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Abstract: The long-term use of chemical fertilizers poses a serious threat to crop productivity and soil
quality. Organic fertilizers are used to improve the soil fertility and crop productivity. The application
of organic fertilizers improves soil health and plant growth by improving the soil organic matter
(SOM), soil structure, aggregate stability, nutrient uptake, water-holding capacity, cation exchange
capacity, nutrient use efficiency and microbial activities of soil. The intensity of abiotic stress is
continuously increasing, which is a serious threat to crop productivity and global food security.
However, organic fertilizers have been reported to improve tolerance against drought, salinity, heat
and heavy metal (HM) stresses. The application of organic fertilizer improves the leaf water status,
nutrient uptake, nutrient homeostasis, synthesis of chlorophyll, osmolytes, hormones, secondary
metabolites, antioxidant activities and gene expression, resulting in improved tolerance against
drought, salinity, heat, and heavy metals. In the present review, we have discussed the ability of
organic fertilizers to improve soil fertility, crop yield, and the nutrient use efficiency. We have also
presented the various mechanisms through which organic fertilizers improve tolerance against
drought, salinity, heat, and heavy metals. Therefore, this review will put forth new directions for
researchers working on the use of organic materials to improve soil fertility, crop productivity and
tolerance against abiotic stresses.

Keywords: antioxidants; salinity stress; organic fertilizers; organic matter; nutrient uptake;
microbial activity

1. Introduction

Organic fertilizers possess an appreciable potential to improve environmental sustain-
ability and plant growth [1]. Generally, organic fertilizers are made from the composting of
animal manure, human excrement, household waste, municipal waste, agriculture waste
and plant parts [2]. The application of organic fertilizers improves the soil organic matter
(SOM), soil structure, nutrient availability and microbial activities of soil [3,4], resulting
in a significant increase in crop productivity [4,5]. Organic fertilizers also change the soil
cation exchange capacity (CEC), improve soil moisture, and change the composition of
acidic soils and the soil fauna community structure [6]. Adding organic fertilizers benefits
the stability and formation of earthworm communities, owing to the availability of more
stable nutrients from manures after aerobic fermentation [7]. Conversely, the long-term
use of chemical fertilizers reduces the SOM by causing soil acidification and soil crust,
and changes the microbial composition and activity [8].

The use of organic fertilizers also reduces the reliance on chemical fertilizers, which in
turn improves the soil health, environmental quality, and crop productivity [9,10]. Organic
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fertilizers revitalize soils owing to the fact that they are rich sources of SOM and nutri-
ents [10]. By using organic fertilizers, it is possible to reduce the use of chemical fertilizers by
50%, which can reduce the production cost and also increase the soil fertility for better crop
productivity [11]. Organic fertilizers contain an appreciable amount of micro and macronu-
trients, and they can also be used as important N sources for crops [12]. Different studies
have reported that the application of farmyard manure, slurry, and compost substantially
improves the productivity and quality of tomato, maize, and rice crops [13–15]. Besides
this, organic fertilizer can also improve the physiochemical and biological properties of soil,
and the availability of both micro and macronutrients to plants, thus maintaining better
crop productivity and the sustainability of agro-ecosystems [16].

The intensity of abiotic stresses (drought, heat, salinity, and heavy metals) is con-
tinuously soaring, posing a major threat to crop productivity and global food security.
The world’s population is increasing rapidly, which demands the adaptation of efficient
management practices to improve food production under stressful conditions [17]. The ap-
plication of organic fertilizers is considered a promising strategy for better crop production
under stressful conditions [18]. Different authors have noticed that the use of organic mate-
rials has great potential to improve crop yield and tolerance against drought, heat, salinity,
and heavy metals [19–23]. Therefore, this review sheds light on the ability of organic fertil-
izers to improve soil quality, crop productivity, and abiotic stress tolerance. In the literature,
hardly any reviews about the effect of organic fertilizers on major abiotic stresses and their
corresponding impacts on soil quality, nutrient use efficiency, and crop productivity are
available. Therefore, this review will put forth new directions for researchers studying the
use of organic materials to enhance abiotic stress tolerance and crop quality.

Methodology Used to Write Manuscript

The data used to write this review were collected from different databases including
Google Scholar, Scopus, and Web of Science. We used different keywords like “organic fer-
tilizers”, “organic manures”, “soil fertility and organic fertilizers”, “crop productivity and
organic manures”, “organic fertilizers and soil fertility”, “organic fertilizers and nutrient
uptake”, “organic fertilizers and salt stress”, “organic fertilizers and drought”, “organic
fertilizers and heat stress”, “organic fertilizers and heavy metals stress” and “organic
fertilizers improve abiotic stress tolerance”. The data were collected by searching a wide
range of findings from peer-reviewed sources. This included studies related to the topic,
global studies and studies published in the English language.

2. Types of Organic Fertilizers

Fertilizers are materials that contain one or more nutrients in the form of chemical
compounds with inorganic and organic natures. Fertilizers comprise two different types,
i.e., organic and inorganic fertilizers. Organic fertilizers are natural materials from plants
and animal sources (Figure 1) that directly and indirectly affect the soil’s physiochem-
ical and biological properties [24,25]. A bio-fertilizer is also a type of organic fertilizer
that contains beneficial microbes (algal, fungal, bacteria) that improve plant growth by
mobilizing the soil available nutrients through their biological activities [2,26]. Animal
excreta is the greatest source of organic manure around the globe, followed by poultry and
pig manures [27]. Cattle production in recent times has increased by 5% due to increased
demands for milk and beef [27]. Therefore, the production of cattle manure, which can
be used in agricultural soils for better environmental quality and soil fertility, has also in-
creased. Animal manures are a good and sustainable source of NPK (nitrogen, phosphorus
and potassium), and the total N excreted in animal manure globally ranges from 81.5 to
128.3 Tg y−1 [28,29]. However, it is important to mention that the type and amount of N in
animal manure significantly varies [29,30].

The percentage of N in organic fertilizers depends on the animal species, feed, live-
stock bedding, animal bedding, and processes adapted to treat and process manures [31,32].
For instance, the N concentration in poultry manures is very high compared to pig and cat-
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tle manures; on the other hand, liquid manures have a higher concentration of ammonium
(NH4

+) and lower organic N compared to solid manures [31]. Moreover, the processing
and storage methods and bedding material also significantly affect the type and amount of
nutrients present in manure [33]. For instance, manures processed through aerobic com-
posting and vermicomposting have high organic N and nitrate (NO3

−) levels compared to
solid manures. Conversely, manures processed anaerobically have higher N concentrations,
with dominant NH4

+ pools of N [26].
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3. Pros and Cons of Organic Fertilizers

Organic fertilizers substantially improve the SOM, soil structure, soil aeration, water
retention, microbial activities, nutrient mobilization, and availability of soil, which in turn
increases the soil quality and crop yield [4,9,20,34]. Organic manures also improve the soil
structure, soil aggregate stability, and CEC, which improves root growth, ensures better
nutrient and water uptake, and consequently ensures better crop performance [35]. Besides
this, organic fertilizers also work as a buffering agent for undesirable fluctuations in soil
pH [36]. The addition of organic manures improves soil aggregation and increases the soil
surface area, which improves the water-holding capacity (WHC) and thus improves plant
growth [37,38]. Moreover, organic fertilizers also bring favorable changes in soil microbial
activity, diversity, and composition, which ensure the better release of nutrients and im-
prove crop productivity [36]. Organic fertilizers also improve the quality of the environment
by reducing nutrient losses and greenhouse gas emissions (GHGs), and they also improve
crop yield by improving soil fertility and suppressing plant pests and diseases [39].

However, organic fertilizers also have many cons, as they contain pathogens that
are considered to be harmful to plants and animals [39]. Organic fertilizers contain a low
quantity of nutrients; therefore, their large-scale use in agriculture is very difficult without
chemical fertilizers [40]. The composition of organic fertilizers is also highly variable;
therefore, the accurate application of nutrients to plant production is quite difficult [39].
Besides this, organic fertilizers are not readily available owing to the fact that they are
needed in large quantities [41]. The decomposition of organic fertilizers is very slow
and their decomposition is strongly affected by the soil temperature and moisture, which
affect the release of nutrients from organic fertilizers [39,42]. Moreover, organic fertilizers
also contain heavy metals, fecal coliforms, and nutrients. When they enter water bodies,
they substantially degrade the quality of water and impose a serious health threat [43].
The successive use of a high quantity of sewage sludge and dairy manure can increase the
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risk of ground and surface water pollution [44]. Organic manures also lead to an increase
in NO3

− levels in groundwater and the eutrophication of surface water [39].

4. Effect of Organic Fertilizers on Growth and Yield of Crops

The application of chemical fertilizers is a method widely and commonly used to
supply nutrients to plants [45]. Nonetheless, the use of inorganic fertilizers induces many
negative impacts. For example, 50% of N and 90% of P applied through chemical fer-
tilizers are lost to water and the atmosphere [46], which causes water eutrophication,
GHG emissions, and environmental issues [47,48]. Therefore, people are now focusing on
using organic fertilizers to fulfill the nutrient requirements of crops. Although the rate of
nutrient release from organic fertilizers is slow when compared to chemical fertilizers [49],
they significantly improve crop growth and quality [50,51].

The seedling stage is an important stage in plant leaves, and the application of organic
fertilizers improves seedling growth by improving nutrient uptake, nutrient availability,
microbial activity, and the physiological functioning and antioxidant activities of plants [16].
In another study, Adekiya et al. [52] found that rabbit manure, cow dung, and pig manure
effectively improved the growth of okra plants. Likewise, Khaitov et al. [53] conducted a
study in pepper and noted that livestock manures (265.4 kg ha−1) favorably improved the
growth traits and nutrient uptake of pepper plants. Elsayed et al. [54] performed a study on
dill cultivars and noted that organic fertilizers appreciably improved the number of leaves
per plant, chlorophyll contents, carbohydrates, and NPK concentration (Table 1). These au-
thors found that 100% organic fertilizers resulted in taller plants with the maximum leaves,
antioxidant activity, carbohydrates, and NP concentrations [54]. Zilio et al. [55] noted that
the maize yield obtained from soil receiving sludge-based digestate was equal to the plants
grown with urea. The residual effects of organic fertilizers appreciably improved the growth
and yield traits, and the application of farmyard manure (FYM) + 75% NPK appreciably
improved the plant height, tillers, chlorophyll content and grain yield. The experimental
findings of Yu et al. [56] indicated that the application of organic fertilizers effectively
improved the panicles, green leaf area, seed set, and final grain production of rice.

Table 1. Effect of organic fertilizers on growth, yield and quality of crops.

Crop Organic Fertilizers Dose of Organic Fertilizers Major Effects References

Oryza sativa Chicken manure 2.5 t ha−1
Chicken manure improved the plant height,
tillers, grain and straw yield, grain weight
and grain NPK concentration.

[57]

Solanum
lycopersicum Agro fish pallet 18 kg per plot Agro fish pallet increased the leaf area, root

fresh weigh, number of flowers and fruit yield. [58]

Abelmoschus
Esculentus Poultry manure 4.1 t ha−1

Poultry manure increased the plant height,
pods/plant, leaf area, yield, protein, ash,
carbohydrates and NPK concentration.

[52]

Curcuma
longa Vermicompost 11.36 t ha−1

Plant height, leaves/tiller, tillers/plant, fresh,
dry rhizome yield, and available NPK contents
increased with vermicompost application.

[59]

Raphanus
sativus Poultry Manure 15 t ha−1

The combined application of poultry manure
improved the plant height, number of leaves,
shoot and root length, root diameter, fresh
and dry weight of root and shoot, and
biological yield of radish.

[60]

Oryza sativa Animal manure 5 t ha−1

Animal manure improved the plant length,
tiller hill−1, leaves/plant, panicle length,
1000-grain weight, grain yield and protein
percentage compared to chemical fertilization.

[61]
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Table 1. Cont.

Crop Organic Fertilizers Dose of Organic Fertilizers Major Effects References

Ziziphus
jujuba

Decomposed
soybean cake

fertilizer
5 kg per pot

Organic fertilizer significantly promoted the
chlorophyll contents, photosynthetic rate,
reproductive growth and nutritional quality
of Pear-jujube.

[62]

Vitis vinifera Cow dung manure 10 t ha−1
Cow dung improved the root dry matter,
individual fruit weight, fruit number plant−1

and fruit yield.
[63]

Cucumus
sativus

Liquid fertilizer of
Mexican sunflower 5 kg/pot Liquid fertilizers improved the growth, yield

and nutrient concentration in cucumber. [64]

Zea mays Poultry manure 10 t ha−1

The application of poultry manure improved
the crop growth (leaf area, leaf area index,
plant height), yield (1000-grain weight, grain
yield, biological yield), and grain protein and
oil contents.

[65]

The use of rabbit, cow, pig, and poultry manures, green manure, and NPK increased
the yield of okra by 35.3%, 57.9%, 36.2%, 39.2%, 45.5%, and 3.2%, respectively, compared
to the control [52]. Gao et al. [66] evaluated 769 datasets from 107 research papers and
reported that organic fertilizers improved the tomato yield by 42.18%. Moreover, the re-
search findings of Zhou et al. [1] indicated that organic fertilizer application increased
the wheat yield by 26.4% to 44.6% and the maize yield by 12.5% to 40.8% compared to
chemical fertilizers [1]. The study findings from a trial conducted in Belgium indicated
that swine manure could be a substitute for synthetic N fertilizers without yield losses [67].
Tsachidou et al. [68] found that raw digestate could be a partial substitute for N, without
compromising on the biomass yield and N content in pasture systems.

The application of poultry and farmyard manure improves the crop productivity and
soil nutrient (Zn, Cu, Fe and Mn) concentration [69–71]. In another 40-year long-term study,
the application of organic fertilizers considerably increased the maize and soybean yield
and soil productivity [72]. Likewise, other authors also found a significant increase in crop
productivity and soil with the application of organic fertilizers [73,74]. The application of
organic fertilizers also improves crop quality. For instance, Gao et al. [16] noted a significant
increase in the starch, protein, amino acid and carbohydrate concentration of maize after
the application of organic fertilizers. Further, other authors have also reported a marked
improvement in the yield, protein and carbohydrate concentration with the application of
organic fertilizers [75–78]. In conclusion, organic fertilizers improve the growth and yield
of plants by improving the properties, nutrient uptake and functioning of soil.

5. Effect of Organic Fertilizers on Quality of Crops

Organic fertilizers effectively promote the vegetative as well as reproductive growth
and final quality of crops [79]. While Yao et al. [80] found that organic fertilizers markedly
reduced the nitrate contents of peppers [80], the study findings of Ye et al. [62] showed
that the application of biochar and soybean cake fertilizers significantly improved the
fruit water contents, total soluble solids (TTSs), and flavonoid contents of Pear-jujube in
the Loess Plateau [62]. Likewise, another group of authors noted that organic fertilizers
significantly increased the TSSs, soluble sugars (SSs), lycopene, vitamin C, and nitrate
content by 11.86%, 42.18%, 23.95%, 18.97%, and 8.36%, respectively, compared to normal
fertilizers [66]. The application of organic manures in the form of vermicompost improved
the post-harvest quality; however, microbial compost showed the maximum fresh weight
and a premium quality compared to conventional fertilizers [81].

Moreover, Lin and co-authors found that the protein concentration was increased
with organic and chemical fertilizers, while the oil contents were decreased with the
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same treatment. These authors also noted that the combined use of chemicals and organic
fertilizers resulted in a reduction in their starch contents, and there was no significant
impact of this combination on the nitrogen harvest index (ratio of N accumulated in grain
to N accumulated in grain plus straw) [82]. The use of organic fertilizers substantially
increased the seed quality parameters and nitrogen use efficiency (NUE) of plants [83,84].
The research conducted by Munoz-Vega et al. [85] found that the application of organic
fertilizer to blueberries significantly increased their yield and quality depending on the rate
of organic fertilizer application [85].

Likewise, Ye et al. [86] studied the impact of sheep manure and soybean cake fertilizers
on pear-jujube (Ziziphus jujube) and found a substantial increase in yield and quality with
both of these organic fertilizers; however, the effect was more pronounced with the use of
soybean cake [86]. Similarly, in another study, the maximum TSSs (10.0%Brix), titratable
acidity (1.18%), ash (0.84%), fiber (3.03%), and phenols were recorded with the application
of press mud [87]. Poultry manure is an important organic fertilizer and, in a study, it was
reported that poultry manure (6 t ha−1) resulted in the maximum seed protein (48.23%),
ash (8.71%), and oil contents (67.95%) [88]. Vermicompost is also an important organic
fertilizer and it was reported that vermicompost significantly improved the acid contents,
antioxidant activity, and fruit yield under field conditions [89]. Adekiya et al. [64] found that
organic fertilizers combined with chemical fertilizers increased the mineral concentration of
cucumber and that organic manures also significantly increased the tomato and cucumber
weights by 137 and 198% compared to the control [64]. It has been reported that chicken
manure can increase the tomato yield and soluble protein content by 43% and 23% [90].
Similarly, Begum et al. [91] also observed that AMF substantially increased the yield and oil
contents owing to improved antioxidant activities and nutrient uptake [91]. To summarize,
organic fertilizers appreciably improve the quality of crops; however, this depends on the
type of organic fertilizer applied.

6. Effect of Organic Fertilizers on Soil Quality

Soil fertility refers to the inherent ability of soil to supply essential nutrients to plants
for their survival [92]. The fertility of soils largely depends on the parent material, topog-
raphy, soil microbial activities, and local climatic conditions such as rainfall, temperature,
and solar radiation [5]. Soil fertility maintenance refers to retaining, cycling, and supplying
the nutrients needed for plant growth over several years.

The application of organic manure is considered an imperative strategy to improve the
soil fertility (Figure 2) and sustainability of the agro-ecosystem [93,94]. The soil microbial
biomass carbon (MBC) and N indicate the microbial size and soil fertility [95]. Soil microbes
play an important role in soil fertility, and the activity of soil microbes is strongly affected
by the SOM and soil physio-chemical characteristics [96]. The addition of organic matter by
organic fertilizers increases microbial activity, which degrades the SOM and improves the
soil fertility status [97,98]. The application of organic manures significantly improves the
soil quality by increasing the nutrient uptake and SOM (Table 2); the microbial composition
and these details are described in the below sections.

Table 2. Effect of organic fertilizers on soil quality and nutrient use efficiency.

Organic Fertilizers Dose of Organic Fertilizers Major Effects References

Organic manure 7.5 t ha−1

Manure application improved the SOM, NPK, NUE
and abundance of soil bacteria (Proteobacteria,
Bacteroidetes, and Gemmatimonadetes) and beneficial
fungi (Mortierella).

[99]

Organic manure 3370 kg ha−1 y−1
Organic fertilizers improved the nitrogen and
phosphorous uptake indices (NUE and PUE), SOM,
and available nutrient contents.

[100]
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Table 2. Cont.

Organic Fertilizers Dose of Organic Fertilizers Major Effects References

Organic fertilizers 7 t ha−1 Organic manure improved the soil aggregate stability,
NPK availability, NUE and PUE in alkaline soils. [101]

Organic manure 2250 kg ha−1 The addition of organic fertilizer increased the P
uptake in grains, and increased the PUE. [102]

Organic fertilizer (OrgN)
combined with a 25%

reduction (RN) in N input
41 kg N ha−1

Organic fertilizer increased the soil organic matter
content, promoted grain N accumulation, and
improved rice production.

[103]

Biochar + FYM 10 t ha−1 Biochar increased the phosphorous use efficiency
(PUE), SOC, and available N contents. [104]

FYM 10 t ha−1
FYM improved carbon assimilation, the net
photosynthesis, plant biomass, yield, SOC, SOM and
soil moisture contents.

[105]

Organo-mineral
biochar fertiliser 7.5 t ha−1

OMBF significantly increased photosynthesis, the N
use efficiency (NUE), and aboveground biomass
compared with the control.

[106]
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6.1. Effect of Organic Fertilizers on Soil Nutrient Status and Nutrient Use Efficiency

Organic fertilizers are considered an effective approach to improving the nutrient
uptake and nutrient concentration in plants. For instance, Shang et al. [107] found that
vermicompost and mushroom residues significantly increased the available P and K in soil;
however, the SOM and available nitrogen were not significantly affected by the application
of vermicompost [107]. In another study, Alzamel et al. [108] found that poultry manure
and press mud resulted in the highest levels of available NPK, good microbial activities,
and a deceased soil pH compared to inorganic fertilizers [108]. Moreover, the findings of
Mahmood et al. [75] showed that organic fertilizers in combination with chemical fertilizers
greatly increased the SOC and total NPK status, while this combination decreased the soil
pH and soil bulk density. Further, these authors also found a significant positive correlation
(R2 = 0.52, 0.91 and 0.55) between the grain yield and soil NPK status [75].
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In another study, organic fertilizers (farmyard manure and phosphorus) significantly
improved maize productivity, the soil physical properties and phosphorus use efficiency [109].
Likewise, Liu et al. [110] found that, compared to the control organic fertilizers, organic
fertilizers significantly increased the available N and P contents of soil; however, the K
content in the soil that received organic fertilizers was slightly lower than that receiving
the control and NPK treatments [110]. Moreover, organic fertilizers also increased the total
available NPK [111]. At the same time, organic fertilizers can reduce the leaching losses of
NPK caused by the SOM and soil aggregate stability [112]. Likewise, Tabaxi et al. [113] set
up a study with four different treatments (manure, compost, NPK, and control) and found
that organic fertilizers appreciably increased the NPK concentration in soil by reducing the
leaching losses of these nutrients [113].

The improved soil physiochemical properties and SOC owing to chemical fertilizers
and organic fertilizers cause a significant increase in the N accumulation rates in soil [114].
The application of organic manures considerably increased the soil pH, available NP con-
centration and exchangeable potassium (K), calcium (Ca), and magnesium (Mg). In contrast,
chemical fertilizers (NPK) decreased the soil pH, and the exchangeable Ca concentration
did not affect the N and Mg concentration and increased the concentration of available
P and exchangeable K [115]. Microbes play an important role in soil fertility and crop
productivity. For instance, a microbial (Bacillus and AMF)-based bio-fertilizer showed
promising results and improved the yield, root and shoot biomass and nutrient uptake of
maize plants [116,117].

Organic fertilizers possess an excellent potential to improve the nutrient use and sub-
sequent productivity of crops [118]. The combined use of chemical and organic fertilizers
has been reported to increase the nitrogen use efficiency (NUE) compared to chemical
fertilizers [83,84]. However, some authors found no advantage of chemical and organic
fertilizing in increasing nutrient uptake and the NUE [119]. Other authors also found that
the combined use of chemicals and organic fertilizers increased the N partial productivity
(NPP), N agronomic efficiency (NAE), fertilizer use efficiency and N fertilizer recovery
rate (NFRR) in maize and soybean [82,120]. The slow and gradual release of nutrients
and the increase in organic matter with organic fertilizers is linked with an improved
NUE [121–123]. Other authors also reported a substantial increase in the NUE, N recovery
efficiency (REN), agronomic efficiency (AEN), and partial factor productivity of nitrogen
(PFPN) with the addition of organic fertilizers [124–126]. The increase in the NUE through
the application of organic materials emphasizes the importance of balanced crop nutrition
that can ensure better crop productivity [127–129].

6.2. Effect of Organic Fertilizers on Soil Organic Matter and Soil Carbon

Organic fertilizers play an important role in increasing the SOC and SOM and result in
increased soil fertility. For instance, Du et al. [129] found that organic manures appreciably
increased the SOC, total organic carbon (TOC), and particulate organic carbon (POC),
and also found that compared with conventional fertilizers, the use of 50% and 100%
organic fertilizers increased the TOC storage by 5.91% and 7.84% compared to the control.
Further, these authors also found that the replacement of chemical fertilizers with organic
manures can increase macro-aggregates, POC, TOC and the yield of crops compared to
conventional fertilizers [129]. Organic materials have a positive effect on increasing the
SOM (on average 12.9%) compared to the control [130–132].

An increase in carbon cycle enzymes (α-glucosidase, β-glucosidase, and cellobiohy-
drolase) in soil aggregates (0–20 cm) is considered to be responsible for the increase in
the SOC, which indicates a strong connection between the SOC and enzyme activities in
soil macro-aggregates [133]. The application of organic manures exerts a strong effect on
the SOC, and it was observed that organic fertilizers in combination with lime increase
the value of humic acids (HAs). The maximum humic acid (0.67% of C) was observed
under FYM, which creates favorable conditions for carbon sequestration [134]. Likewise,
Li et al. [135] found that organic manures significantly increased the SOM and its quality.
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These authors also found that organic manures increased the quality of humic and fulvic
acids and that organic fertilizers increased the total organic carbon, HA, and fulvic acid
(FA) by 70%, 89%, and 74%, respectively, compared to the control conditions [135].

Brar et al. [136] conducted a study to determine the impact of organic fertilizers on
SOC pools. They found the lowest SOC concentration (7.3 Mg ha−1) in the control and
the maximum SOC (11.6 Mg ha−1) with the application of 100% NPK + FYM. Moreover,
these authors also found that improved SOC and physical conditions resulted in higher
maize yields, and the further application of organic fertilizers also substantially increased
the SOC, aggregate stability, and final quality of the crop [136]. In another study, it was
found that the MBC was increased by 43.13% compared to control. Further, the build-up
and fluxes of the soil microbial biomass, microbial biomass nitrogen (MBN), and microbial
biomass phosphorus (MBP) significantly increased with organic manure application [137].
Thus, organic fertilizers improve the SOC and SOM, which in turn improve the overall soil
fertility and productivity.

6.3. Effect of Organic Fertilizers on Soil Microbial and Enzymatic Activities

Soil microbes play an important role in the decomposition and release of nutrients
from organic materials. Organic fertilizer application enhanced soil enzymatic activities and
resulted in a substantial increase in the SOC. For instance, it was reported that the activity
of sucrase, alkaline phosphatase, and catalase increased to different degrees under the
application of vermicompost; however, the urease activity decreased with vermicompost
application [107]. Organic manure changes the soil bacterial structure and increases the
abundance of beneficial bacteria including Bacilli and Flavobacteriales. Organic fertilizers
also increase processes related to carbon-related functional groups including aromatic
hydrocarbon degradation and chitinolysis [110]. Moreover, the use of organic manures also
increases enzymes such as dehydrogenases and β-glucosidase, which in turn improve
microbial activities [138,139].

Research conducted by Cui et al. [140] showed that the long-term use of organic ma-
nures increased the abundance of Proteobacteria and Chloroflexi; however, a high abundance
of Firmicutes, Actinobacteria and Planctomycetes was noticed with the combined use of or-
ganic materials and chemical fertilizers [140]. Ikoyi et al. [139] noted that the abundance
of bacteria genera linked with nutrient cycling and plant growth including Burkholderia,
Allorhizobium, Terrimonas, Chryseolinea, Terrimonas, and Ohtaekwangia was considerably
higher in the grassland that received organic fertilizers compared to mineral fertilizers [139].
Moreover, organic fertilizers also induce changes in soil properties that provide a favorable
environment for the microbial communities [112].

Conversely, some authors also found no significant difference in the abundance of bac-
teria and fungi owing to the application of both inorganic and organic fertilizers [141]. It is
well acknowledged that organic fertilizer affects soil microbial communities, and it has been
reported that fertilizer regimes and the time of application have a strong influence on the
bacterial community structure [142]. Likewise, crop species and environmental factors (soil
moisture and temperature) also affect the composition of microbial communities [143,144].
Ryegrass treated with slurry has a higher abundance of nematodes, mycorrhizal colo-
nization, and heterotrophic bacteria depending on the rate of slurry compared to urea
application [139]. In another study, it was found that sheep manure significantly increased
the Proteobacteria, Actinobacteria, and Ascomycota; however, sheep manure application
caused a reduction of 24.11%, 23.28%, 38.87%, 19.88%, 18.28%, and 13.89% in Acidobacteria,
Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Basidiomycota and Chytridiomycota, respec-
tively [145]. Microbial growth can be stimulated by the presence of carbon substrates, and
the addition of organic manures improves the microbial activity and results in a significant
increase in plant performance [137,146]. The organic fertilizers mediated an increase in soil
organic matter and microbial and enzymatic activities, resulting in a significant increase in
the growth and yield of crops [147,148].
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6.4. Effect of Organic Fertilizers on Soil Aggregates, Bulk Density and Water Holding Capacity

The application of organic fertilizers has been reported to increase the soil aggregate
stability and water-holding capacity. For instance, Brar et al. [136] found that the integrated
use of FYM and 100% NPK significantly increased the water infiltration and aggregate
stability compared to the control. However, there was no significant difference between the
treatments for electrical conductivity (EC) and bulk density (BD) [136]. The long-term use of
chemical fertilizers with organic fertilizers can increase humus mineralization and degrade
the soil quality with different consequences, including nitrogen leaching, an increase in
toxic metals, and slow energy availability for microbes. The application of organic manures
helps to achieve stable yields while maintaining the SOM, SOC, CEC, soil pH, bulk density
(BD), and aggregate stability [3,21,52]. The findings of Bhanwaria et al. [137] showed that
vermicompost (5 t ha−1) significantly increased the moisture retention and available water
at 33 kPa and 1500 kPa. Further, vermicompost increased the water-holding capacity, SOC,
CEC, and EC, and decreased the soil pH and BD [137].

Regardless of the soil type, the addition of organic manures increased the Cu and Zn
concentration, soil pH, and dissolved organic matter (DOM). However, excessive and higher
rates of nitrogen application lead to a reduction in soil pH. Nitrogen can form or contain
ammonium that increases the soil acidity until plants directly absorb the ammonium ions.
Therefore, the greater the nitrogen rate, the greater the soil acidification [149]. The long-term
use of organic manure-amended soils exerts a positive effect that offsets the concomitant
increase in Cu and Zn contaminations [149]. In another study, it was reported that the long-
term use of low, medium, and high rates of organic manures increased the soil pH by 2.6%,
5.6%, and 9.0%, while they increased the yield by 11.0%, 12.6%, and 3.2%, respectively [150].
The long-term use of NPK fertilizers and organic fertilizers can prevent soil acidification
and result in a substantial increase in crop yield [151]. Organic fertilizers have a low bulk
density and high porosity; therefore, mixing organic materials with dense mineral fractions
can reduce the soil BD [152]. This reduction in BD and increase in SOM with different rates
of organic fertilizers has been reported in diverse soils [153].

Guo et al. [154] found that the application of organic manures reduced the BD at
soil depths of 0–10 cm and 10–20 cm compared to chemical fertilizers. On the other hand,
Yu et al. [155] found that the total soil porosity and macro-porosity were 33–47% lower
under manure compared to the control and NPK. Likewise, meso-porosity was also lower
under manure. Further, these authors also found that an increase in the soil bulk density fol-
lowing manure application was linked with changes in soil microstructures, i.e., a decrease
in pores, throats, paths, and porosity [155].

7. Role of Organic Fertilizers against Abiotic Stresses

The world’s population is continuously growing, and thus a substantial increase in
crop productivity is needed. However, the intensity of abiotic stress is increasing while
soil fertility is decreasing, posing a serious threat to global crop productivity and food
security [18]. Thus, to feed the increasing population and maintain soil fertility, there is
a need to develop modern, effective, and eco-friendly ways to improve soil fertility and
resistance against abiotic stresses [18]. The literature suggests that the application of organic
materials can alter the biochemical and molecular processes of plants that enable them to
withstand abiotic conditions [156]. Besides this, organic manures also substantially improve
soil fertility, which results in better crop growth and yield under both normal and stress
conditions [157] (Figure 3).

7.1. Role of Organic Fertilizers to Mitigate Salinity Stress

Soil salinity is a serious abiotic stress and a major threat to crop productivity. The ap-
plication of organic materials significantly improves plant performance under saline con-
ditions [158]. For instance, vermicompost application has been reported to improve the
morphological and biochemical traits of plants under saline conditions [158,159]. Further,
VC also increased the exclusion of Na+ and the accumulation of K+, which improve the
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stomata movements, chlorophyll synthesis, and antioxidant activities (Table 3) that prevent
the damaging effects of saline conditions on plants [160]. In addition, these organic manures
also improve the chlorophyll and carotenoid contents, which improve the photosynthetic
efficiency and subsequently assimilate production [22]. They also decrease malondialde-
hyde (MDA) and hydrogen peroxide (H2O2) by increasing the activities of catalase (CAT),
peroxidase (POD), and superoxide dismutase (SOD), thereby resulting in improved growth
and yield [22,161].
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The addition of organic fertilizers (Vermicompost and biogas slurry) also increases
the availability of nutrients (Ca, Fe, Mg, Mn, K, and Zn) and reduces the accumulation
of toxic ions (Cl− and Na+), resulting in a significant increase in plant height, dry matter
and final productivity [162–164]. Another group of authors also found that under saline
conditions, organic fertilizers improved the RWC, stomata conductance, chlorophyll syn-
thesis, and activity of antioxidants (APX, CAT, and SOD) that decreased MDA production
and electrolyte leakage, thereby preventing the toxic effects of salinity on plants [165–167].
Biochar is also an important organic material and its application under saline conditions
improves root growth, dry matter production, leaf area, and yield compared to control
conditions [168].

Table 3. Effect of organic fertilizers on growth, physiological and biochemical functioning of plants
under saline conditions.

Crop Saline Stress Organic Fertilizers Major Effects References

Oryza sativa 7 44 dS m−1 SPM (7.5 t ha−1)
SPM improved the NPK, Ca, Mg, Fe and Zn
uptake and accumulation, and improved the
tillers, grain weight, and grain yield.

[169]

Phoenix
dactylifer NaCl 240 mM Compost (5% w/w)

Compost application augmented the proline
and sugar accumulation to mitigate ion toxicity,
and enhanced the NPK and Ca+ uptake, leaf
water status, stomatal conductance,
photosynthesis, growth and yield.

[170]
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Table 3. Cont.

Crop Saline Stress Organic Fertilizers Major Effects References

Brassica napus 8 dS m−1 AM (2% w/w)

AM significantly increased stomatal
conductance, the transpiration rate, RWC (%)
and photosynthesis, improved nutrient uptake,
and decreased the Na/K ratios and EL.

[171]

Oryza sativa 5 dS m−1 Biochar (45 g kg−1 soil)
Biochar decreased the Na+/K+ ratio and MDA
content, and increased the K+ concentration
in roots.

[172]

Acacia senegal 20.5 dSm−1 FYM (6% w/w)
FYM increased antioxidant enzymes (SOD,
POD, CAT), Chl pigments, the root and shoot
length and biomass, and decreased Na+ uptake.

[173]

Dracocephalum
moldavica NaCl 100 mM VC (10% v/v)

VC increased he chlorophyll content, proline
accumulation, plant growth and biomass, and
reduced Na toxicity.

[158]

Trigonella
foenum-
graecum

NaCl 200 mM VC and fish flour (1:1)

Organic amendments improved the chlorophyll
and carotenoids contents, phenylalanine
ammonialyase (PAL) and peroxidase (POD)
activities, growth and yield.

[174]

Borago
officinalis 8 dSm−1 VC (12 w/w) VC increased the chlorophyll b and carotenoids

contents, and reduced the MDA contents. [175]

Helianthus
annuus 8.6 dSm−1 VC 1 kg/pot

VC increased the plant growth, yield, nitrate
and protein content, and decreased sodium
(Na+) and chloride (Cl−) toxicity; it thus
increased N assimilation.

[162]

Pennisetum
setaceum

NaCl 5.0 g per kg
soil VC 2 kg/pot

VC enhanced K+ accumulation, stomatal
conductance, leaf pigmentation, the net
photosynthetic rate and root growth, and
reduced the oxidative damage.

[160]

Sorghum
bicolor 12.6 dSm−1 BC (10% w/w)

BC improved the photosynthetic efficiency,
stomata activity, transpiration rate, and CAT,
POD, and SOD activities to increase the plant
growth and yield.

[176]

SPM: sugarcane press mud, AM: animal manure, VC: vermicompost, BC: biochar.

BC application also boosted the photosynthetic rate, stomata conductance, and tran-
spiration rate, increased the uptake of NPK, Cu, Fe, Mn, and Zn, and reduced Cl and Na
uptake, which improved the growth and yield of wheat, sorghum and maize [165,168,177].
The major effect of organic manures under saline conditions is that they trap excessive Na
and release the mineral nutrients that decrease osmotic and ionic stresses [168]. Studies
have shown that organic fertilizers lower Na and decrease the Na+/K+ ratio, which assists
in reducing the negative effects of salinity on plants [165,178]. Moreover, under saline con-
ditions, organic fertilizers also improve osmotic balance by increasing the water-holding
capacity and CO2 assimilation, which results in a better photosynthetic rate, stomatal
conductance, and transpiration rate [168]. Besides this, organic fertilizers also offset the
negative effects of salinity by decreasing ABA and ACC, and increasing the accumulation
of indole acetic acid (IAA) [179]. Likewise, Nikpour-Rashidabad et al. [180] found that
organic fertilizers improved the IAA/ABA and IAA/ACC ratios and the vascular cylinder
and parenchyma to mitigate the toxic effects of salinity. Further, saline conditions also
improve RuBisco activity and the activities of other antioxidants, including glutamate
dehydrogenase (GDH) and nitrate reductase (NR), that protect plants from the toxic effects
of salinity [179]. The use of organic manures in top-saline soil helps to reduce evaporation
and salt movements via the distribution of salts in the rhizosphere; this protects plants
from the toxic effects of salinity [181].
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The use of organic manures also improves the saline soil porosity, aggregate stability,
and hydraulic conductivity, improving plant performance under saline stress [182]. It has
been reported that organic fertilizers work as chelates for cations like Ca2+ and Mg2+ in
the soil solution to promote their uptake and reduce Na uptake, thus maintaining a lower
sodium absorption ratio for saline soil. Moreover, organic manures also improve the
available NPK in soil and their uptake by tomato plants [183]. Souza et al. [184] noted that
organic manure application reduced the effects of salt stress and improved the growth,
side branches, and yield of yellow passion fruit. Further, El-Shazly et al. [185] found
that the application of organic manure to olive and papaya plants improved the growth
and biomass productivity, osmotic adjustments between the root and soil, and microbial
activities of soil to mitigate the effects of salt stress [185].

Similarly, various other authors also found that organic manure application enhanced
the chlorophyll contents and antioxidant activities and reduced the oxidative damage in
different plants [186,187]. In addition, the use of organic fertilizers under saline conditions
also increases the microbial population and gene expression, boosting biomass productivity
and salt tolerance in plants [188]. These organic manures also reduce oxidative damage by
increasing antioxidant activities and secondary metabolites, and decreasing ROS production
in plants [189,190]. Organic fertilizers also improve the concentration of both micro and
macronutrients, vitamins, hormones, and enzymes that reduce the harmful effects of salt
stress on plants [191,192]. Additionally, organic manures attain a better environment
through microbial activities that fix atmospheric N, P, and K, produce antibiotics and
degrade organic matter, which contribute to an increase in salinity tolerance [193]. The use
of AMF is an important approach to mitigate the effects of salt stress. It has been reported
that AMF improves salt tolerance through improved soil nutrient uptake by increasing
root growth and nutrient availability [194]. It also increases antioxidant activities and
physiological activities, and reduces the uptake of toxic Cl− and Na+ ions, which in turn
improve plant growth [194]. Moreover, organic fertilizers also increase the abundance of soil
bacteria, gene expression, and the activity of antioxidants, which favors plant growth under
saline soils [195]. In conclusion, organic fertilizers improve salt tolerance by improving
nutrient uptake, the physiological functioning and antioxidant activities of plants, and by
reducing the uptake of Cl− and Na+.

7.2. Role of Organic Fertilizers to Mitigate Drought Stress

Drought is prolonged dryness that negatively affects plant growth and develop-
ment [196]. It has been documented that two-third of the cultivated area around the globe
is facing drought stress, which will increase in the future owing to rapid climate change
and global warming. Drought stress (DS) negatively affects the growth and productivity of
plants through physiological and biochemical changes that pose a serious threat to food
security [197]. It has been reported that organic fertilizers possess an appreciable potential
to improve crop productivity under DS [21] (Table 4).

Table 4. Effect of organic fertilizers on the growth, physiological and biochemical functioning of
plants under drought conditions.

Crop Drought Stress Organic Fertilizers Major Effects References

Triticum
aestivum 45% FC 10% cow manure

CM improved panicle emergence, shoot and
root growth, chlorophyll synthesis, biomass,
and the grain Fe, Zn, and Mg contents.

[198]

Solanum
lycopersicum

DS was imposed
15 days after

seedling
establishment

100 mg kg−1 VC

Vermicompost augmented osmolyte
(proline, glycine betaine and sugars)
production, reduced ROS activity,
and increased the chlorophyll content,
photosynthesis, PSII activity, growth and dry
matter accumulation.

[199]
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Table 4. Cont.

Crop Drought Stress Organic Fertilizers Major Effects References

Chenopodium
quinoa 10% FC 5% corn straw BC

BC application enhanced the photosynthetic
rate along with stomatal movement, plant
height, shoot biomass, and grain yield.

[200]

Phragmites
karka 40% WHC 2.5% BC

The application of BC improved plant biomass
and the root to shoot ratio, increased the
chlorophyll content and net photosynthetic rate,
and reduced oxidative stress.

[201]

Triticum
aestivum 35% WHC 5% rice straw biochar

Biochar application reduced transpiration,
Chl pigments and photosynthesis, the stomatal
response, WUE, H2O2, TBARS, and EL,
and increased the antioxidant enzyme
(SOD and CAT) activities under drought stress.

[202]

Glycine max
DS was imposed
after two days of

sowing
20 t/ha corn cob BC

Biochar considerably improved the sugar and
proline contents, growth and yield under
drought stress.

[203]

Triticum
aestivum

20% PEG-6000 used
to impose osmotic

potential at
−0.78 MPa for
drought stress

BC of timber waste
BC improved chlorophyll a, chlorophyll b,
the photosynthetic rate, transpiration rate,
100-grain weight, and grain NPK concentration.

[204]

Cicer arietinum 25% FC 30% BC

BC enhanced the leaf Ca+ and K+ contents,
Chl pigments, transpiration rate and CO2
assimilation, and improved the proline, POD,
SOD, and CAT activity under stress.

[205]

Opuntia
basilaris 30% FC 5% vermicompost

The application of VC increased the
physiological and biochemical parameters, and
led to a decline in the MDA and H2O2 contents
under DS.

[206]

Ceratonia
siliqua

70% FC for 4
months 5% BC

BC boosted the physiological and biochemical
parameters and nutrient uptake in carob trees.
It also increased the soluble sugar and protein
content, stomatal conductance, PSII activity,
leaf water potential, chlorophyll and carotenoid
contents, and nutrient (N, P, K, Ca) uptake
compared to the control treatment.

[207]

BC: Biochar, FC: field capacity.

Organic amendments retain the soil moisture and improve the soil fertility (Table 3),
therefore maintaining better plant performance under drought conditions [208]. Poultry
manure is an important organic manure and its application improves WHC and has a posi-
tive effect on the physiochemical and biological properties of soil [209]. Likewise, FYM also
induces a positive effect on plant growth and improves plant productivity by increasing
nutrient uptake and the physiological and biochemical functioning of plants [210–212].
Organic fertilizers have a porous structure and high surface area that provide a safe environ-
ment for microbes, increasing the availability of both micro and macronutrients. Moreover,
organic manures also improve soil porosity, moisture retention, and water use efficiency
(WUE), therefore improving plant performance under drought conditions [201,213].

The application of organic manures (compost, vermicompost, biochar, and FYM) has
been reported to improve crop yield and resilience against drought stress [160,170,209,214].
The use of organic fertilizers increases the SOC, SOM, mineral nutrient concentration, and
soil-water holding capacity, allowing plants to better withstand drought conditions [215].
Further, organic fertilizers also induce tolerance against water deficit conditions by increas-
ing microbial activity and enhancing the fungal-to-bacterial ratio in soil [216]. The appli-
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cation of organic materials stimulates the physiological and biochemical activities under
water deficiency and reduce the MDA and H2O2 production, mitigating the effects of
drought on plants [206,217–219].

The use of organic manure also positively affects the physiological and biochemi-
cal functions of plants, inducing a positive effect on plant performance under drought
conditions. For instance, it has been reported that organic fertilizers improve the WUE,
stomata conductance, photosynthesis, and relative water content (RWC) under drought
conditions [220]. Likewise, improvements in the RWC, transpiration rate, photosynthesis,
and osmotic potential have been also reported with organic fertilizers under drought con-
ditions [221,222]. Furthermore, organic manures also substantially improve CAT, POD,
and SOD activities and result in lower MDA and H2O2 production; this consequently
leads to better drought tolerance [223]. Likewise, Hafez et al. [224] also found that organic
manures increase the POD, SOD, and APX activity with a decrease in H2O2, MDA, and EL
under drought conditions. Moreover, Bhanwaria et al. [137] revealed that organic amend-
ments also lead to better nutrient and water uptake, antioxidant activities, chlorophyll
synthesis, and osmolyte accumulation, resulting in better plant growth and yield under
drought conditions. The findings of previous research have also indicated that AMF im-
proves growth by increasing the photosynthetic rate, chlorophyll synthesis, nutrient uptake
and assimilation, osmolyte accumulation (proline, free amino acids, and sugars), relative
water contents and antioxidant activities, and decreases H2O2 and MDA production [91].
Organic fertilizers also improve membrane stability and reduce lipid peroxidation, un-
regulated antioxidant activities, and osmolyte accumulation, substantially improving salt
tolerance [199]. Thus, organic-fertilizer-mediated increases in drought tolerance are linked
with increased antioxidant activities, WHC, and plant physiological functioning, and with
reduced ROS production.

7.3. Role of Organic Fertilizers to Mitigate Heavy Metals Stress

Heavy metals (HMs) are also a serious threat to crop productivity and human health.
The concentration of HMs is increasing in the environment due to anthropogenic activities.
Organic fertilizers are being used to reduce the accumulation of HM in food plants. The use
of organic fertilizers can reduce the concentration and availability of HM in contaminated
soils [225]. Organic materials (cow manure, compost, poultry manure, sheep manure,
and biochar) form complexes with HMs, therefore reducing their availability and uptake
by plants [20,226–228]. Moreover, organic fertilizers also reduce the available portions
of HMs, reducing the transfer of HMs to plants [20]. Likewise, Bashir et al. [210] found
that co-composted FYM improved wheat growth and reduced the toxic effects of HMs
by increasing chlorophyll synthesis and decreasing oxidative stress through enhanced
antioxidant activities.

The use of compost biochar also decreased the exchangeable fractions of arsenic
(As), cadmium (Cd), zinc (Zn), and copper (Cu) in the roots and shoots of the pakchoi
cabbage [229]. Biochar can persist in soil for one hundred years and it has a porous struc-
ture and alkaline nature [230], which reduces the bioavailability of HMs, thus reduc-
ing their absorption by plants and subsequent transport to the food chain [231]. Besides
this, organic manures also immobilize HMs, reduce their uptake and ensure better plant
growth [232–234]. Humic acids have also shown high microbiological stability and can
promote nutrient absorption and plant growth [229,235]. It has been reported that humic
acid immobilizes Pb and Zn and decreases the fractions of these HMs [229] (Table 5).
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Table 5. Effect of organic fertilizers on growth, physiological and biochemical functioning of plants
under metal stress conditions.

Crop Metal Stress Organic Fertilizers Major Effects References

Gossypium
herbaceum Cd (4 mg·kg−1) Biochar (3%)

BC application improved the seedling biomass,
chlorophyll contents, photosynthesis, and SOD,
POD and CAT activity, and reduced MDA and
EL, and Cd absorption and transportation.

[236]

Atriplex
undulata Cd (0.42 mg kg−1)

Manure (1% of soil
weight)

Manure increased the plant height, root fresh
and dry weight, shoot fresh and dry weight,
leaf area, chlorophyll, carotenoid and proline,
and decreased the MDA concentration.

[237]

Atriplex
nummularia Pb (850 mg kg−1) Biochar (1%)

BC reduced the metal uptake and increased the
plant length, leaf area/plant, leaf numbers,
bioaccumulation factor and translocation factor.

[238]

Vigna radiata Cd (150 M) FYM (2%)

FYM decreased the Cd acquisition, improved
the stomatal conductance, leaf net transpiration
rate and ascorbic acid (shoot vitamin C)
contents, along with other antioxidant enzymes
(catalase and phenyl ammonia lyase);
meanwhile, the malondialdehyde and
hydrogen peroxide activity decreased.

[239]

Brassica napus Ni (50 mg kg−1) AM (2% w/w)

Animal manure improved nutrient uptake,
photosynthesis, transpiration, chlorophyll and
RWC, and decreased the Na+/K+ ratios, EL,
daily intake of metal (DIM) index, health risk
index (HRI) values and Ni uptake in plants.

[171]

Nicotiana
tabacum Cd CM (2%)

CM effectively reduced the leachability and
metal uptake in leaves and improved plant
growth and yield.

[240]

Nicotiana
tabacum

Pb-Cd
(100 mg kg−1) CM (15 g/pot)

CM increased the plant dry weight, P uptake,
soil pH and total glomalin concentration, and
decreased the DTPA-extractable concentrations,
Pb and Cd toxicity.

[241]

Pisum sativum Cr (371 mg kg−1)
Peat moss (PTM)

(50 g/pot)

PTM significantly reduced the bioavailability of
metal and improved the health risk percentage,
plant growth, yield and biomass.

[242]

Oryza sativa As FMBC (2%)

FMBC increased the ratio of essential amino
acids and reduced the As toxicity to improve
the dry weights of rice roots, stems, leaves, and
grain yield.

[243]

BC: biochar, FYM: farmyard manure, AM: animal manure, CM: cow manure, FMBC: ferromanganese oxide
biochar composites, Cd: cadmium, Cr: chromium, As: arsenic, Pb: lead, Ni: nickel.

Organic fertilizers decreased the TFs of Cd and Zn and substantially improved plant
growth by increasing photosynthetic pigments, the photosynthetic efficacy, antioxidant
activities, and the accumulation of potential osmolytes [244,245]. Organic manures ad-
sorb HMs and reduce the plant toxicity while increasing plant biomass through an en-
hanced WUE, antioxidant activities, and reduced HM uptake, resulting in safe food pro-
duction [245,246]. However, the effects of organic manure can vary with soil properties,
the planting species, and the properties of the organic material [245]. In Cd-contaminated
soil, the application of organic manure increased the biomass of Bidens tripartite while
decreasing the Cd contents [247]; meanwhile, pig manure increased the phytoextraction
of HMs by Streptomyces pactum [248]. Other researchers also found that cattle manure
decreased lead (Pb) and Cd uptake and accumulation in the plant tissues of tobacco [249].
In another study, poultry manure application resulted in a higher accumulation of cadmium
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(Cd), chromium (Cr), iron (Fe), and lead (Pb), whereas it resulted in a reduction in the accu-
mulation of Cu and Zn in garlic. Further, it was also noted that the application of organic
fertilizers reduced the pollution load index, health risk index, and daily intake of metals
compared to control conditions [250]. Further, the use of organic manures also substantially
improved the leaf water status, stomata conductance, photosynthesis, osmolyte accumu-
lation, and antioxidant activities (APX, CAT, POD, and SOD), which improved the plant
performance under HM stress [245,251]. In conclusion, organic fertilizers mitigated the
HMs by improving the antioxidant activities, osmolyte accumulation and plant functioning,
and reducing the HM uptake.

7.4. Role of Organic Fertilizers to Mitigate Temperature Stress

Temperature is one of the most important environmental factors regulating growth
and yield [19]; however, low and high temperatures adversely affect plant growth and
yield [252]. The use of organic manure is suggested as an important approach to improving
heat tolerance in plants. Organic manure improved the chlorophyll concentration, leaf area,
plant height, stem width, and biomass yield by 35%, 36%, 41%, 59%, and 78% under
heat stress [253]. In another study, it was noted that organic fertilizers improved the soil
water-holding capacity by 8% and decreased the maize canopy temperature, leading to a
significant improvement in the photosynthetic characteristics and antioxidant activity [254].
The increased soil WHC following organic manure application shows that this is an effective
approach to mitigating the adverse effects of heat stress (HS) on plants [254].

The study findings of Kumar et al. [255] showed that the combined application of FYM
and NPK enhanced the heat tolerance in maize by improving the soil microbial activity,
antioxidant activities and nutrient uptake. Likewise, in lettuce plants, the application of
cattle manure mitigated the toxic effects of heat stress and improved the leaf area, leaf
weight and chlorophyll synthesis [256]. On the other hand, the application of bio-fertilizers
increased the tolerance against late heat stress. These authors found that the application
of fertilizer enhanced the quantum yield of PS-II, chlorophyll fluorescence parameters
and grain yield [257]. In another study, it was noted that biochar and compost application
substantially increased the WUE under HS, resulting in a significant improvement in plant
growth and yield [258]. These authors also found that cattle manure application improved
the leaf nutrient status and efficacy of PS-II, and reduced oxidative stress by increasing
jasmonic acid and decreasing abscisic acid (ABA). A very recent study indicated that the
combined use of 50% nitrogen + 50% compost enhanced the grain-filling rate, grain protein,
wet gluten, and grain productivity under heat stress conditions [259]. To summarize,
organic fertilizers mitigate the adverse effects of HS by maintaining nutrient homeostasis,
antioxidant activities, osmolyte accumulation, WUE, and reducing ROS production.

8. Conclusions and Future Prospects

The application of organic manures improves soil organic matter, macro-aggregates,
enzymatic activities, and microbial activities, improving growth and yield. Further, the use
of organic fertilizers has also been reported to increase stress tolerance in plants. The ap-
plication of organic fertilizers substantially improves water uptake, water use efficiency,
nutrient uptake, osmolyte accumulation, antioxidant activity and gene expression, provid-
ing better resistance against these stresses.

However, the role of organic fertilizers in mitigating abiotic stresses is not fully ex-
plored and many questions need to be answered in future research programs. The effect of
organic fertilizers on germination is poorly studied; therefore, authors must explore the
effect of organic fertilizers on seed germination and subsequent seedling growth. The ap-
plication of organic manures improves nutrient uptake under stress conditions and it is
mandatory to determine how organic fertilizers affect nutrient channels and signaling
under stress conditions. Moreover, the role of organic fertilizers in protecting the photo-
synthetic apparatus from stress conditions must also be explored. The effect of organic
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manures on hormones and osmolyte accumulation is rarely studied in the literature and it
is imperative to explore the role of organic manures in this respect.

The role of organic manures under heat, cold, and flooding stress is rarely stud-
ied; therefore, it is suggested that their effects under cold and heat stress are explored.
The combination of organic fertilizers and chemical fertilizers affects the soil properties
and improves crop productivity; however, more studies are needed on this aspect in a
wide range of climate and soil conditions. The use of organic manure must be optimized
for different crops considering the climate, soil, and crop conditions. Organic manures
are bulky substances and there is a need to develop measures for a continuous supply of
organic fertilizers. In this context, the combined use of organic fertilizers and chemicals
can provide an excellent solution. There is an urgent need to give awareness to farmers
about the use of organic fertilizers for field crops for the sustainability of agro-ecosystems.
In addition, organic fertilizers also contain some toxic chemicals; therefore, proper care
must be taken during their application.
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