Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Management
2.2. Meteorological Conditions
2.3. Sampling and Analysis
2.4. Estimation and Computation of CO2 Emissions
2.5. Statistical Analysis
3. Results
3.1. Studies on Soil CO2 Emissions
3.2. Soil Organic Carbon Stocks
3.3. Yield Stability in Agroecosystems
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mueller, L.; Eulenstein, F.; Dronin, N.M.; Mirschel, W.; McKenzie, B.M.; Antrop, M.; Poulton, P. Agricultural Landscapes: History, Status, and Challenges. In Exploring and Optimizing Agricultural Landscapes; Springer: Cham, Switzerland, 2021; pp. 3–54. [Google Scholar]
- Dubey, A.; Malla, M.A.; Khan, F.; Chowdhary, K.; Yadav, S.; Kumar, A.; Khan, M.L. Soil Microbiome: A Key Player for Conservation of Soil Health Under Changing Climate. Biodivers. Conserv. 2019, 28, 2405–2429. [Google Scholar] [CrossRef]
- Kobierski, M.; Lemanowicz, J.; Wojewódzki, P.; Kondratowicz-Maciejewska, K. The Effect of Organic and Conventional Farming Systems with Different Tillage on Soil Properties and Enzymatic Activity. Agronomy 2020, 10, 1809. [Google Scholar] [CrossRef]
- Obour, A.K.; Holman, J.D.; Simon, L.M.; Schlegel, A.J. Strategic Tillage Effects on Crop Yields, Soil Properties, and Weeds in Dryland No-Tillage Systems. Agronomy 2021, 11, 662. [Google Scholar] [CrossRef]
- Naeem, M.; Mehboob, N.; Farooq, M.; Farooq, S.; Hussain, S.; Ali, H.M.; Hussain, M. Impact of Different Barley-Based Cropping Systems on Soil Physicochemical Properties and Barley Growth Under Conventional and Conservation Tillage Systems. Agronomy 2020, 11, 8. [Google Scholar] [CrossRef]
- Siankwilimba, E.; Mumba, C.; Hang’ombe, B.M.; Munkombwe, J.; Hiddlestone-Mumford, J.; Dzvimbo, M.A.; Hoque, M.E. Bioecosystems towards Sustainable Agricultural Extension Delivery: Effects of Various Factors. Environ. Dev. Sustain. 2023, 1–43. [Google Scholar] [CrossRef]
- Schlüter, S.; Großmann, C.; Diel, J.; Wu, G.M.; Tischer, S.; Deubel, A.; Rücknagel, J. Long-Term Effects of Conventional and Reduced Tillage on Soil Structure, Soil Ecological and Soil Hydraulic Properties. Geoderma 2018, 332, 10–19. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Ishaq, W.; Farooque, A.A.; Bakhat, H.F.; Zia, Z.; Cerdà, A.A. Review of Soil Carbon Dynamics Resulting from Agricultural Practices. J. Environ. Manag. 2020, 268, 110319. [Google Scholar] [CrossRef]
- Hussain, S.; Hussain, S.; Guo, R.; Sarwar, M.; Ren, X.; Krstic, D.; El-Esawi, M.A. Carbon Sequestration to Avoid Soil Degradation: A Review on the Role of Conservation Tillage. Plants 2021, 10, 2001. [Google Scholar] [CrossRef]
- Ogieriakhi, M.O.; Woodward, R.T. Understanding why farmers adopt soil conservation tillage: A systematic review. Soil Secur. 2022, 9, 100077. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martínez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon Management in Dryland Agricultural Systems. Agron. Sustain. Dev. 2015, 35, 1319–1334. [Google Scholar] [CrossRef]
- Ghorai, P.S.; Biswas, S.; Purakayastha, T.J.; Ahmed, N.; Das, T.K.; Prasanna, R.; Das, S. Indicators of Soil Quality and Crop Productivity Assessment at a Long-Term Experiment Site in the Lower Indo-Gangetic Plains. Soil Use Manag. 2023, 39, 503–520. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Petrosillo, I. Soil Carbon Dynamics Under Organic Farming: Impact of Tillage and Cropping Diversity. Ecol. Indic. 2023, 147, 109940. [Google Scholar] [CrossRef]
- Ferreira, C.D.R.; Neto, E.C.D.S.; Pereira, M.G.; do Nascimento Guedes, J.; Rosset, J.S.; Anjos, D.L.H.C. Dynamics of Soil Aggregation and Organic Carbon Fractions over 23 Years of No-Till Management. Soil Till. Res. 2020, 198, 104533. [Google Scholar] [CrossRef]
- Leal Filho, W.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the Impacts of Climate Change on Soil Biodiversity. Sci. Total Environ. 2023, 869, 161671. [Google Scholar] [CrossRef]
- Paul, C.; Bartkowski, B.; Dönmez, C.; Don, A.; Mayer, S.; Steffens, M.; Helming, K. Carbon Farming: Are Soil Carbon Certificates a Suitable Tool for Climate Change Mitigation? J. Environ. Manag. 2023, 330, 117142. [Google Scholar] [CrossRef]
- Bogužas, V.; Sinkevičienė, A.; Romaneckas, K.; Steponavičienė, V.; Butkevičienė, L.M. The impact of tillage intensity and meteorological conditions on soil temperature, moisture content and CO2 efflux in maize and spring barley cultivation. Zemdirb. Agric. 2018, 105, 307–314. [Google Scholar] [CrossRef]
- Nath, C.P.; Kumar, N.; Dutta, A.; Hazra, K.K.; Praharaj, C.S.; Singh, S.S.; Das, K. Pulse Crop and Organic Amendments in Cropping System Improve Soil Quality in Rice Ecology: Evidence from a Long–Term Experiment of 16 Years. Geoderma 2023, 430, 116334. [Google Scholar] [CrossRef]
- Naorem, A.; Jayaraman, S.; Dalal, R.C.; Patra, A.; Rao, C.S.; Lal, R. Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture 2022, 12, 1256. [Google Scholar] [CrossRef]
- Rodrigues, C.I.D.; Brito, L.M.; Nunes, L.J. Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Syst. 2023, 7, 64. [Google Scholar] [CrossRef]
- Purakayastha, T.J.; Bhaduri, D.; Singh, P. Role of Biochar on Greenhouse Gas Emissions and Carbon Sequestration in Soil: Opportunities for Mitigating Climate Change. In Soil Science: Fundamentals to Recent Advances; Springer: Cham, Switzerland, 2021; pp. 237–260. [Google Scholar]
- Ussiri, D.A.; Lal, R. Carbon Sequestration for Climate Change Mitigation and Adaptation; Springer International Publishing: Cham, Switzerland, 2017; pp. 287–325. [Google Scholar]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil Organic Carbon is Affected by Organic Amendments, Conservation Tillage, and Cover Cropping in Organic Farming Systems: A Meta-Analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- Krauss, M.; Wiesmeier, M.; Don, A.; Cuperus, F.; Gattinger, A.; Gruber, S.; Steffens, M. Reduced Tillage in Organic Farming Affects Soil Organic Carbon Stocks in Temperate Europe. Soil Tillage Res. 2022, 216, 105262. [Google Scholar] [CrossRef]
- Krauss, M.; Ruser, R.; Müller, T.; Hansen, S.; Mäder, P.; Gattinger, A. Impact of Reduced Tillage on Greenhouse Gas Emissions and Soil Carbon Stocks in an Organic Grass-Clover Ley-Winter Wheat Cropping Sequence. Agric. Ecosyst. Environ. 2017, 239, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Hoffland, E.; Kuyper, T.W.; Comans, R.N.; Creamer, R.E. Eco-Functionality of Organic Matter in Soils. Plant Soil. 2020, 455, 1–22. [Google Scholar] [CrossRef]
- Williams, H.; Colombi, T.; Keller, T. The Influence of Soil Management on Soil Health: An On-Farm Study in Southern Sweden. Geoderma 2020, 360, 114010. [Google Scholar] [CrossRef]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability. 2020, 12, 4859. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Karlen, D.L.; Veum, K.S.; Sudduth, K.A.; Obrycki, J.F.; Nunes, M.R. Soil Health Assessment: Past Accomplishments, Current Activities, and Future Opportunities. Soil Tillage Res. 2019, 195, 104365. [Google Scholar] [CrossRef]
- Bogužas, V.; Mikučionienė, R.; Šlepetienė, A.; Sinkevičienė, A.; Feiza, V.; Steponavičienė, V. Long-Term Effect of Tillage Systems, Straw and Green Manure Combinations on Soil Organic Matter. Zemdirb. Agric. 2015, 102, 243–250. [Google Scholar] [CrossRef]
- Steponavičienė, V.; Rudinskienė, A.; Žiūraitis, G.; Bogužas, V. The Impact of Tillage and Crop Residue Incorporation Systems on Agrophysical Soil Properties. Plants. 2023, 12, 3386. [Google Scholar] [CrossRef]
- Raudonius, S. Application of Statistics in Plant and Crop Research: Important Issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Tarakanovas, P.; Raudonius, S. Statistical Analysis of Agronomic Data Using Computer Programs ANOVA, STAT, SPLIT-PLOT from the SELECTION Package and IRRISTAT; Lithuanian University of Agriculture: Akademija, Lithuania, 2003; p. 57. [Google Scholar]
- Gangopadhyay, S.; Chowdhuri, I.; Das, N.; Pal, S.C.; Mandal, S. The Effects of No-Tillage and Conventional Tillage on Greenhouse Gas Emissions from Paddy Fields with Various Rice Varieties. Soil Tillage Res. 2023, 232, 105772. [Google Scholar] [CrossRef]
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A Global Meta-Analysis of Greenhouse Gases Emission and Crop Yield Under No-Tillage as Compared to Conventional Tillage. Sci. Total Environ. 2021, 750, 142299. [Google Scholar] [CrossRef] [PubMed]
- Alskaf, K.; Mooney, S.J.; Sparkes, D.L.; Wilson, P.; Sjögersten, S. Short-Term Impacts of Different Tillage Practices and Plant Residue Retention on Soil Physical Properties and Greenhouse Gas Emissions. Soil Tillage Res. 2021, 206, 104803. [Google Scholar] [CrossRef]
- Scala, L.J.N.; Bolonhezi, D.; Pereira, G.T. Short-Term Soil CO2 Emission After Conventional and Reduced Tillage of a No-Till Sugar Cane Area in Southern Brazil. Soil Tillage Res. 2006, 91, 244–248. [Google Scholar] [CrossRef]
- Guo, Y.; Yin, W.; Chai, Q.; Fan, Z.; Hu, F.; Fan, H.; Coulter, J.A. No Tillage with Previous Plastic Covering Increases Water Harvesting and Decreases Soil CO2 Emissions of Wheat in Dry Regions. Soil Tillage Res. 2021, 208, 104883. [Google Scholar] [CrossRef]
- Feizienė, D.; Kadžienė, G. The Influence of Soil Organic Carbon, Moisture and Temperature on Soil Surface CO2 Emission in the 10th Year of Different Tillage-Fertilisation Management. Zemdirb. Agric. 2008, 95, 29–45. [Google Scholar]
- Das, A.K.; Sharma, A. Climate Change and the Energy Sector. In Advancement in Oxygenated Fuels for Sustainable Development; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–6. [Google Scholar]
- Lynch, J.; Cain, M.; Frame, D.; Pierrehumbert, R. Agriculture’s Contribution to Climate Change and Role in Mitigation is Distinct from Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 4, 518039. [Google Scholar] [CrossRef]
- Qian, H.; Zhu, X.; Huang, S.; Linquist, B.; Kuzyakov, Y.; Wassmann, R.; Jiang, Y. Greenhouse Gas Emissions and Mitigation in Rice Agriculture. Nat. Rev. Earth Environ. 2023, 4, 716–732. [Google Scholar] [CrossRef]
- Shakoor, A.; Dar, A.A.; Arif, M.S.; Farooq, T.H.; Yasmeen, T.; Shahzad, S.M.; Ashraf, M. Do Soil Conservation Practices Exceed Their Relevance as a Countermeasure to Greenhouse Gases Emissions and Increase Crop Productivity in Agriculture? Sci. Total Environ. 2022, 805, 150337. [Google Scholar] [CrossRef]
- Stavi, I.; Lal, R. Agriculture and Greenhouse Gases, a Common Tragedy. A Review. Agron. Sustain. Dev. 2013, 33, 275–289. [Google Scholar] [CrossRef]
- Almagro, M.; López, J.; Querejeta, J.I.; Martínez-Mena, M. Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol. Biochem. 2009, 41, 594–605. [Google Scholar] [CrossRef]
- Barnard, R.L.; Blazewicz, S.J.; Firestone, M.K. Rewetting of soil: Revisiting the origin of soil CO2 emissions. Soil Soil Biol. Biochem. 2020, 147, 107819. [Google Scholar] [CrossRef]
- Ferdush, J.; Paul, V. A review on the possible factors influencing soil inorganic carbon under elevated CO2. Catena 2021, 204, 105434. [Google Scholar] [CrossRef]
- Bezyk, Y.; Dorodnikov, M.; Górka, M.; Sówka, I.; Sawiński, T. Temperature and soil moisture control CO2 flux and CH4 oxidation in urban ecosystems. Geochem 2023, 83, 125989. [Google Scholar] [CrossRef]
- Fairbairn, L.; Rezanezhad, F.; Gharasoo, M.; Parsons, C.T.; Macrae, M.L.; Slowinski, S.; Cappellen, V.P. Relationship between soil CO2 fluxes and soil moisture: Anaerobic sources explain fluxes at high water content. Geoderma 2023, 434, 116493. [Google Scholar] [CrossRef]
- Feiza, V.; Feizienė, D.; Sinkevičienė, A.; Bogužas, V.; Putramentaitė, A.; Lazauskas, S.; Steponavičienė, V.; Pranaitienė, S. Soil water capacity, pore-size distribution and CO2 e-flux in different soils after long-term no-till management. Zemdirb. Agric. 2015, 102, 3–14. [Google Scholar] [CrossRef]
- Lal, R. Soil management for carbon sequestration. S. Afr. J. Plant Soil. 2021, 38, 231–237. [Google Scholar] [CrossRef]
- Bateni, C.; Ventura, M.; Tonon, G.; Pisanelli, A. Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics. Agrofor. Syst. 2021, 95, 951–961. [Google Scholar] [CrossRef]
- Khan, N.; Jhariya, M.K.; Raj, A.; Banerjee, A.; Meena, R.S. Soil Carbon Stock and Sequestration: Implications for Climate Change Adaptation and Mitigation. In Ecological Intensification of Natural Resources for Sustainable Agriculture; Jhariya, M.K., Meena, R.S., Banerjee, A., Eds.; Springer: Singapore, 2021; pp. 461–489. [Google Scholar] [CrossRef]
- Lal, R. Farming systems to return land for nature: It’s all about soil health and re-carbonization of the terrestrial biosphere. Agric. Syst. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Tariq, S.; Mubeen, M.; Hammad, H.M.; Jatoi, W.N.; Hussain, S.; Farid, H.U.; Umar, H.; Mazhar, A.; Hafiz, J.; Rashad, M.; et al. Mitigation of Climate Change Through Carbon Farming. In Climate Change Impacts on Agriculture: Concepts, Issues and Policies for Developing Countries; Springer International Publishing: Cham, Switzerland, 2023; pp. 381–391. [Google Scholar]
- Jebari, A.; Pereyra-Goday, F.; Kumar, A.; Collins, A.L.; Rivero, M.J.; McAuliffe, G.A. Feasibility of mitigation measures for agricultural greenhouse gas emissions in the UK. A systematic review. Agron. Sustain. Dev. 2024, 44, 2. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soils Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation tillage impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- Maia, S.M.F.; Medeiros, A.D.S.; Santos, D.T.C.; Lyra, G.B.; Lal, R.; Assad, E.D.; Cerri, C.E.P. Potential of no-till agriculture as a nature-based solution for climate-change mitigation in Brazil. Soil Tillage Res. 2022, 220, 105368. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. No-till technology has limited potential to store carbon: How can we enhance such potential? Agric. Ecosyst. Environ. 2021, 313, 107352. [Google Scholar] [CrossRef]
- Bienes, R.; Marques, M.J.; Sastre, B.; García-Díaz, A.; Esparza, I.; Antón, O.; Navarrete, L.; Hernánz, J.L.; Sánchez-Girón, V.; Sánchez del Arco, M.J.; et al. Tracking changes on soil structure and organic carbon sequestration after 30 years of different tillage and management practices. Agronomy 2021, 11, 291. [Google Scholar] [CrossRef]
- Kan, Z.R.; Liu, W.X.; Liu, W.S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Glob. Chang. Biol. 2022, 28, 693–710. [Google Scholar] [CrossRef]
- Lal, R. The Future of No-Till Farming Systems for Sustainable Agriculture and Food Security. In No-till Farming Systems for Sustainable Agriculture: Challenges and Opportunities; Springer: Cham, Switzerland, 2020; pp. 633–647. [Google Scholar]
- Frasier, I.; Noellemeyer, E.; Figuerola, E.; Erijman, L.; Permingeat, H.; Quiroga, A. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration. Glob. Ecol. Conserv. 2016, 6, 242–256. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Ros, G.H.; Furtak, K.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration–An interplay between soil microbial community and soil organic matter dynamics. Sci. Total Environ. 2022, 815, 152928. [Google Scholar] [CrossRef]
- Bhattacharyya, S.S.; Leite, F.F.G.D.; France, C.L.; Adekoya, A.O.; Ros, G.H.; de Vries, W.; Melchor-Martínez, E.M.; Iqbal, H.M.; Parra-Saldívar, R. Soil carbon sequestration, greenhouse gas emissions, and water pollution under different tillage practices. Sci. Total Environ. 2022, 826, 154161. [Google Scholar] [CrossRef]
- Parihar, C.M.; Singh, A.K.; Jat, S.L.; Dey, A.; Nayak, H.S.; Mandal, B.N.; Saharawat, Y.; Jat, M.; Yadav, O. Soil quality and carbon sequestration under conservation agriculture with balanced nutrition in intensive cereal-based system. Soil Tillage Res. 2020, 202, 104653. [Google Scholar] [CrossRef]
- Francaviglia, R.; Almagro, M.; Vicente-Vicente, J.L. Conservation agriculture and soil organic carbon: Principles, processes, practices and policy options. Soil Syst. 2023, 7, 17. [Google Scholar] [CrossRef]
Factors | 2003 | 2013 | 2023 | 2003 | 2013 | 2023 | |
---|---|---|---|---|---|---|---|
0–10 cm Depth, t ha−1 | 10–25 cm Depth, t ha−1 | ||||||
R | CP | 18.20 | 25.89 | 28.6 | 21.30 | 26.80 | 30.8 |
GMNT | 23.17 * | 34.41 *** | 32.2 * | 23.00 * | 31.23 *** | 33.6 * | |
NT | 25.15 *** | 35.35 *** | 36.3 *** | 24.82 * | 32.39 *** | 32.2 * | |
S | CP | 18.63 | 29.50 | 26.3 | 20.87 | 30.96 | 26.0 |
GMNT | 23.53 * | 38.87 *** | 40.8 *** | 24.85 ** | 33.29 ** | 36.0 *** | |
NT | 25.57 *** | 39.08 *** | 38.1 *** | 25.42 ** | 35.94 *** | 33.6 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steponavičienė, V.; Žiūraitis, G.; Rudinskienė, A.; Jackevičienė, K.; Bogužas, V. Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields. Agronomy 2024, 14, 870. https://doi.org/10.3390/agronomy14040870
Steponavičienė V, Žiūraitis G, Rudinskienė A, Jackevičienė K, Bogužas V. Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields. Agronomy. 2024; 14(4):870. https://doi.org/10.3390/agronomy14040870
Chicago/Turabian StyleSteponavičienė, Vaida, Giedrius Žiūraitis, Aušra Rudinskienė, Karolina Jackevičienė, and Vaclovas Bogužas. 2024. "Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields" Agronomy 14, no. 4: 870. https://doi.org/10.3390/agronomy14040870
APA StyleSteponavičienė, V., Žiūraitis, G., Rudinskienė, A., Jackevičienė, K., & Bogužas, V. (2024). Long-Term Effects of Different Tillage Systems and Their Impact on Soil Properties and Crop Yields. Agronomy, 14(4), 870. https://doi.org/10.3390/agronomy14040870