.387
λS690nm 0.369 0.361 0.370 0.352
S730nm −0.696 ** −0.671 ** −0.695 ** −0.558 **
λS730nm 0.669 ** 0.597 ** 0.656 ** 0.697 **

Note: * means significant correlation; ** means extremely significant correlation; ρnir is average reflectance in
near-infrared band; λnir is the wavelength position reaching the platform region; H500nm is the depth of the
absorption valley near the 500 nm wavelength; λ500nm is the lowest position of the absorption valley near the
500 nm wavelength; H675nm is the depth of the absorption valley near the 675 nm wavelength; λ675nm is the lowest
position of the absorption valley near the 675 nm wavelength; F710nm is the maximum of the first derivative near
710 nm. λF710nm is the wavelength position corresponding to the maximum of the first derivative near 710 nm;
S690nm is the maximum of the second derivative near 690 nm; λS690nm is the wavelength position corresponding to
the maximum of the second derivative near 690 nm; S730nm is the minimum of the second derivative near 730 nm;
and λS730nm is the wavelength position corresponding to the minimum of the second derivative near 730 nm.
Chl a, Chl b, Chl a + b, and Chl a/Chl b are chlorophyll a density, chlorophyll b density, total chlorophyll density,
and ratio of chlorophyll a to chlorophyll b, respectively.

3.3. Chlorophyll Estimation Modeling of Cotton Leaves Based on Spectral Variables

The chlorophyll density data of cotton leaves used for modeling were statistically
analyzed. Table 3 shows the descriptive statistical characteristics of the chlorophyll density
in the cotton leaves. The average chlorophyll density in the leaves of the whole sample
in this study was 6.73 mg m−2. The mean values of the modeling set and validation set
were 6.84 mg m−2 and 6.38 mg m−2, respectively, and the mean values of the whole sample
were between the modeling set and validation set.

Table 3. Statistical characteristics of the chlorophyll density of cotton leaf samples.

Type of Samples Chlorophyll Type Sample Number Maximum Minimum Mean Standard Deviation

Whole sets
Chl a 87 0.45 0.12 0.31 0.08
Chl b 87 0.16 0.067 0.11 0.03
Chl a + b 87 0.62 0.19 0.42 0.10

Calibration sets
Chl a 51 0.45 0.14 0.30 0.08
Chl b 51 0.16 0.07 0.11 0.03
Chl a + b 51 0.62 0.22 0.41 0.11

Validation sets
Chl a 26 0.42 0.12 0.33 0.08
Chl b 26 0.15 0.07 0.12 0.02
Chl a + b 26 0.57 0.19 0.44 0.10

Note: Chl a, Chl b, and Chl a + b are chlorophyll a density, chlorophyll b density, and total chlorophyll density, respectively.
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With 12 spectral indices as independent variables and 4 chlorophyll density data as
response variables, cotton leaf chlorophyll estimation models based on SVR and ANN
algorithms were constructed, and their accuracy was verified.

The spectral parameters in Table 4 were selected to estimate the chlorophyll density of
cotton leaves. Spectral parameters were taken as independent variables, and leaf chloro-
phyll density was taken as the dependent variable. SVR and ANN algorithms were used to
estimate leaf chlorophyll density. By comparing the coefficient of determination (R2), root
mean square error (RMSE), the ratio of quartile distance to root mean square error (RPIQ),
and the ratio of the standard error of the measured value to the standard error of predicted
value (SEL/SEP) between the two models, the optimal models were selected to study the
estimation of cotton leaf chlorophyll density at the bud stage under Xinjiang irrigation
conditions. R2 was used to determine the goodness of fit of the models, and RMSE, RPIQ,
and SEL/SEP were used to test the reliability of the estimated models.

Table 4. Estimation results of the chlorophyll density in the cotton leaves.

Modeling Method Chlorophyll Type
Modeling Verification

R2 RMSE RPIQ SEL/SEP R2 RMSE RPIQ SEL/SEP

SVR
Chl a 0.76 0.07 0.29 5.51 0.66 0.06 0.31 6.61
Chl b 0.62 0.018 0.86 2.38 0.67 0.016 0.87 2.59
Chl a + b 0.74 0.093 0.24 6.63 0.66 0.084 0.25 7.85

ANN
Chl a 0.92 0.025 4.13 0.94 0.77 0.050 1.91 0.97
Chl b 0.77 0.012 3.38 1.17 0.69 0.013 3.12 1.01
Chl a + b 0.94 0.026 5.77 1.02 0.77 0.050 2.25 1.15

Note: Chl a, Chl b, and Chl a + b are chlorophyll a density, chlorophyll b density, and total chlorophyll density, respectively.

The spectral estimation model of chlorophyll density was established via SVR and
ANN algorithms. By comparing the parameters of the different estimation models, the
estimation model constructed via the ANN algorithm had higher accuracy, while the
model constructed via the SVR algorithm did not pass accuracy verification and could not
accurately predict the density of the three kinds of chlorophyll (Figure 4). The determination
coefficients of the three chlorophyll samples via the ANN models were 0.92, 0.77, and 0.94
for the modeling set and 0.77, 0.69, and 0.77 for the verification set. In addition, the RPIQ
of the ANN model was greater than 2.2, and SEL/SEP was close to 1, indicating that
the chlorophyll density estimation models built based on the ANN algorithm had robust
prediction ability.
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4. Discussion
4.1. Effects of the Nitrogen Application Rate on the Spectral Characteristics of Cotton Leaves

Nitrogen is an essential nutrient element for crop growth and plays an important role
in the process of crop growth. Nitrogen deficiency in crops leads to decreased photosyn-
thesis of plant leaves and growth retardation [36,37]. However, excessive application of
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nitrogen fertilizer reduces the tillering of crops [38]. The biological basis of monitoring
crop growth via hyperspectral technology is that the difference in the internal structure
and material content of crop leaves leads to a difference in spectral reflectivity, and then
information on the material composition and internal structure of leaves can be obtained by
studying the difference in spectral reflectance. The nitrogen application rate affects some
physiological indices of crops and thus affects the spectral characteristics of crops. The
spectral characteristics of crops change due to changes in the physiological indices of crops.
In this study, chlorophyll density increased with increasing nitrogen application in a certain
range. Seven spectral parameters varied with the chlorophyll density of cotton leaves.
Studies have shown that the net photosynthetic rate (Pn) and photosynthetically active
radiation (FAPAR) of crops are sensitive to changes in nitrogen application. By establishing
the relationship between these two factors and hyperspectral data, the band positions
sensitive to nitrogen changes are 350–450 nm and 600–750 nm [39]. The above deductions
are related to the conclusions of this study. A high correlation between nitrogen content
and photosynthetic pigment content in crop leaves was found [40]. Therefore, nitrogen
fertilizer could promote the accumulation of chlorophyll by increasing the nitrogen content
of crop leaves, thus improving the photosynthetic rate of leaves. However, the sensitive
bands found in the above studies were inconsistent with this study. The sensitive spectral
indices of this study were ρnir, H500nm, H675nm, F710nm, λ710nm, S730nm, and λ730nm due
to the influence of salinized soil. Hyperspectral estimation of physiological parameters
of sweet corn and other crops showed that the chlorophyll absorption reflectance index
(CARI), double difference index (DD), red edge inflection point (REIP), and chlorophyll red
edge (CIred-edge) were good predictors of the physiological parameters, confirming the
key role of the red edge spectral region [41]. Compared with the above study, the spectral
index was not constructed in this study. However, many spectral transformation methods
could effectively express the relationship between the spectral reflectance and biochemical
components (such as chlorophyll, nitrogen content, and water status) of crops. Due to
the effect of nitrogen fertilizer, many physiological and biochemical components in crops
could be changed. The accuracy of the estimation model could be improved by fusing
some related physiological and biochemical components with hyperspectral parameters to
estimate chlorophyll, nitrogen, and other indicators [42]. Additionally, an effective method
is to study the spectral characteristics of the physiological components containing nitrogen
in crops. Due to the different methods used for selecting sensitive parameters, the sensitive
spectral index screened in this study is rarely used as a modeling factor for estimating the
physiological and biochemical components of crops.

4.2. Spectral Characteristics of the Cotton Leaves at Different Growth Stages

The content of physiological and biochemical components of plants is different in
different growth stages. Due to the different contents of biochemical components in
plants at different growth stages, the spectral characteristics are different. Therefore, it is
of great significance to study the spectral variation characteristics of plants at different
growth stages to understand the nutrient supply of plants at different stages. The results
showed that the spectral characteristics of wheat were significantly affected by water stress
at different growth stages [43]. Canopy chlorophyll density is a key indicator of crop
growth. Xing et al. [44] showed that the spectral factors sensitive to chlorophyll density
were different in different growth stages of crops. The bud stage is the fastest-growing
period of cotton; however, the spectral characteristics of the cotton bud stage are rarely
studied. In our study, the spectral parameters (ρnir, H500nm, H675nm, F710nm, S690nm, S730nm)
of the cotton bud stage increased with increasing chlorophyll density to a certain extent. In
contrast to this study, Wang et al. [12] found spectral bands sensitive to oxidase activity in
the cotton bud stage. Priya & Ghosh [45] studied the spectral characteristics of lead stress
at different growth stages of cotton and found that the third decomposition layer between
651 nm and 742 nm after the spectral curve was transformed by wavelet; due to the stress of
Pb, a significant correlation was observed above—0.70. Due to different research purposes
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or processing methods of spectral data, the spectral sensitive parameters obtained were
also different; however, the spectral characteristics of cotton were different in different
growth stages, and the influence degree of environmental factors on spectral reflectance
was not consistent in different growth stages. Because spectral reflectance is affected by
many factors, which increases the complexity and uncertainty of spectral preprocessing,
the method in this study is inevitably limited in application.

4.3. Influence of the Different Spectral Factors on Modeling Accuracy

If the modeling method is the same, then the selection of modeling factors is critical.
The accuracy of the model is directly related to the choice of modeling factors. Nine wave-
lengths of 455, 545, 571, 615, 641, 662, 706, 728, and 756 nm were extracted as sensitive
wavelengths; these wavelengths had a good correlation with the chlorophyll content of
winter wheat [46]. Li et al. [47] compared the leaf chlorophyll content estimation accuracy
of IPRF-based and NPRF-based methods and found that NpRF increased the number of
frequency bands for estimating leaf chlorophyll content. Some studies showed that DCNI I
was the best spectral index to estimate chlorophyll content, and PPR/NDVI was positively
correlated with chlorophyll content. The combination of DCNI I and PPR/NDVI with
nitrogen-related indices had good potential to evaluate nitrogen content [48]. In contrast
to the above studies, part of the waveband information of the original waveband, first
derivative, second derivative, and continuum removal were extracted as modeling factors
in our study, and the obtained model could accurately predict the leaf chlorophyll density
at the bud stage of cotton. Different spectral transformation methods could enhance the
hyperspectral characteristic information, strengthen the correlation between hyperspec-
tral reflectance and crop chlorophyll content, and improve the accuracy of the inversion
model [49]. Therefore, the characteristic bands or parameters that were highly correlated
with cotton chlorophyll content and came from different spectral transformation data could
be selected as modeling factors to improve the stability and robustness of the model. The
spectral index of different transformation methods potentially contained more useful spec-
tral information related to chlorophyll content, which could increase the accuracy of the
spectral monitoring of the chlorophyll content.

5. Conclusions

In this study, cotton leaf reflectance spectral curves and chlorophyll density data of
cotton leaves with different nitrogen application rates were obtained through cotton pot
experiments with different nitrogen application rates. The spectral change characteristics of
cotton leaves with increasing nitrogen application rates were analyzed. The results showed
the following:

(1) In the reflectance spectral curve of the cotton bud stage, the position of the near
infrared reaching the platform region was consistent, which was 763 nm, and did
not change with an increasing nitrogen application rate. The average reflectance at
765~880 nm was significantly different between N-stressed and N-unstressed cotton.

(2) In the continuum removal spectrum of the cotton bud stage, with increasing N
application, the lowest point of the absorption valley near 500 nm shifted to the
shortwave direction.

(3) The average reflectance of the near-infrared band, the absorption valley depths near
500 nm and 675 nm, the first derivative of the 710 nm reflectance, and the second
derivatives of the 690 nm and 730 nm reflectance increased with increasing nitrogen
application and chlorophyll density, and significant correlations were observed with
the chlorophyll density.

(4) SVR and ANN algorithms were used to estimate the chlorophyll density. The results
showed that the ANN algorithm could accurately predict the chlorophyll density of
cotton leaves at the bud stage.
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16. Dedeoğlu, M. Estimation of critical nitrogen contents in peach orchards using visible-near infrared spectral mixture analysis.
J. Near Infrared Spectrosc. 2020, 28, 315–327. [CrossRef]

17. Yi, Q.; Wang, F.; Bao, A.; Jiapaer, G. Leaf and canopy water content estimation in cotton using hyperspectral indices and radiative
transfer models. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 67–75. [CrossRef]

18. Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring the leaf water content and specific leaf weight of cotton
(Gossypium Hirsutum L.) in saline soil using leaf spectral reflectance. Eur. J. Agron. 2012, 41, 103–117. [CrossRef]

https://doi.org/10.1080/00103624.2012.653027
https://doi.org/10.1016/j.inpa.2017.08.002
https://link.springer.com/article/10.1007/s10333-007-0094-6
https://link.springer.com/article/10.1007/s10333-007-0094-6
https://doi.org/10.1007/s10333-007-0094-6
https://doi.org/10.1038/srep13389
https://www.ncbi.nlm.nih.gov/pubmed/26303807
https://doi.org/10.3389/fpls.2016.01829
https://www.ncbi.nlm.nih.gov/pubmed/28018373
https://doi.org/10.1117/12.2029165
https://doi.org/10.1080/22797254.2022.2117650
https://www.ncbi.nlm.nih.gov/pubmed/38239331
https://doi.org/10.1016/j.rsase.2023.101109
https://doi.org/10.1016/j.indcrop.2020.112699
https://doi.org/10.13031/2013.42229
https://doi.org/10.3390/rs14010136
https://doi.org/10.1016/j.compag.2021.106390
https://doi.org/10.1002/biot.202200623
https://www.ncbi.nlm.nih.gov/pubmed/37144795
https://doi.org/10.3390/rs14205201
https://doi.org/10.7717/peerj.11042
https://doi.org/10.1177/0967033520939319
https://doi.org/10.1016/j.jag.2014.04.019
https://doi.org/10.1016/j.eja.2012.04.003


Agronomy 2024, 14, 662 15 of 16

19. Feng, D.; Xu, W.; He, Z.; Zhao, W.; Yang, M. Advances in plant nutrition diagnosis based on remote sensing and computer
application. Neural Comput. Appl. 2020, 32, 16833–16842. [CrossRef]

20. Heng, T. Accumulation Characteristics and Optimal Regulation of Water, Salt and Nutrient in Film−Mulched Cotton (Gossypium
Hirsutum L.) and Nutrient in Film−Mulched Cotton (Gossypium Hirsutum L.). Doctoral Dissertation, Shihezi University, Xinjiang,
China, 2022. (In Chinese) [CrossRef]

21. Han, Q.; Xue, L.; Qi, T.; Liu, Y.; Yang, M.; Chu, X.; Liu, S. Assessing the impacts of future climate and land-use changes on
streamflow under multiple scenarios: A case study of the upper reaches of the Tarim River in northwest China. Water 2024,
16, 100. [CrossRef]

22. Zebarth, B.J.; Younie, M.; Paul, J.W.; Bittman, S. Evaluation of leaf chlorophyll index for making fertilizer nitrogen recommenda-
tions for silage corn in a high fertility environment. Commun. Soil Sci. Plant Anal. 2002, 33, 665–684. [CrossRef]

23. Khosravi, V.; Ardejani, F.D.; Yousefi, S.; Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with
extreme learning machine and other data mining methods. Geoderma 2018, 318, 29–41. [CrossRef]

24. Que, H.; Zhao, X.; Sun, X.; Zhu, Q.; Huang, M. Identification of wheat kernel varieties based on hyperspectral imaging technology
and grouped convolutional neural network with feature intervals. Infrared Phys. Technol. 2023, 131, 104653. [CrossRef]

25. Burket, M.O.; Olmanson, L.G.; Brezonik, P.L. Comparison of Two Water Color Algorithms: Implications for the Remote Sensing
of Water Bodies with Moderate to High CDOM or Chlorophyll Levels. Sensors 2023, 23, 1071. [CrossRef] [PubMed]

26. Flynn, K.C.; Baath, G.; Lee, T.O.; Gowda, P.; Northup, B. Hyperspectral reflectance and machine learning to monitor legume
biomass and nitrogen accumulation. Comput. Electron. Agric. 2023, 211, 107991. [CrossRef]

27. Wang, J.; Ding, J.; Yu, D.; Teng, D.; He, B.; Chen, X.; Ge, X.; Zhang, Z.; Wang, Y.; Yang, X.; et al. Machine learning-based detection
of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Sci. Total
Environ. 2020, 707, 136092. [CrossRef] [PubMed]

28. Kesteven, G. The coefficient of variation. Nature 1946, 158, 520–521. [CrossRef]
29. Tian, T.; Wang, J.; Wang, H.; Cui, J.; Shi, X.; Song, J.; Li, T.; Li, W.; Zhong, M. Synergistic use of spectral features of leaf nitrogen

and physiological indices improves the estimation accuracy of nitrogen concentration in rapeseed. Int. J. Remote Sens. 2022, 43,
2755–2776. [CrossRef]

30. Kang, J.; Chu, Y.; Ma, G.; Zhang, Y.; Zhang, X.; Wang, M.; Lu, H.; Wang, L.; Kang, G.; Ma, D.; et al. Physiological mechanisms
underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. Crop J.
2023, 11, 638–650. [CrossRef]

31. Wang, H.; Wu, L.; Cheng, M.; Fan, J.; Zhang, F.; Zou, Y.; Chau, H.W.; Gao, Z.; Wang, X. Coupling effects of water and fertilizer on
yield, water and fertilizer use efficiency of drip-fertigated cotton in northern Xinjiang, China. Field Crops Res. 2018, 219, 169–179.
[CrossRef]

32. Ali, S.; Hafeez, A.; Ma, X.; Tung, S.A.; Chattha, M.S.; Shah, A.N.; Luo, D.; Ahmad, S.; Liu, J.; Yang, G. Equal potassium-nitrogen
ratio regulated the nitrogen metabolism and yield of high-density late-planted cotton (Gossypium hirsutum L.) in Yangtze River
valley of China. Ind. Crops Prod. 2019, 129, 231–241. [CrossRef]

33. Li, L.; Wang, Y. Independent and combined influence of drought stress and nitrogen deficiency on physiological and proteomic
changes of barley leaves. Environ. Exp. Bot. 2023, 210, 105346. [CrossRef]

34. Fiorio, P.R.; José, A.M.D.; Nanni, M.R.; Formaggio, A.R. Spectral differentiation among soils using spectral data from laboratory
and orbital sensor. Bragantia 2009, 69, 453–466. [CrossRef]

35. Prsa, I.; Stampar, F.; Vodnik, D.; Veberic, R. Influence of nitrogen on leaf chlorophyll content and photosynthesis of ‘Golden
Delicious’ apple, Acta Agriculturae Scandinavica. Sect. B Soil Plant Sci. 2007, 57, 283–289. [CrossRef]

36. Liu, K.; Chen, Y.; Li, S.; Wang, W.; Zhang, W.; Zhang, H.; Gu, J.; Yang, J.; Liu, L. Differing responses of root morphology and
physiology to nitrogen application rates and their relationships with grain yield in rice. Crop J. 2023, 11, 618–627. [CrossRef]

37. Yang, Y.; Huang, Z.; Wu, Y.; Wu, W.; Lyu, L.; Li, W. Effects of nitrogen application level on the physiological characteristics, yield
and fruit quality of blackberry. Sci. Hortic. 2023, 313, 111915. [CrossRef]

38. Marlene, B.H.S.; Onécimo, G.J.; Manuel SH, Á.; Iván, G.V.R.; Jairo, D.R.; Manelik, G.L.A.; Roberto, S.; Daniel, G.M.; David, I.G.R.;
Francisco, D.M.R.; et al. Effects of Different Irrigation Regimes and Nitrogen Fertilization on the Physicochemical and Bioactive
Characteristics of onion (Allium cepa L.). Horticulturae 2023, 9, 344. [CrossRef]

39. Han, P.; Zhai, Y.; Liu, W.; Lin, H.; An, Q.; Zhang, Q.; Ding, S.; Zhang, D.; Pan, Z.; Nie, X. Dissection of hyperspectral reflectance to
estimate photosynthetic characteristics in upland cotton (Gossypium Hirsutum L.) under different nitrogen fertilizer application
based on machine learning algorithms. Plants 2023, 12, 455. [CrossRef] [PubMed]

40. Kubar, M.S.; Wang, C.; Noor, R.S.; Feng, M.; Yang, W.; Kubar, K.A.; Soomro, K.; Yang, C.; Sun, H.; Mohamed, H.; et al. Nitrogen
fertilizer application rates and ratios promote the biochemical and physiological attributes of winter wheat. Front. Plant Sci. 2022,
13, 1011515. [CrossRef] [PubMed]
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