Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection
Abstract
:1. Introduction
2. This Issue
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vogel, A.M.; Below, F.E. Residue and Agronomic Management to Reduce the Continuous Corn Yield Penalty. Agronomy 2019, 9, 567. [Google Scholar] [CrossRef]
- Smerilli, M. Valorization of Potato-Processing Residues for the Production of Lactic Acid. Chem. Biochem. Eng. Q. 2016, 30, 255–263. [Google Scholar] [CrossRef]
- Libutti, A.; Cammerino, A.R.B.; Monteleone, M. Management of Residues from Fruit Tree Pruning: A Trade-Off between Soil Quality and Energy Use. Agronomy 2021, 11, 236. [Google Scholar] [CrossRef]
- Martín, C.; Fernández, T.; García, R.; Carrillo, E.; Marcet, M.; Galbe, M.; Jönsson, L.J. Preparation of Hydrolysates from Tobacco Stalks and Ethanolic Fermentation by Saccharomyces cerevisiae. World J. Microbiol. Biotechnol. 2002, 18, 857–862. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J. Management of High-Residue Cover Crops in a Conservation Tillage Organic Vegetable On-Farm Setting. Agronomy 2019, 9, 640. [Google Scholar] [CrossRef]
- Bhuvaneshwari, S.; Hettiarachchi, H.; Meegoda, J.N. Crop Residue Burning in India: Policy Challenges and Potential Solutions. Int. J. Environ. Res. Public Health 2019, 16, 832. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, S.; Singh, M.; Singh, A.; Ali, H.M.; Siddiqui, M.H.; Bhattarai, D. Changes in Wheat Rhizosphere Carbon Pools in Response to Nitrogen and Straw Incorporation. Agronomy 2022, 12, 2774. [Google Scholar] [CrossRef]
- Martín, C. Pretreatment of Crop Residues for Bioconversion. Agronomy 2021, 11, 924. [Google Scholar] [CrossRef]
- Zheng, Y.; Doll, C.A.; Qiu, F.; Anderson, J.A.; Hauer, G.; Luckert, M.K. Potential Ethanol Biorefinery Sites Based on Agricultural Residues in Alberta, Canada: A GIS Approach with Feedstock Variability. Biosyst. Eng. 2021, 204, 223–234. [Google Scholar] [CrossRef]
- Rodríguez, A.; Espinosa, E.; Martín, C. Special Issue “Lignocellulosic Biomass II”. Molecules 2023, 28, 6230. [Google Scholar] [CrossRef] [PubMed]
- Capolupo, L.; Faraco, V. Green Methods of Lignocellulose Pretreatment for Biorefinery Development. Appl. Microbiol. Biotechnol. 2016, 100, 9451–9467. [Google Scholar] [CrossRef]
- Martín, C.; Dixit, P.; Momayez, F.; Jönsson, L.J. Hydrothermal Pretreatment of Lignocellulosic Feedstocks to Facilitate Biochemical Conversion. Front. Bioeng. Biotechnol. 2022, 10, 846592. [Google Scholar] [CrossRef]
- Jönsson, L.J.; Martín, C. Pretreatment of Lignocellulose: Formation of Inhibitory by-Products and Strategies for Minimizing Their Effects. Bioresour. Technol. 2016, 199, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Castro, E.; Strætkvern, K.O.; Romero-García, J.M.; Martín, C. Pretreatment and Bioconversion for Valorization of Residues of Non-Edible Oilseeds. Agronomy 2023, 13, 2196. [Google Scholar] [CrossRef]
- Martín, C.; Moure, A.; Martín, G.; Carrillo, E.; Domínguez, H.; Parajó, J.C. Fractional Characterisation of Jatropha, Neem, Moringa, Trisperma, Castor and Candlenut Seeds as Potential Feedstocks for Biodiesel Production in Cuba. Biomass Bioenergy 2010, 34, 533–538. [Google Scholar] [CrossRef]
- Díaz, M.J.; Moya, M.; Castro, E. Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy 2022, 12, 874. [Google Scholar] [CrossRef]
- Ilanidis, D.; Stagge, S.; Jönsson, L.J.; Martín, C. Hydrothermal Pretreatment of Wheat Straw: Effects of Temperature and Acidity on Byproduct Formation and Inhibition of Enzymatic Hydrolysis and Ethanolic Fermentation. Agronomy 2021, 11, 487. [Google Scholar] [CrossRef]
- Steffen, F.; Kordsachia, T.; Heizmann, T.; Eckardt, M.P.; Chen, Y.; Saake, B. Sodium Carbonate Pulping of Wheat Straw—An Alternative Fiber Source for Various Paper Applications. Agronomy 2024, 14, 162. [Google Scholar] [CrossRef]
- Ruiz, E.; Romero-García, J.M.; Romero, I.; Manzanares, P.; Negro, M.J.; Castro, E. Olive-Derived Biomass as a Source of Energy and Chemicals. Biofuels Bioprod. Biorefin. 2017, 11, 1077–1094. [Google Scholar] [CrossRef]
- Díaz, M.J.; Ferrero, P.M.; Moya, M. Sequential Acid/Alkali Pretreatment for an Olive Tree Pruning Biorefinery. Agronomy 2023, 13, 2682. [Google Scholar] [CrossRef]
- López-Sandin, I.; Rodríguez-Jasso, R.M.; Gutiérrez-Soto, G.; Rosero-Chasoy, G.; Shiva; González-Gloria, K.D.; Ruiz, H.A. Energy Assessment of Second-Generation (2G) Bioethanol Production from Sweet Sorghum (Sorghum bicolor (L.) Moench) Bagasse. Agronomy 2022, 12, 3106. [Google Scholar] [CrossRef]
- Garcia-Vallejo, M.C.; Agudelo Patiño, T.; Poveda-Giraldo, J.A.; Piedrahita-Rodríguez, S.; Cardona Alzate, C.A. Alternatives for the Valorization of Avocado Waste Generated in the Different Links of the Value Chain Based on a Life-Cycle Analysis Approach. Agronomy 2023, 13, 2229. [Google Scholar] [CrossRef]
- Carmo-Calado, L.; Hermoso-Orzáez, M.J.; La Cal-Herrera, J.; Brito, P.; Terrados-Cepeda, J. Techno-Economic Evaluation of Downdraft Fixed Bed Gasification of Almond Shell and Husk as a Process Step in Energy Production for Decentralized Solutions Applied in Biorefinery Systems. Agronomy 2023, 13, 2278. [Google Scholar] [CrossRef]
- Osipov, D.O.; Dotsenko, A.S.; Semenova, M.V.; Rozhkova, A.M.; Sinitsyn, A.P. Comparative Study of the Convertibility of Pretreated Miscanthus Straw Using Enzyme Preparations Produced by Different Recombinant Strains of Penicillium verruculosum. Agronomy 2024, 14, 499. [Google Scholar] [CrossRef]
- Anderson, A.S.; Mkabayi, L.; Malgas, S.; Kango, N.; Pletschke, B.I. Covalent Immobilisation of an Aspergillus Niger Derived Endo-1,4-β-Mannanase, Man26A, on Glutaraldehyde-Activated Chitosan Nanoparticles for the Effective Production of Prebiotic MOS from Soybean Meal. Agronomy 2022, 12, 2993. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, C.; Castro, E. Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection. Agronomy 2024, 14, 962. https://doi.org/10.3390/agronomy14050962
Martín C, Castro E. Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection. Agronomy. 2024; 14(5):962. https://doi.org/10.3390/agronomy14050962
Chicago/Turabian StyleMartín, Carlos, and Eulogio Castro. 2024. "Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection" Agronomy 14, no. 5: 962. https://doi.org/10.3390/agronomy14050962
APA StyleMartín, C., & Castro, E. (2024). Special Issue “Pretreatment and Bioconversion of Crop Residues II”—Introduction to the Collection. Agronomy, 14(5), 962. https://doi.org/10.3390/agronomy14050962