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Abstract: In an unmanned orchard, various tasks such as seeding, irrigation, health monitoring,
and harvesting of crops are carried out by unmanned vehicles. These vehicles need to be able to
distinguish which objects are fruit trees and which are not, rather than relying on human guidance.
To address this need, this study proposes an efficient and robust method for fruit tree detection
in orchard point cloud maps. Feature extraction is performed on the 3D point cloud to form a
two-dimensional feature vector containing three-dimensional information of the point cloud and
the tree target is detected through the customized deep learning network. The impact of various
feature extraction methods such as average height, density, PCA, VFH, and CVFH on the detection
accuracy of the network is compared in this study. The most effective feature extraction method
for the detection of tree point cloud objects is determined. The ECA attention module and the EVC
feature pyramid structure are introduced into the YOLOv8 network. The experimental results show
that the deep learning network improves the precision, recall, and mean average precision by 1.5%,
0.9%, and 1.2%, respectively. The proposed framework is deployed in unmanned orchards for field
testing. The experimental results demonstrate that the framework can accurately identify tree targets
in orchard point cloud maps, meeting the requirements for constructing semantic orchard maps.

Keywords: unmanned orchard; instance perception; driverless driving; efficient channel attention
mechanism; explicit visual center

1. Introduction

According to the latest statistics from China’s Ministry of Agriculture and Rural
Development, China’s total agricultural area is about 1.35 billion mu (approximately
90 million hectares) [1–5]. Among the many crops grown, apples, citrus (e.g., oranges and
tangerines), pears, peaches, and walnuts have the largest acreage, with apple orchards
covering about 2.2 million hectares with an annual output of about 41 million tons and
citrus fruits growing on about 2.3 million hectares [6,7]. This data highlights the importance
of fruit tree cultivation in China’s agricultural industry [1,8–10]. However, current robotic
technologies still face challenges in their application on large-scale farms, mainly due to
their over-reliance on manual control, which is inefficient and labor-intensive [11]. If an
autonomous vehicle seeks to navigate independently across diverse orchard types, such as
unmanned and precision agriculture orchards, a significant bottleneck hindering robotic
autonomy and automation within these settings is their lack of human-like intuition in
understanding and perceiving objects within point cloud maps [12,13]. Consequently, there
is a pressing need to devise methodologies that enhance robots’ perceptual capabilities in
orchard point cloud maps [14–16].

In tree instance detection methods, there are primarily three approaches: analysis
based on remote sensing technology, machine vision recognition methods, and LiDAR
technology. In recent years, hyperspectral imaging technology has been widely applied in
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tree detection. For instance, Jane [17] successfully differentiated trees from other land cover
types by analyzing hyperspectral images and identifying the high reflectance characteristics
of vegetation in the near-infrared band. However, these methods often require complex
preprocessing steps, cannot meet the requirements of real-time mapping in autonomous
driving, and are limited by data availability. With the advancement in computer vision
technology, deep learning methods, particularly convolutional neural networks (CNNs),
have become powerful tools for detecting objects in images. Object detection models like
YOLO have been applied by Chen [18] and Wang [19] to directly detect the positions of trees
from aerial images. Cao [20] used YOLOv7 for tree-shaped object detection and achieved
semantic segmentation of trees. Kenta [21] employed a 360° camera and YOLOv2 for tree
detection and real-time digital mapping. These deep learning methods have demonstrated
superior performance in handling large-scale datasets but training these models requires
a significant amount of annotated data. Additionally, visual recognition is susceptible to
various environmental interferences such as lighting conditions, visibility, and blurring
during platform movement, leading to weak generalization ability [22–27].

LiDAR technology provides an effective means of capturing three-dimensional infor-
mation of the Earth’s surface and objects [28–32]. Currently, there are two main types of
classification networks specialized in using point cloud data for object detection.

The first method directly utilizes three-dimensional point cloud data. Although this
method does not suffer from information loss, the computational cost is often high due to
the complexity of 3D data [33]. For example, Luke [34] identified trees from LiDAR data by
constructing a canopy height model (CHM), which accurately measures tree height and
volume. Point cloud classification further expands the application of LiDAR data. John [35]
classified point clouds, accurately distinguishing trees from building roof models. Guan [36]
achieved accurate tree classification by combining LiDAR data with deep learning. LiDAR
data analysis provides high-precision tree detection capabilities but direct processing of
3D point clouds is computationally complex and cannot be effectively used on mobile
platforms with limited computing power.

The second type of method reduces computational complexity by processing point
clouds into two-dimensional data. There are several methods for processing point clouds
into two-dimensional data. The method of Jansen [37] is to represent the 3D point cloud by
using several 2D perspective views. In the data preprocessing stage, point cloud images
are captured from 64 different angles with the image center as the origin, rotating at a
fixed radius. This approach helps reduce information loss to some extent by introducing
additional rotations to the scene and utilizing multiple instances in the classification process.
Others, like Li [38], project the point cloud onto a cylinder and represent it as a two-
dimensional point map to retain as much information as possible. They utilize a single
two-dimensional end-to-end fully convolutional network to simultaneously predict object
confidence and bounding boxes.

Similar to the approach described in this article, BirdNet+ [39] is an enhancement
of the object detection framework BirdNet [40]. BirdNet+ offers an end-to-end solution
for 3D object detection based on LiDAR data. It utilizes a bird’s-eye view representation,
a 2D structure with three channels converted from LiDAR point clouds, and employs a
two-stage architecture to obtain 3D-oriented boxes.

However, this method is designed for detecting single-frame LiDAR point clouds.
Single-frame LiDAR point clouds are sparse and cover a large range, resulting in numerous
empty pixels and few target pixels in the extracted two-dimensional feature view. Con-
sequently, the second-stage network detection component may encounter unnecessary
performance losses while processing empty pixels. Moreover, sparse target pixels may
lead to reduced accuracy in detecting small objects. These limitations render this method
unsuitable for testing on tree objects in orchard point cloud maps.

In our previous work [41], we introduced a method for detecting modeled point cloud
maps. To further enhance the robot’s ability to perceive tree instances in orchard maps, this
study proposes an improved method. Our method focuses on extracting local graphs from
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orchard point cloud maps to tackle challenges arising from the abundance of empty pixels
and sparse target pixels in the two-dimensional feature views derived from large-scale laser
point cloud frames. By directly detecting tree point clouds following orchard modeling,
we mitigate clustering errors in target prediction frames generated from single-frame laser
point clouds. The contributions of this study are outlined as follows:

• An improved end-to-end orchard point cloud object detection framework called
ODN-Pro has been proposed;

• Testing of multiple feature extraction methods to determine which feature extraction
layer is best for network detection;

• Testing of multiple deep learning network components for the optimal feature extrac-
tion method to obtain the optimal detection effect.

2. Materials and Methods
2.1. Data Acquisition

Due to the structural similarities between other types of arboreal orchards and fruit
orchards, we added other types of orchards to enhance the model’s generalization capability.
The data collection comprised three orchards: a lychee orchard and two tree orchards at
South China Agricultural University in Guangzhou, Guangdong, China, as shown in
Figure 1. The plants in these orchards are in the growth period of their phenological stages,
with sizes and spacing typically ranging from 2 to 3 m. The primary soil type is red soil.
The terrain is primarily hilly, with significant undulations. The local climate falls under
the subtropical monsoon climate category, characterized by hot and humid summers, mild
and dry winters, abundant annual precipitation, ample sunshine, and favorable conditions
for plant growth. Proper management practices are required for these orchards, including
regular pruning, weeding, and fertilizing, to maintain healthy plant growth and ensure
good yields. The AGX-HUNTER was employed as a mobile platform (as depicted in
Figure 2) to gather sensor data using a ring 32-line LiDAR, RS-Helios-5515 (RoboSense,
Shenzhen, China), and a 9-axis IMU (HIPNUC, Guangzhou, China) sensor, with the data
saved in rosbag format. Rosbag is a command-line tool and a set of APIs in the Robot
Operating System (ROS) for recording and replaying ROS message data. The RS-Helios-
5515 collected data at 10 Hz, while the 9-axis IMU collected data at 400 Hz. To ensure
thorough scanning, the mobile platform was manually controlled to traverse each row in
the orchard and return to the starting point to close the loop.

Figure 1. The data collection scenes. (a) Lychee orchard. (b) Cherry orchard. (c) Plum blossom orchard.

Subsequent to running the rosbag, the single-frame LiDAR data and IMU data were
utilized as inputs to the LIO-SAM algorithm [42] to generate global point cloud maps of
the orchards. Furthermore, a solid-state-like LiDAR was employed for data acquisition
to enhance the proposed method’s compatibility with different types of LiDAR. LiDAR
frames were obtained using the Livox-Avia LiDAR (Livox Technology, Shenzhen, China),
with IMU data from Livox-Avia’s built-in 200 Hz six-axis IMU and color image data from
the Realsense-D435 (Intel RealSense, Santa Clara, CA, USA). Color mapping was executed
using R3LIVE [43]. Through the use of LIO-SAM and R3LIVE, we ultimately generated
three orchard point cloud maps in XYZD and three in XYZRGB formats. These maps were
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then segmented into local point cloud maps for the model training and inference. For each
global point cloud map, points were randomly generated within the map, considered as
the center of the local maps, and segmented. Ultimately, we extracted 100 local maps from
each point cloud map, resulting in a total of 600 local point cloud maps.

Figure 2. AGX-HUNTER.

2.2. Data Augmentation

Data diversity contributes to better model robustness. To enhance the robustness
and generalization of the model, this study employs data augmentation on the training
dataset to improve the learning process. Various techniques are applied to the point cloud
dataset, including the following:

• Random Point Sampling: We utilized the Random Sample Consensus (RANSAC) filter
from the Point Cloud Library (PCL) to retain a fixed number of 100,000 points from the
original dataset. This quantity was determined by statistically analyzing the average
number of points in local maps. By applying this technique, we aim for the model to
perform well even in cases of incomplete modeling;

• Random Point Cloud Transformation: We apply a two-step random transformation
process to the point cloud. Initially, we rotate the point cloud by a random angle α, β,
and γ along the X, Y, and Z axes, respectively, where α, β, and γ are chosen uniformly
from the range [−π/6, π/6]. Subsequently, we scale the point cloud by a random
factor s, selected from the range [0.75, 1], to alter its size. This procedure aims to
enhance the robustness of the model against variations in object orientation and scale;

• Point Cloud Clipping: To simulate the effect of partial visibility and occlusions, we
randomly clip sections of the point cloud. A virtual clipping plane is defined by a
random normal vector and a distance from the origin, both of which are selected
based on a uniform distribution. This clipping plane then intersects the point cloud
and points on one side of the plane (chosen randomly) are discarded. This technique
mimics realworld scenarios where entire objects are seldom fully captured;

• Noise Addition: To mimic the inaccuracies inherent in realworld data collection, we
introduce Gaussian noise to the point cloud by adding 1000 noise points. These noise
points are generated from a Gaussian distribution with a mean µ = 0 and a standard
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deviation σ, specifically applied as 1% of each point’s distance from the point cloud’s
center. This process of adding noise points simulates the sensor inaccuracies and
environmental factors that affect data quality.

These methods diversify the data, enhancing the effectiveness of the learning process
and contributing to improved model robustness and generalization. The visualization of
data augmentation is depicted in Figure 3. We applied the above enhancement methods to
each local map in the dataset. In the end, we obtained 3000 enhanced local maps.

Figure 3. Data Augmentation. (a) Original point cloud. (b) Random point sampling. (c) Random
rotation. (d) Random scaling. (e) Random point cloud clipping. (f) Noise addition.

2.3. Methodology
2.3.1. System Overview

The orchard point cloud instance detection framework proposed in this study is
illustrated in Figure 4, which displays the process of detecting tree instances in a lychee
orchard’s global point cloud map. This framework directly takes the global point cloud map
of the orchard as input, segments the global map into local maps, and extracts information
through the feature extractor designed in this study. This information forms a feature map
that serves as the input for the ODN-PRO model based on YOLOv8. The network model
perceives tree information in the information feature map and projects the prediction boxes
onto the three-dimensional global point cloud map, thereby achieving the perception and
localization of tree instance objects.

Figure 4. System overview. The green border represents the predicted box in the feature map, while
the red border represents the predicted box in the 3D space.
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2.3.2. Feature Encoder

To process point cloud information using a 2D detection network, it is necessary to
pseudo-2Dize the point cloud, as shown in Figure 5. This process entails viewing the
point cloud from a directly overhead perspective and creating an x–y plane that is evenly
subdivided into a grid [44]. Within each grid cell, a cylindrical structure is created in the
z-direction to accommodate the point cloud data associated with local geometric features.

Figure 5. Feature encode processing. (a) Global point cloud map. (b) The segmented local map.
(c) Different types of feature maps. (d) The merged feature map.

The metrics for geometric features include barycenter height (Z̄), density (ρ), and
the minimum angle θ between the main vector and the z-axis. During this process, we
filter out grids with very few points and empty grids. In this study, grids with fewer than
100 points were excluded. After these operations, we transform a 3D point cloud map into
a 2D pseudo image suitable for a 2D detection network. The calculation of the mentioned
metrics is as follows:

Z̄ =
1
n

n

∑
i=1

Zi (1)

Here, Z̄ represents the average Z value, Zi represents the Z value of the i-th point, and
n is the total number of points in the same grid.

ρ =
Vgrid

n
(2)

Here, Vgrid represents the volume of the grid and n is defined the same as in Equation (1),
representing the number of point cloud points in the same grid.

The minimum angle θ between the lines containing these vectors is given by

θ = min(arccos(cos(α)), π − arccos(cos(α))) (3)

where α is the angle between the vectors, v1 is the main direction of the point cloud points
within the same grid, and v2 is the direction of the world coordinate system’s z-axis.

α = arccos
(

v1 · v2

∥v1∥∥v2∥

)
(4)

2.3.3. Sliding Windows

In our practical experiments, we have observed that due to the unstructured nature of
point clouds, our generated two-dimensional feature maps exhibit a significant number
of gaps or holes. This phenomenon can lead to the network erroneously recognizing one
tree as multiple trees. To address this issue, we drew inspiration from the concept of a
sliding window [45,46]. A sliding window is a fixed-size window that slides over the data
sequence from beginning to end in certain steps. At each position, the window captures
a portion of the data in the sequence for processing. To calculate each statistical value at
a pixel in the two-dimensional feature map, we employ a sliding window approach with
various window sizes.

As an example, we illustrate the method using a 3 × 3 window, where we incorporate
the surrounding eight grids of the corresponding point cloud raster into the calculation.
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This approach helps reduce the occurrence of gaps or holes in the two-dimensional feature
map. The schematic diagram of our approach is illustrated in Figure 6.

Figure 6. Sliding windows illustration. A sliding window is a fixed-size window that slides over
the data sequence from beginning to end in certain steps. At each position, the window captures a
portion of the data in the sequence for processing.

2.3.4. YOLOV8

YOLOV8 is a deep learning model developed based on Ultralytics and used for tasks
such as object detection, image classification, and instance segmentation [47]. As the latest
version of YOLO, it introduces new features and improvements to enhance performance
and flexibility, as shown in Figure 7.

Its network structure consists of the following three main parts. The backbone of
YOLOv8 consists of a series of convolutional and deconvolutional layers to extract features.
It also incorporates residual connections and bottleneck structures to reduce network
size and improve performance. This part utilizes the C2f module as the basic building
unit. The neck section employs multi-scale feature fusion techniques to merge feature
maps from different stages of the backbone, enhancing feature representation capabilities.
Specifically, the neck part of YOLOv8 includes an SPPF module, a PAA module, and two
PAN modules. Responsible for the final object detection and classification tasks, the head
consists of a detection head and a classification head. The detection head comprises a
series of convolutional and deconvolutional layers to generate detection results, while
the classification head uses global average pooling to classify each feature map. Overall,
YOLOV8 adopts a decoupled head structure, separating classification and detection heads.
It no longer has an objectness branch, only decoupled classification and regression branches.
Additionally, it employs an anchor-free strategy, abandoning anchor boxes used in YOLOV7,
which reduces the number of box predictions and improves the speed of Non-Maximum
Suppression (NMS). In the backbone network and Neck, YOLOV8 uses the C2f structure
with better gradients to support different model scales by adjusting the number of channels.
This aligns with YOLO’s focus on improving generalization and is relevant to this study’s
context. For loss computation, YOLOV8 uses the Task Aligned Assigner positive sample
assignment strategy. It employs BCE Loss for the classification branch and Distribution
Focal Loss (DFL) and CIoU Loss for loss computation in the regression branch.YOLOV8
requires decoding the integral representation of bbox forms in Distribution Focal Loss,
using Softmax and Conv calculations to transform them into conventional 4-dimensional
bboxes. The head section outputs features maps at 6 different scales. The predictions
from the classification and bbox branches at three different scales are concatenated and
dimensionally transformed. For future convenience, the original channel dimension is
permuted to the end, resulting in shapes for the class prediction branch and bbox prediction
branch as (b, 8400, and 80) and (b, 8400, and 4), respectively. The final output includes three
feature maps at scales of 80 × 80, 40 × 40, and 20 × 20.
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Figure 7. YOLOv8 illustration. Its network structure consists of the following three main parts. The
backbone of YOLOv8 comprises a series of convolutional and deconvolutional layers used for feature
extraction. It also includes residual connections and bottleneck structures to reduce network size
and improve performance. This part utilizes the C2f module as the basic building block. The neck
employs a multi-scale feature fusion technique, including an SPPF module, a PAA module, and
two PAN modules, to merge feature maps from different stages of the backbone network, thereby
enhancing feature representation capability. The head is responsible for the final object detection
and classification tasks, consisting of a detection head and a classification head. The detection head
comprises a series of convolutional and deconvolutional layers for generating detection results, while
the classification head uses global average pooling for classifying each feature map.

2.3.5. Convolutional Block Attention Mechanism

Convolutional Block Attention Module (CBAM) is an attention mechanism used in
deep convolutional neural networks (CNNs) to enhance the model’s ability to model input
features [48], as shown in Figure 8. It is usually utilized enhance the model’s perceptual ca-
pability of features. It integrates both the Channel Attention Module and Spatial Attention
Module, which focus on the inter-channel correlations and spatial positional correlations,
respectively. This integration enhances the representational capacity of features. It achieves
this by combining both the channel attention and spatial attention components.

The Channel Attention Module is designed to learn the relationships between different
channels within the feature map. It starts by applying global average pooling to the input
feature map, extracting global information for each channel. This global information is
then processed through a multi-layer perceptron (MLP). The MLP’s output represents
the correlations between different channels, indicating the weight relationships among
the channels. These learned weights are subsequently used to scale the features of each
channel, emphasizing important channels while suppressing irrelevant ones. The Spatial
Attention Module focuses on learning relationships between different spatial positions
within the feature map. It begins by applying multiple convolution operations in different
directions to capture spatial features in various orientations. These spatial features are then
integrated into an information packet, which is passed through an MLP. The MLP scales the
features of each pixel, highlighting important pixel positions and suppressing irrelevant
ones, effectively creating spatial attention.
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Figure 8. The structure of the Convolutional Block Attention Module (CBAM). It is an attention
mechanism utilized within convolutional neural networks (CNNs) to enhance the model’s perceptual
capability of features, thereby improving its performance. It integrates both the Channel Attention
Module and Spatial Attention Module, which respectively focus on the inter-channel correlations and
spatial positional correlations. This integration enhances the representational capacity of features.

The combination of the channel attention and spatial attention modules in CBAM
allows the network to adaptively focus on both channel-wise and spatial-wise informa-
tion [49]. This enhances the modeling capabilities of deep CNNs, making it particularly
valuable for tasks involving complex and diverse visual data.

2.3.6. Efficient Channel Attention Mechanism

Efficient Channel Attention (ECA) is an efficient channel attention module designed for
deep convolutional neural networks (CNNs), as shown in Figure 9. This module generates
channel attention through a rapid one-dimensional convolution, with the kernel size adap-
tively determined based on a non-linear mapping of the number of channels [50,51]. This
adaptive approach avoids dimensionality reduction and effectively captures information
related to cross-channel interactions.

The ECA attention mechanism can dynamically learn channel weights that adapt to
different tasks and datasets, enhancing the model’s flexibility and performance. By improv-
ing the relevance of channel features, the ECA helps enhance the overall performance of
the model while maintaining relatively low computational costs.

In summary, ECA is a valuable component in deep CNNs as it efficiently captures
channel-wise information, adaptively learns channel weights, and enhances model perfor-
mance without significantly increasing computational overhead.
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Figure 9. The structure of the Efficient Channel Attention (ECA) block consists of two main compo-
nents: a 1D convolutional layer and a sigmoid activation function.

2.3.7. Explicit Visual Center

The Explicit Visual Center (EVC) consists of two parallel connected blocks designed to
capture global long-term dependencies and preserve local angular region information, as
shown in Figure 10 [52]. The Multilayer Perceptron (MLP) portion adopts a lightweight
structure, including residual modules based on deep convolution and channel-based MLP.

The module based on deep convolution receives the output of the stem module,
undergoes deep convolution and group normalization, and then undergoes channel scaling,
DropPath operation, and residual connection. On the other hand, the module based on
channel MLP undergoes channel scaling, DropPath operation, and residual connection
after group normalization and Channels MLP.

Figure 10. The structure of the EVC block. It consists of two components: the MLP and the LVC.
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2.3.8. ODN-Pro

Figure 11 illustrates the ODN-Pro structure, highlighting the methods adopted to
enhance the detection accuracy of the YOLOv8 model [53–55]. The YOLOv8’s backbone
and neck are enhanced by introducing the ECA block and the EVC block, respectively. This
integration leads to improved detection performance. The ECA block learns the importance
of the weights of different channels, representing the significance of features within each
channel for the final task. By enhancing the representation of important features and
suppressing less important ones, ECA helps the network allocate resources more effectively
to process information that has a greater impact on the results, thereby enhancing the
expressiveness and accuracy of the model. Additionally, ECA avoids the complex spa-
tial transformations and expensive matrix multiplications typical in traditional attention
mechanisms, achieving channel attention solely through one-dimensional convolution
operations. This significantly reduces computational complexity and model parameters.
Consequently, ECA enhances model performance while maintaining efficient computa-
tional efficiency, making it particularly suitable for resource-constrained environments.
The introduction of EVC aims to capture global spatial contextual information, which is
crucial for understanding objects in images and their relationships. To leverage the spatial
weights obtained through EVC across all layers, it is necessary to upsample the top-level
features to the same spatial scale as the lower-level features. This step is achieved through
upsampling operations, followed by concatenating the upsampled deep features with
the corresponding shallow features along the channel dimension. Therefore, we place
EVC in the neck section immediately after the first upsampling operation. Through this
approach, each layer of the feature pyramid explicitly incorporates global spatial weights,
thereby enhancing the richness and discriminability of feature representation. Moreover, it
efficiently propagates global spatial information downward, optimizing the computation
flow of cross-layer feature normalization and avoiding the redundant computations and
overhead associated with independently calculating EVC at each layer.

Figure 11. The structure of ODN-Pro.We introduce the ECA block in the backbone network. And the
EVC block is introduced into the neck network.
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2.4. Evaluation Metrics

To evaluate the performance of the model, precision (P), recall (R), and mean average
precision (mAP) are used [56]. These above metrics are calculated as follows:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =
∫ 1

0
P(R)dR (7)

mAP =
∑n

i=1 APi

n
(8)

TP is the number of positive samples predicted to be positive class, FP is the number
of negative samples predicted to be positive class, FN is the number of positive samples
predicted to be negative class, AP is the area below the PR curve, and mAP is the mean AP
value for each category. The n represents the number of categories in object detection. In
this study, n = 1. We used the 3000 augmented local maps mentioned earlier as our dataset,
splitting them into 80% for training and 20% for validation.

2.5. Training Parameters and Experimental Environment

The training parameters used in the experiments are detailed in Table 1.

Table 1. The parameters in the training process.

Parameters Value

Epoch 300
Initial learning rate 0.01

Batch size 16
momentum 0.937

Weight decay 0.0005
Loss function BCE, CIoU

The GPU of the computer is an NVIDIA GeForce RTX3090. The operating system was
Windows 10 and PyTorch 1.70, Python version 3.8, and CUDA version 11 were used.

3. Results
3.1. Comparison of Feature Encoding Methods

In order to identify the most suitable feature encoding method for the approaches
employed in this study, we conducted comparative experiments on the calculation methods
of feature values and the size of the sliding window. We recorded the execution time and
mAP under different methods. In this experimental section, we consistently utilized the
original YOLOv8 network as the detection model. Due to the VFH and CVFH feature
extraction methods yielding 308 feature values, the network’s input was accordingly
modified to accommodate a 308-channel feature map input.

We split the global orchard map into 10 m × 10 m local maps and the local maps were
used for testing and divided the local point cloud map into grids of 128 × 128 in the x and
y directions. Different sizes of sliding windows were designed and the time of the feature
extraction part of the model runtime and the predicted mAP were counted; the results are
shown in Table 2. As can be seen from Table 2, the time to extract features increases as the
window size increases. This is because the increase in the number of point cloud points
leads to an increase in computation. From our comparison of Test 1 and Test 2, the addition
of the sliding window method is able to improve the mAP. From the comparison of Test 2
and Test 3, it is found that the increase in the size of the sliding window does not have a
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significant effect on the improvement in the mAP. However, the increase in the number of
point cloud points per computation brings a huge computational overhead.

Table 2. Comparison results of different sizes of sliding windows.

Window Size Processing Time (s) mAP

Test 1 1 × 1 0.168 0.664
Test 2 3 × 3 0.398 0.844
Test 3 5 × 5 0.691 0.848

We also performed an experimental comparison of the feature extraction methods. The
experimental results are shown in Table 3. From Table 2, we know that the sliding window
size of 3 × 3 has both speed and accuracy. For this reason, in this experiment, we use the
3 × 3 sliding window strategy for all groups. Test 2 and Test 3 are the control groups of the
experiment. As can be seen from Table 3, although the VFH and CVFH feature descriptors
can have better mAP, the computation time also increases to an unacceptable 2.13 s and
9.21 s. It is thus clear that the proposed method in this study is able to balance both speed
and accuracy.

Table 3. Comparison results of coding methods.

Encoding Methods Processing Time (s) mAP

Test 1 ours 0.398 0.844
Test 2 VFH 2.13 0.857
Test 3 CVFH 9.21 0.860

To compare with specialized deep learning networks for point cloud semantic seg-
mentation, we contrasted the detection performance of the proposed method with that
of PointNet++ [57]. Because of the different network types, we unified the evaluation
criteria by calculating the mIoU between the predictions of PointNet++ and the ground
truth. Similarly, we computed the mIoU for the predicted boxes and annotated boxes of the
proposed method and recorded the results in Table 4. It is noteworthy that when training
and predicting with PointNet++, we configured the feature extraction method to MSG in
the PointNet++ parameters and set the number of sampling points to 1000, 2500, and 5000
for testing. The results from Table 4 show that when the number of sampling points is set
to 1000, the mIoU is lower. When the number of sampling points is set to 2500 and 5000,
the mIoU metrics are higher but they do not have an advantage over the proposed method
in terms of prediction time. This indicates that the proposed method can balance efficiency
and accuracy.

Table 4. Testing performance of pointnet++.

Methods Parameter Prediction Time
(s) mIoU

Test 1 ours 3 × 3 0.410 0.819
Test 2 Pointnet++ MSG and 1000 0.517 0.798
Test 3 Pointnet++ MSG and 2500 0.943 0.824
Test 4 Pointnet++ MSG and 5000 1.39 0.843

3.2. Experiments Were Conducted to Evaluate Several Methods Applicable to YOLOv8

In order to enhance the detection performance of the YOLOv8 model, various methods
that could potentially impact detection performance were employed. A comparison was
made with the original YOLOv8 model to assess the positive effects of these methods on
improving the detection performance of YOLOv8. The training and testing were conducted
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under the same conditions. Figure 12 illustrates the curves depicting the changes in training
loss and validation loss.

As shown in Figure 12, during the training of 300 epochs, although the training
loss continues to decrease, the validation loss curves for all the mentioned models tend to
stabilize. This indicates that the model training has converged. Subsequently, we conducted
tests on these trained models and the results are presented in Table 5.

Table 5. The parameters in the training process.

Methods P R mAP

YOLOv8 0.953 0.975 0.844
YOLOv8-ECA 0.874 0.968 0.848

YOLOv8-CBAM 0.843 0.984 0.855
YOLOv8-EVC 0.898 0.997 0.854

From Table 5, we can draw the following conclusions. Compared to YOLOv8, YOLOv8-
ECA shows improvements in mAP by 0.4%. YOLOv8-CBAM exhibits improvements in
mAP by 1.1%. YOLOv8-EVC demonstrates improvements in mAP by 1.0%. The intro-
duction of these three methods significantly enhances the detection performance of the
YOLOv8 network. Subsequently, these methods will be combined to obtain a method with
improved accuracy.

Figure 12. The training process of the different methods introduced into YOLOv8. (a) Original
YOLOv8 test result. (b) YOLOv8-CBAM test result. (c) YOLOv8-ECA test result. (d) YOLOv8-EVC
test result.

3.3. Ablation Experiments with YOLOv8

Through the experiments in Section 3.2, we observed that introducing ECA, CBAM,
and EVC can enhance the performance of the object detection model. Therefore, we
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conducted ablation experiments to explore different combinations of these methods, aiming
to further improve the performance of the YOLOv8 network. Taking the original YOLOv8
as the baseline, we introduced ECA, CBAM, and EVC into the YOLOv8 network. The
experimental results are presented in Table 6.

Table 6. Ablation Experiments of ECA, CBAM, and EVC.

EVC CBAM ECA P R mAP

# # # 0.953 0.975 0.844
! # # 0.898 0.997 0.854
! ! # 0.911 0.986 0.849
! # ! 0.968 0.984 0.856

The experimental results in Table 6 indicate that the introduction of EVC leads to a 1.0%
improvement in mAP. However, when both CBAM and EVC are introduced simultaneously,
the mAP decreases by 0.5% compared to the network with only EVC. On the other hand,
introducing both ECA and EVC results in a 0.2% increase in mAP compared to the network
with only EVC. Therefore, for subsequent experiments, we will adopt YOLOv8_ECA&EVC,
which named ODN-Pro as the network model.

3.4. Cross-Validation

In order to enhance the model’s generalization ability and reduce the risk of overfitting,
we conducted K-fold cross-validation on two network models, YOLOv8 and ODN-Pro.
Cross-validation involves splitting the dataset into several parts, using one part as the test
set and the remaining parts as the training set. This process iterates multiple times, with
different parts selected as the test set each time, enabling the model to be trained and tested
multiple times. In this study, we performed five iterations of cross-validation. During these
five iterations, a different subset was chosen as the test set each time, while the remaining
K-1 subsets were merged to form the training set. The results are shown in Table 7:

Table 7. The results of K-fold cross-validation.

Methods Parameter Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Average

YOLOv8
P 0.891 0.848 0.788 0.87 0.802 0.8398
R 0.895 0.827 0.922 0.86 0.889 0.8786

mAP 0.798 0.726 0.787 0.725 0.742 0.7556

ODN-Pro
P 0.925 0.864 0.897 0.944 0.778 0.8816
R 0.926 0.981 0.922 0.934 0.941 0.9408

mAP 0.839 0.832 0.815 0.837 0.803 0.8252

Based on the data in Table 7, it is evident that the performance of ODN-Pro after
cross-validation is significantly superior to the native YOLOv8. The mAP of ODN-Pro after
cross-validation is 6.96% higher than that of YOLOv8. Moreover, it only exhibits a 3.08%
decrease compared to the training results on the ordinary dataset. Therefore, ODN-Pro
demonstrates good generalization ability, capable of handling recognition tasks under
various conditions.

3.5. Demonstration

We applied the proposed method to different point cloud maps generated by different
types of LiDAR and conducted tree object detection in all areas of the maps. The sliding
window size for point cloud feature extraction is set to 3 × 3, the feature encoding method
uses our proposed method, and the detection model is our improved network. The results
are shown in Figures 13 and 14. In the point cloud map generated by the LIO-SAM
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algorithm, the large field of view (FOV) of the RS-Helios-5515 plays a crucial role in
achieving a more comprehensive scene modeling. As a result, the point cloud map contains
a significantly higher number of tree objects. Meanwhile, due to the limited FOV of the
Livox-Avia, the number of tree objects in the map generated by the R3LIVE algorithm is
correspondingly lower. However, regardless of the type of map, the proposed method can
identify tree objects in the map.

Figure 13. The object detection results of cherry orchard. (a,b) Detection results of the map generated
by LIO-SAM. (c,d) Detection results of the map generated by R3Live.

Figure 14. The object detection results of plum blossom orchard. (a,b) Detection results of the map
generated by LIO-SAM. (c,d) Detection results of the map generated by R3Live.
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4. Discussion

Our study demonstrates that the proposed method can effectively detect fruit trees in
point cloud maps generated by different LiDAR sensors with varying point cloud densities.
Despite the differences in point cloud densities, our method accurately identifies tree objects
in the maps, providing robust assurance for safe navigation of autonomous vehicles in
orchards. By effectively recognizing trees, our method enables autonomous vehicles to plan
reliable paths within orchards, autonomously navigate through them, and avoid collisions
with trees while performing tasks such as planting, irrigation, monitoring, and harvesting.
This significantly enhances the efficiency of autonomous vehicle operations in orchards
and reduces the risk of accidents, further promoting the development of intelligent and
automated orchard management.

To validate the effectiveness of the proposed method, we compared it with the Point-
Net++ deep learning network for point cloud semantic segmentation. Experimental re-
sults show that our method achieves both accuracy and speed without compromising on
either aspect.

Furthermore, this study introduces a network architecture called ODN-Pro for tree
point cloud detection, which utilizes a 3 × 3 sliding window for feature extraction and
employs an encoding method to transform three-dimensional point clouds into two-
dimensional feature representations. We also conducted K-fold cross-validation on ODN-
Pro and its associated dataset. The results demonstrate that these methods contribute to
stable and accurate tree object detection across different types of maps.

Despite several significant achievements, it is essential to acknowledge the limitations
of our study. For instance, in complex forest scenes, our method may encounter issues such
as detection omissions or false alarms due to the challenging structures of point clouds in
dense environments. Additionally, when there are significant differences in tree structures,
such as between trees with large and small canopies, the network’s performance may
degrade. This may require targeted data collection and retraining of the network. Further-
more, like all deep learning networks, our method may face computational complexity
issues when processing high-density point clouds. Therefore, in future work, further algo-
rithm optimization is needed to improve detection performance and efficiency, especially
in dense forest scenarios, to achieve real-time tree detection.

5. Conclusions

This study proposes a detection method named ODN-Pro, which aims to extract
two-dimensional feature vectors containing more accurate three-dimensional point cloud
information. We employ various data augmentation techniques on the collected point
cloud maps, including random point sampling, random point cloud transformation, point
cloud clipping, and noise addition. These augmentation methods help diversify the dataset,
thereby enhancing the effectiveness of the learning process and improving the model’s
robustness and generalization capability. Our method segments local maps from global
point cloud maps, uniformly divides the local maps into grids in the x and y directions,
and performs statistical operations on the point clouds within the grids. After comparing
with feature extraction operators such as VFH and CVFH, we select the barycenter height
(Z̄), density (ρ), and the angle (θ) between the main vector and the z-axis as point cloud
features and construct a three-channel two-dimensional feature map. After comparing
different window sizes for grid selection, we found that a grid resolution of 128× 128 and a
sliding window size of 3 × 3 in a 10 m × 10 m local map strike a balance between accuracy
and speed. The processing time for point cloud features is 0.398 s and the mean average
precision (mAP) for network detection is 0.844, achieved using the original version of the
YOLOv8 network. Furthermore, we introduce the ECA block in the backbone network
and the EVC block in the neck network of ODN-Pro, which results in improved detection
performance. This enhancement is evidenced by the observed improvements in precision,
recall, and mAP by 1.5%, 0.9%, and 1.2%, respectively.
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