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Abstract: The greenhouse environment plays a crucial role in providing favorable conditions for crop
growth, significantly improving their quality and yield. Accurate prediction of greenhouse environ-
mental factors is essential for their effective control. Although artificial intelligence technologies for
predicting greenhouse environments have been researched recently, there are limitations in applying
these to general greenhouse environments due to computing resources or issues with interpretabil-
ity. Moreover, research on environmental prediction models specifically for melon greenhouses is
also lacking. In this study, machine learning models based on MLR (Multiple Linear Regression),
SVM (Support Vector Machine), ANN (Artificial Neural Network), and XGBoost were developed
to predict the internal temperature, relative humidity, and CO2 conditions of melon greenhouses
30 min in advance. The XGBoost model demonstrated high accuracy and stability, with an R2 value
of up to 0.9929 and an RPD (Residual Predictive Deviation) of 11.8464. Furthermore, the analysis
of the XGBoost model’s feature importance and decision trees revealed that the model learned the
complex relationships and impacts among greenhouse environmental factors. In conclusion, this
study successfully developed a predictive model for a greenhouse environment for melon cultivation.
The model developed in this study can facilitate an understanding and efficient management of the
greenhouse environment, contributing to improvements in crop yield and quality.

Keywords: XGBoost; multiple linear regression; support vector machine; artificial neural networks

1. Introduction

Greenhouses have evolved with the primary objective of protecting crops from adverse
external environmental conditions while creating an environment conducive to crop growth,
thereby enhancing crop development, quality, and yield [1]. Modern greenhouses primarily
utilize external light while being equipped with structures that allow for the control of
internal temperatures, incorporating actuators such as circulation fans, fogging devices, and
CO2 generators, as well as sensors and data servers, controllers for monitoring both external
and internal environmental conditions [2–4]. The internal environment of a greenhouse is
in a constant state of flux, influenced by external environmental conditions, the operation of
actuators, and the physiological activities of the crops being cultivated [5]. Cultivators can
monitor the changing internal environment of the greenhouse and the growth of crops to
make informed management decisions, controlling the actuators to adjust the greenhouse
environment optimally for crop growth [6]. Key environmental factors considered critical
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for the regulation of the greenhouse environment include the internal temperature, relative
humidity, and CO2 concentration [7].

Traditionally, the prediction of greenhouse environments and crop growth has re-
lied on the knowledge and experience of cultivators. However, with the advancement of
technology, there has been a significant shift towards more accurate predictions through
research based on physical laws and simulation studies [8]. As a case in point of prior
research, event-based technologies [9], Finite Difference Method (FDM) techniques [10],
and Finite Element Method (FEM) approaches [11] were employed for modeling various pa-
rameters including internal greenhouse air and soil temperatures. However, such modeling
methods face the challenge of requiring a vast array of indicators and variables, and there
exists the problem that achieving consistent results across diverse greenhouse structures
and various crops can be difficult [12].

In the 21st century, driven by the Internet of Things and big data, artificial intelligence
has developed rapidly, leading to research on greenhouse environment and crop growth
prediction models, which are more universal than traditional modeling methods. Specif-
ically, models based on artificial intelligence have been evaluated to perform superiorly
over conventional statistical models in addressing complex nonlinear problems and are
being applied to the intricate environments of greenhouses and crop growth predictions.
For instance, the Multiple Linear Regression (MLR) model, a statistical method that models
the relationship between a dependent variable and two or more independent variables, can
predict the internal environment of greenhouses using external and internal environmental
factors as variables [13–15]. The MLR model, capable of learning with relatively fewer
data, boasts computational efficiency and ease of interpretation, making it effectively appli-
cable in various predictive environments. Support Vector Machines (SVMs) are machine
learning models developed for pattern recognition, finding the optimal decision boundary
to classify or predict data. SVMs can be applied to nonlinear greenhouse environment
predictions, as it simplifies nonlinear calculations by mapping nonlinear input data into
a higher-dimensional linear space [16,17]. Artificial Neural Networks (ANNs) consist of
multiple nodes (or artificial neurons) interconnected in a network structure, capable of auto-
matically learning data features and performing predictions or classifications [18]. An ANN
is composed of input, hidden, and output layers, where each node is connected to others
through weights that are adjusted during the learning process to produce the correct output
for given inputs. This structure allows for the processing of various greenhouse variables
and learning their interactions. Particularly, deep learning with multiple hidden layers can
be designed to solve complex problems, enabling learning from large datasets’ complex pat-
terns. ANNs, due to these characteristics, can be useful in modeling nonlinear greenhouse
environments [19,20]. Research applying ANNs to greenhouse environment predictions
has utilized 13 different ANN models to predict internal air, soil, and plant temperatures
within greenhouses [21]. As another example of deep learning technology application,
Alhnaity, B. et al. (2020) [22] used RNNs to predict yield, growth rate, and stem thickness
of greenhouse tomatoes. Moreover, Jung, D.-H. et al. (2020) [23] utilized ANN, NARX,
and RNN-LSTM to predict temperature, humidity, and CO2 conditions within tomato
greenhouses, achieving up to 0.97 R2 values for predictions ranging from 5 to 30 min.
This research highlighted that shorter prediction intervals resulted in higher accuracy but
also increased the consumption of computing resources and related costs. Hence, deep
learning models that show good predictive performance might require high-performance
GPUs or parallel processing with several GPUs, increasing power consumption with the
need to process large amounts of data and complex mathematical operations. Therefore,
the practical application of deep learning models in most real-world greenhouses might
be limited.

Recent research has been exploring the application of boosting-based machine learning
models across various fields, as these models can be trained and analyzed significantly
faster and with much less computational power compared to deep learning models [24].
Unlike the black-box nature of deep learning models, the structure of boosting-based mod-
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els is more interpretable, making it easier to understand the importance of variables and
their influence on predictions. One method of interpretation is the weight method [25],
which allows for the analysis of the importance and impact of each parameter. The impor-
tance is calculated based on the number of times a variable is used at split points across the
decision trees making up the model and the extent to which these split points contribute to
the model’s performance improvement [26,27]. Through such analysis, parameters with
significant influence can be identified, and less important parameters can be eliminated to
enhance the model’s predictive efficiency and performance. Additionally, each decision
tree built by the boosting model represents a weak prediction model, with the values of
leaf nodes in each decision tree contributing to the overall model’s prediction in a specific
way. Notably, the first decision tree identifies the largest pattern captured by the data and
illustrates the overall operational direction of the model [28,29].

Therefore, in fields where the interpretation of model results is crucial, machine
learning models from the boosting family, such as XGBoost, may be more readily applicable
than deep learning models. Particularly, the XGBoost model, which can learn at a rapid
pace through parallel processing and applies system optimization techniques to maximize
computational efficiency, stands out [29]. Research applying the XGBoost model in the
agricultural sector has included predicting crop yields [30,31] and studies on estimating
the evapotranspiration of tomatoes [32]. However, research on predicting greenhouse
environments based on the XGBoost model remains limited. Utilizing a model like XGBoost,
which allows for understanding learning patterns and operational directions, could not
only facilitate the anticipation of changing environmental values but also enable the desired
control or agricultural operations within greenhouses.

Netted melons (Cucumis melo L. var. reticulatus Naud.) are cultivated globally, primar-
ily in greenhouses in countries with unsuitable climates [33]. In these greenhouses, key
factors determining melon quality and yield are internal conditions like temperature, rela-
tive humidity, and carbon dioxide levels [34–36]. Optimal temperatures range from 10 ◦C
to 34 ◦C, with deviations slowing melon growth and altering yields [34,37]. Particularly,
excessive heat just before harvesting can accelerate melon respiration, increasing energy
consumption and significantly inhibiting sugar accumulation [38]. For relative humidity,
a range of 85% to 95% is ideal [34,39]. Higher levels can disrupt transpiration, hindering
water and nutrient transport, reducing fruit size and sweetness, and increasing the risk
of fungal diseases and pests [36]. Lower humidity levels can cause excessive evaporation,
stressing plants and negatively impacting growth and fruit quality [40]. Carbon dioxide,
essential for photosynthesis and particularly crucial for fruit development, should be above
1200 ppm to increase fruit size, number, and sugar content [35]. Therefore, monitoring and
precisely managing these three greenhouse climate conditions is vital for melon quality
and yield.

Accurate and reliable predictions of these climate conditions could enable more ef-
fective actuator control, maintaining optimal climate ranges and enhancing melon quality
and yield. Effective control intervals and observations of environmental changes due to
actuator operation in greenhouses are reported to be at least every 30 min [18,41]. However,
previous studies on melons [42–44] focused more on predictions for longer periods or
were mainly aimed at predicting the sweetness and yield of fruits in the later stages of
crop growth. Recently, Suhardiyanto, H. and Hasbullah, R. (2022) [45] developed an ANN
model with an accuracy of R2 = 0.9, using average temperature, relative humidity, light
intensity, plant age, leaf area, and plant height as input parameters to predict melon plant
height and leaf area two days later.

Therefore, the purpose of this study is to develop a machine learning-based model for
predicting the internal environment of greenhouses cultivating melons and to investigate
its applicability to general greenhouses. This objective can be summarized into three main
aspects: First, to construct a machine learning-based model that predicts the values of three
output parameters—inside temperature, relative humidity, and CO2 concentration—30 min
later, using 11 input parameters collected from melon greenhouses, including time, inside
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temperature, relative humidity, CO2 concentration, outside temperature, wind direction
and speed, solar radiation, cumulative solar radiation, heating, and rainfall information.
Second, to calculate each model’s performance metrics and compare the differences between
predicted and actual values to investigate stable models that can be practically applied
to greenhouses. Third, to analyze the feature importance values for each parameter in
the XGBoost model’s predictions and investigate the internal nodes of the decision tree to
interpret how the model predicts internal environmental factors of greenhouses.

The greenhouse environmental factor prediction model and method developed in this
study aim to be applicable not only to the greenhouses and crops used in this research but
also to most greenhouses and crops. Furthermore, it is expected that models suitable for
predicting environmental changes in greenhouses for different crops can be constructed
based on this study’s method, applying various time intervals.

2. Materials and Methods
2.1. Greenhouse and Measurements

The greenhouse used for this study is a 1320 m2 venlo type multi-greenhouse located at
604-61, Sangpung-ro, Sabeolguk-myeon, Sangju-si, Gyeongsangbuk-do, Republic of Korea.
In this greenhouse, domestic netted melon (Cucumis melo L. var. reticulatus Naud.) cultivars,
specifically ‘PMR Dalgona’, were cultivated using hydroponics on coir substrates with a
row spacing of 1.5 m and a planting density of 2.5 plants/m2, as illustrated in Figure 1.
The electrical conductivity (EC) levels of the nutrient solution were set to 1.8 dS·m−1 after
transplantation and to 2.1 dS·m−1 after fruit set.
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Figure 1. (a) Inside the greenhouse; (b) melon fruits and leaves being cultivated in the greenhouse.

The total data acquisition period spanned 56 days, from 24 March to 19 May 2023.
Environmental data were collected every minute and stored in a database. The internal
greenhouse temperature, relative humidity, and CO2 concentration were measured using
temperature, humidity, and CO2 sensors (SH-300-DC, SOHA-tech, Seoul, Republic of
Korea) installed inside the greenhouse, while external parameters were measured using a
Davis Wireless Vantage Pro2 weather station (Davis Instruments, Hayward, CA, USA) and
an HMP 35 probe (Vaisala, Helsinki, Finland). The operation of the heating system was
recorded through the operational history of the heating controller.

2.2. Dataset Preparation

To predict internal greenhouse temperature, relative humidity, and CO2 concentration,
11 input parameters were used as detailed in Table 1. These parameters, acquired every
minute, were organized into a single table based on minute intervals, forming a table with a
total of 62,502 rows and 11 columns. For the prediction model, the input data, X, consisted
of 62,502 rows and 11 columns, while the output data, y, representing inside temperature,
inside relative humidity, and inside CO2 concentration, required predicting the y values
30 min later for each X; thus, the first 30 rows were removed to create tables of 62,502 rows
and 1 column each. To ensure a one-to-one correspondence between X and y, the last
30 rows of X were also removed, resulting in a shape of 62,472 rows and 11 columns. To
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construct models for predicting y from X and to evaluate their performance, the X and y
data were randomly split into training and test sets, with the split ratio set at 8:2.

Table 1. Units and descriptions of the input parameters in the dataset.

Parameter Unit Description

DATETIME minutes The date and time of data recorded at 1 min intervals
TMPin ◦C The greenhouse inside temperature
RHM % The greenhouse inside relative humidity
CO2 ppm The greenhouse inside carbon dioxide concentration
HEAT (0,1) The status of the heating valve: 1 for open, 0 for closed
TPMout ◦C The greenhouse outside temperature
WDR 0~360 The wind direction
WSP m/s The wind speed
SRD W/m2 The solar radiation
CSRD J/m2 The cumulative solar radiation
RAIN (0,1) The status of the rain sensor: 1 for detected rainfall, 0 for no detection

2.3. Modeling Methods

For model construction, machine learning libraries based on Python 3.8 were utilized,
with MLR and SVR models employing the Scikit-learn library, while the ANN and XGBoost
models used the Tensorflow and Xgboost libraries, respectively. We utilized the open source
hyperparameter optimization framework, Optuna [46], for tuning the hyperparameters of
each model. Using Optuna’s Tree-structured Parzen Estimator algorithm [47], we efficiently
searched the hyperparameter space for each model. The objective function was defined to
minimize the mean squared error (MSE) on a validation set during a 5-fold cross-validation
process, thereby optimizing the hyperparameters for each model. The formula of the used
model and the structure of the constructed model are shown in Figure 2, and each detailed
description is as follows.
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2.3.1. MLR Model

The MLR model [48] constructed in this study determined regression coefficients using
the method of least squares to minimize the sum of squared errors between predicted and
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actual values (Figure 2a). This model’s structure allows for the evaluation of the relative
impact of each independent variable on y, reflecting the multidimensional characteristics of
X. A distinctive feature of this model, compared to others in this study, is that it predicts y
by linearly combining the independent impacts of parameters without considering their
interactions or nonlinear relationships.

2.3.2. SVM Model

In constructing the SVM model [49], a Radial Basis Function (RBF) was used as the
kernel for mapping input data into a higher-dimensional space, thereby establishing the
structure for support vector regression (Figure 2b). The optimization algorithm employed
was Sequential Minimal Optimization (SMO), and the ε-insensitivity loss function (epsilon-
insensitive) was utilized to enhance the model’s generalization capability.

2.3.3. ANN Model

The ANN model constructed in this study (Figure 2c) comprises an input layer that
assigns values for 11 parameters, a hidden layer with 100 nodes that receive signal values
from each input node, and a final layer with one node that outputs the prediction values.
The signal values from the input nodes are distributed to the 100 hidden nodes based on
the connection weights between the input and hidden nodes. The transfer function used
here is the Rectified Linear Unit (ReLU) function [50], and the activation function for the
output layer is the linear function [51]. During the learning process of this model structure
with the dataset, the Adam (Adaptive Moment Estimation) optimization algorithm and the
MSE (Mean Squared Error) loss function were utilized [52]. Additionally, 10% of X was
randomly separated as a validation set, and the model’s performance was verified at each
epoch during training through 100 epochs with a batch size of 10.

2.3.4. XGBoost Model

The XGBoost (eXtreme Gradient Boosting) model used in this study is an advanced
gradient boosting framework that utilizes a decision tree-based ensemble learning method-
ology [29]. The objective function of XGBoost is composed of a loss function and a regular-
ization term (Equations (1)–(3)). L(Θ) represents the loss function, measuring the difference
between actual values and predicted values, where yi is the actual value and ŷi is the
predicted value by the model. Ω(Θ) is the regularization term, measuring the complexity
of the model to prevent overfitting. T denotes the number of trees, ωj is the weight of the
tree, and γ and λ are parameters controlling regularization. At each step, the model learns
about the residuals from the previous step, using the gradient boosting method to update
the model (Equation (4)), where ŷi(t) is the prediction at step t, f j(xi) is the predictive contri-
bution by tree j, and η represents the learning rate. Employing these formulas, the XGBoost
model sequentially constructs multiple CARTs (Classification and Regression Trees) from
training data, generating each tree by considering a certain weight from the errors of the
previous tree. This process is repeated T times, with each tree focusing on learning different
parts of the data to improve the overall performance of the model. The final prediction
is made by summing up the predictions of each tree, multiplied by the optimal weights
determined during the learning process (Figure 3). In this study, the hyperparameters
were set after considering the model’s performance. Initially, the learning rate for each
boosting stage was set to 0.1 to prevent updates from happening too rapidly and to reduce
the risk of overfitting. The maximum depth of individual decision trees was set to 5 to
maintain an appropriate level of generalization capability. The number of decision trees
built for boosting was set to 100 to allow for learning a variety of data patterns. Through
these hyperparameter settings and structure, learning about the residuals of data at each
boosting stage was conducted to enhance performance, thereby minimizing prediction
error while deriving generalized learning outcomes.



Agronomy 2024, 14, 1070 7 of 18

Obj(Θ) = L(Θ) + Ω(Θ) (1)

L(Θ) = ∑n
i=1(yi − ŷi)

2 (2)

Ω(Θ) = γT +
1
2
λ∑T

j=1 ω2
j (3)

ŷi(t + 1) = ŷi(t) + η·∑T
j=1 f j(xi) (4)
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2.4. Model Evaluation

To evaluate the performance of the models constructed in this study, the Root Mean
Squared Error (RMSE), R-squared (R2), and Residual Predictive Deviation (RPD) values
were calculated for each model’s training and testing datasets. These metrics, commonly
used to assess regression models, involve RMSE, which is calculated as the square root
of the average of the squared differences between actual values and predicted values
(Equation (5)). Here, n is the number of observations, yi is the actual observation value, ŷi
is the predicted value by the model, and y is the mean of the actual observation values.
Therefore, the RMSE value represents the magnitude of error, with lower values indicating
better predictive performance of the model [53].

Equation (5):

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (5)

R2 values range between 0 and 1, indicating how well the model explains the variability
of the data. Values closer to 1 mean the model explains the data well, while values closer to
0 indicate lower explanatory power [54].
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Equation (6):

R2 = 1 − ∑(yi − ŷi)
2

∑(yi − y)2 (6)

RPD represents the ratio of the standard deviation of the actual values to the standard
deviation of the model’s prediction errors (Equation (7)). This metric indicates how well the
model predicts the variability of the data, with higher values indicating better predictive
performance. Typically, an RPD value below 1 is considered not useful for predicting
variability in the data, 1 is average, values above 1 are useful, and values above 2 indicate a
high level of prediction accuracy [55].

Equation (7):
RPD = σobserved

RMSE ,

σobserved =
√

1
n ∑n

i=1(yi − y)2
(7)

Additionally, for each environmental parameter (y), a one-to-one plotting of predicted
values against actual values for each prediction model was conducted, utilizing a linear
regression line to intuitively compare and assess the performance of the prediction models.
The closer the predicted values are to the actual values, the closer they lie to the 1:1 line,
allowing for an intuitive verification of the prediction model’s outcomes. Specifically,
for the XGBoost model, the weight method was used to investigate and compare the
feature importance among the 11 input parameters for each predicted environmental factor.
Concurrently, information from the first decision tree of the model for each predicted
environmental factor was extracted and visualized.

3. Results and Discussion
3.1. Prediction Results of Environmental Parameters

The performance of four artificial intelligence models, MLR, SVM, ANN, and XGBoost,
constructed for predicting the values of three parameters—internal temperature (TMPin),
relative humidity (RHM), and carbon dioxide concentration (CO2)—30 min later, was
evaluated. The evaluation metrics used were RMSE and R2, with RMSE and R2 values for
the train and test datasets denoted as RMSET, RMSEP, RT

2, and RP
2, respectively (Table 2).

Additionally, the RPD value was investigated to assess the prediction accuracy on the
test dataset.

Table 2. Comparative performance of prediction models.

Parameter Model RMSET RT
2 RMSEP RP

2 RPD

TMPin

MLR 0.8682 0.9318 0.8644 0.9311 3.8100
SVM 0.6950 0.9563 0.7003 0.9548 4.7026
ANN 0.8729 0.9310 0.8689 0.9304 3.7922

XGBoost 0.5226 0.9753 0.5471 0.9724 6.0197

RHM

MLR 4.4579 0.9352 4.4841 0.9356 3.9397
SVM 3.9699 0.9486 4.0303 0.9480 4.3883
ANN 4.4638 0.9351 4.4879 0.9355 3.9344

XGBoost 3.1256 0.9682 3.2789 0.9656 5.3878

CO2

MLR 26.8977 0.9408 28.0193 0.9392 4.0556
SVM 24.8876 0.9493 26.6713 0.9449 4.2604
ANN 26.9102 0.9407 28.0193 0.9392 4.0542

XGBoost 8.5519 0.9940 9.5919 0.9929 11.8464
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The results showed that, for TMPin, the XGBoost model exhibited the lowest RMSE
values for both datasets and achieved the highest R2 values of 0.9753 and 0.9724 for the
training and testing datasets, respectively, compared to other models. Similarly, for RHM,
the XGBoost model demonstrated the lowest RMSE values for both datasets and had the
highest R2 values of 0.9682 and 0.9656. In the prediction of CO2, XGBoost outperformed all
other models significantly, with the lowest RMSE values of 8.5519 for the training dataset
and 9.519 for the test dataset, and very high R2 values of 0.9940 and 0.9929, respectively.
Consequently, the predictive performance of XGBoost significantly surpasses that observed
in prior studies focusing on greenhouse environment and crop predictions. This superiority
is evident when comparing it with several benchmarks: an R2 value of 0.9 achieved
by ANNs for predicting melon growth indicators two days ahead [42], an R2 value of
0.96 obtained by Recurrent Neural Networks-Long Short-Term Memory (RNN-LSTM)
for forecasting greenhouse temperature 30 min in advance [23], and the performance of
Gradient Boosting Regressor–Evapotranspiration (GBR-ET) models in estimating tomato
evapotranspiration [32].

The RPD values between models for each parameter indicated that MLR, SVM, and
ANN models also performed well, all showing RPD values above 3.8, indicating excel-
lent prediction of data variability. However, XGBoost exhibited exceptionally high RPD
values of 6.0197, 5.3878, and 11.8464 for TMPin, RHM, and CO2 parameters, respectively,
surpassing other models. Thus, the XGBoost model can be considered the most reliable
for predicting the internal environment of greenhouses compared to other machine learn-
ing models.

Additionally, upon comparing the overall distribution by plotting the actual val-
ues against the predicted values of each parameter on a one-to-one basis, differences in
distribution by model were observed (Figures 4–6).
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3.1.1. Inside Temperature

The one-to-one scatter plot of the actual and predicted internal greenhouse tempera-
tures (Figure 4) showed that the data points of all models were closely distributed around
the one-to-one correspondence line. This indicates that the models generally predict the
actual internal greenhouse temperature well. However, the scatter plots for the MLR, SVM,
and ANN models exhibited a convex to concave shape between approximately 15 ◦C and
20 ◦C relative to the one-to-one line, while XGBoost showed this trend to a lesser extent.
Additionally, the scatter plots for MLR, SVM, and ANN models particularly exhibited a con-
vex shape around the temperature range of 16 ◦C to 20 ◦C relative to the one-to-one line. By
contrast, XGBoost showed less of a convex shape in that temperature range. This suggests
that XGBoost may have a higher accuracy and can provide more consistent predictions
compared to other models.

3.1.2. Inside Relative Humidity

Upon drawing the one-to-one scatter plot of the actual versus predicted values for
internal greenhouse relative humidity (Figure 5), it was observed that the data points
from all models were more widely distributed compared to the scatter plot for the internal
greenhouse temperature. Notably, no specific convex or concave sections relative to the
one-to-one line were observed. Examining the shape of data points that are particularly
far from the one-to-one line, it could be seen that the MLR, SVM, and ANN models had
similarly positioned data points. By contrast, the data points from the XGBoost model
were located closer to the one-to-one correspondence line. Therefore, it can be inferred that
the XGBoost model employs more accurate prediction algorithms compared to the other
three models.

3.1.3. Inside CO2 Concentration

Upon creating the one-to-one scatter plot of the actual versus predicted values for
internal greenhouse CO2 concentration (Figure 6), it was observed that, compared to the
scatter plots for TMPin and RHM, the data points were more closely aligned to the one-
to-one correspondence line. However, for the MLR, SVM, and ANN models, there were
data points significantly far from the one-to-one line, particularly in ranges commonly
between 400 to 1000 ppm, where overpredicted data points existed sporadically across a
wide range. By contrast, the scatter plot for the XGBoost model did not show instances
where predicted values were significantly higher than actual values. Additionally, the
other three models showed very isolated data points where predicted values were lower
than actual ones, especially in the range of 1000 to 1100 ppm. Conversely, in the XGBoost
model’s scatter plot, even data points in that range were closer to the one-to-one line
compared to predictions from other models. Extremely isolated data points below the
one-to-one line, indicating a sudden increase in CO2 concentration to over 1000 ppm within
30 min, could be attributed to either a substantial additional carbon fertilization by the
cultivator or malfunctioning of the CO2 sensor. For accurate prediction, operational history
of the CO2 valve should be included as an additional parameter to learn information about
carbon fertilization. However, comparing the data points between XGBoost and other
models, the significant difference in proximity to the one-to-one line suggests that XGBoost
provided more stable predictions not by forecasting sensor malfunction but by learning the
situation where the cultivator performed substantial carbon fertilization based on various
environmental conditions. Observing the data points closely hugging the one-to-one line,
it can be concluded that the XGBoost model performs exceptionally well in predicting the
internal CO2 concentration of greenhouses compared to other environmental factors.

3.2. Investigating Parameter Contributions and Model Decisions
3.2.1. Inside Temperature

In this study, the relative importance of each input parameter on the prediction
outcome when the XGBoost model was used to predict the internal greenhouse temperature
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30 min later was examined (Figure 7a). Comparing the F scores of each parameter in
Figure 7a, TMPin had the highest value at 778, followed by SRD with a value of 533.
DATETIME, RAIN, TMPout, and CSR showed similar levels of importance with values
above 240. By contrast, HEAT, WDR, and RHM showed very low importance with values of
3, 15, and 31, respectively. This indicates that the current temperature plays a crucial role in
determining the greenhouse’s internal temperature 30 min later, suggesting that significant
changes in temperature within a 30 min timeframe are unlikely based on the current
temperature. Furthermore, the current solar radiation (SRD) is an environmental factor that
can significantly affect the variation in internal greenhouse temperature, followed by the
current date and time (DATETIME) and the presence or absence of rainfall (RAIN), which
are also related to the amount of solar radiation received by the greenhouse. Thus, it can be
inferred that the impact of solar radiation dominantly influences the internal greenhouse
temperature. In the decision tree shown in Figure 7b, TMPin was the dominant factor
at the root node and showed the highest frequency among the internal nodes. SRD and
DATETIME appeared as factors in internal nodes beyond the third level, and examining
the conditions of these internal nodes revealed that as the values of SRD and DATETIME
increased, the values at the final leaf nodes also rose. From this trend, it can be inferred
that the model predicts an increase in the internal greenhouse temperature over the next
30 min as solar radiation intensifies and time progresses.
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3.2.2. Inside Relative Humidity

In the XGBoost model predicting the internal relative humidity of the greenhouse
30 min later, the relative importance of each input parameter on the prediction outcome
was also examined (Figure 8a). In Figure 8a, the highest F score was 776 for RHM, followed
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by 512 for SRD. Subsequently, HEAT, TMPin, and DATETIME showed similar levels
of importance, all above 333. By contrast, WSP, WDR, and RAIN exhibited very low
importance with values of 3, 6, and 25, respectively. Similar to the model predicting TMPin
values 30 min later, the factor being predicted (RHM) had the greatest importance, followed
by SRD, showing a tendency for the same factor to hold the highest importance, with SRD
next in significance. However, the next most important factor was HEAT, which had been
of very low importance in the TMPin prediction model. Thus, the current value of internal
relative humidity was most decisive for its value 30 min later, and solar radiation was an
important factor affecting not only the internal temperature but also the changes in the
internal relative humidity of the greenhouse. Moreover, while the operation of heating was
not dominant in predicting temperature changes 30 min later, it played a significant role in
predicting changes in relative humidity. Similarly, in the decision tree shown in Figure 8b,
the branching at the root node was divided based on RHM conditions, and the RHM factor
accounted for the most significant proportion of internal nodes. Subsequently, factors such
as SRD, TMPin, and TMPout also acted as internal node factors. Overall, the first decision
tree structure of the internal relative humidity prediction model had more internal and leaf
nodes compared to the internal temperature prediction model. From this difference, it can
be inferred that the model considers the values of environmental factors more complexly
when predicting internal humidity than internal temperature.
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3.2.3. Inside CO2 Concentration

In the XGBoost-based prediction model for forecasting the CO2 concentration inside
the greenhouse, the relative importance of each input parameter on the prediction outcome
was examined, as shown in Figure 9a. In Figure 9a, the factor with the highest importance
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was CO2, identical to the predicted factor, with a value of 682. Following CO2 in importance
was SRD, like other environmental factor prediction models, with a value of 624, indicating
a level of importance close to that of CO2. Subsequent factors such as TMPin, DATETIME,
and RAIN displayed similar levels of importance, with F scores above 299. Thus, the
current CO2 concentration was the most critical for predicting its value 30 min later, with
changes in solar radiation indicating that photosynthetic activity of crops, stimulated by
solar radiation energy, either increases CO2 consumption, leading to a decrease in internal
concentration, or increases due to carbon fertilization aimed at enhancing photosynthesis,
which the model has learned. Following in importance were factors such as the internal
greenhouse temperature, the date and time, and the presence of rainfall, which are closely
related to the crop’s photosynthesis, indicating that the model considered these factors in its
predictions. In Figure 9b, the decision tree’s root node was branched based on the current
CO2 factor. The condition at the root node was the median value of CO2 measured inside
the greenhouse. When values were below this median, the subsequent internal node’s
CO2 conditions tended to slightly decrease with higher solar radiation and temperature
values. When internal node CO2 values were above approximately 800, the leaf node values
significantly decreased with high solar radiation or temperature compared to lower values.
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This pattern could be interpreted as reflecting situations with or without carbon fertil-
ization inside the greenhouse. That is, cases below the median value likely represent natural
conditions without carbon fertilization, where the model predicted that CO2 concentration
decreases with higher photosynthesis due to increased solar radiation and temperature.
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Conversely, in situations above the median value, indicating carbon fertilization, the model
interpreted that crops consume CO2 more vigorously with higher temperature and solar
radiation, leading to a distinct difference in CO2 concentration based on these environmen-
tal factors. Therefore, the XGBoost model for predicting the internal CO2 concentration
in the greenhouse can be interpreted as having learned and predicted outcomes based
on the crop’s photosynthesis interacting with the environment, the cultivator’s carbon
amendment, and the control of actuators such as ventilation.

4. Conclusions

In this study, we developed machine learning-based models to predict the internal
environment of greenhouses cultivating melons and investigated their applicability to
general greenhouses. Initially, four machine learning models, MLR, SVM, ANN, and
XGBoost, were built using data collected every minute on 11 environmental parameters
from a melon greenhouse to predict internal temperature, humidity, and CO2 concentration
30 min later. Upon comparing performance metrics to evaluate the stability of each model,
the XGBoost model exhibited the lowest RMSE values across all types of datasets for
predicting the three greenhouse internal environmental factors. Moreover, it achieved
the highest R2 values of 0.9724 for internal temperature, 0.9656 for relative humidity, and
0.9929 for CO2 concentration predictions 30 min later. The RPD values similarly highlighted
that XGBoost outperformed all other models in predicting all factors, with a notably high
RPD value of 11.8464 for CO2 concentration predictions compared to other models’ values
around 4. Additionally, one-to-one scatter plots of actual versus predicted values for each
model’s test set demonstrated that XGBoost model data points were closer to the one-to-one
correspondence line compared to the other three models. Particularly, the scatter plot for
internal CO2 concentration predictions with very high RPD values confirmed XGBoost’s
effectiveness in predicting CO2 data variability more efficiently than other models.

Investigating the feature importance in the XGBoost model revealed that the de-
gree of each input parameter’s impact on the prediction outcome outlines how internal
environmental changes in the greenhouse are influenced by time and solar radiation. Obser-
vations from the first decision tree of the XGBoost model, including the root, internal, and
leaf nodes, confirmed that the model learns and reflects the interaction between internal
greenhouse conditions, crop, and the cultivator’s farming practices. A model capable of
identifying the factors and their extents that influence the prediction process and outcomes
can be effectively utilized to understand and control the interactions among various factors
in greenhouses cultivating melons. In other words, by employing models like XGBoost
for growing melons, predictions can be made about the internal temperature, relative
humidity, and CO2 levels within the melon greenhouse. If the predicted values exceed
the optimal ranges, actuators can be activated to adjust them back within the desired
limits. Furthermore, by interpreting the decision-making process of the model and the
impact of each parameter, the cultivator can gain a deeper understanding of how climate
factors change with actuator operations, enabling more proactive greenhouse environment
control decisions.

However, the data used to build the model in this study did not encompass all factors
influencing the greenhouse environment, resulting in instances where the 30 min future
environment was under- or overpredicted compared to actual values. Future research could
incorporate additional parameters, such as the operational history of CO2 valves or ventila-
tion fans, to more accurately predict the complex greenhouse environment influenced by
various factors. Furthermore, the methodologies developed in this study could be applied
to research suitable time intervals for predicting environmental changes in greenhouses
cultivating different crops.
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