Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits
Abstract
:1. Introduction
Overview of Biofuel Production: A Historical Perspective and Current State
2. Corn: From Feed to Biofuel
2.1. Agronomic Practices on Corn Stover Quality and Biofuel Potential
2.2. Key Determinants of Biomass Degradability for Ethanol Production
3. Hemp as a Key toward an Environmentally Friendly Future
3.1. Hemp as a Potential Biofuel Crop
3.2. Quality of Hemp Oil for Biodiesel
3.3. Status/Potential of Hemp Seed Production for Biofuels
3.4. Methods of Hemp Oil Extraction for Biodiesel Production
4. Cucurbits as a Key toward an Environmentally Friendly Future
4.1. Oil Content in Cucurbits Seeds: Potential for Biofuel Production
4.2. Quality of Cucurbits Oil for Biodiesel
4.3. Methods of Cucurbit Oil Extraction for Biodiesel Production
5. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrera-Jiménez, R.; Mateo-Sanz, J.M.; Gavaldà, J.; Jiménez, L.; Pozo, C. Comparing biofuels through the lens of sustainability: A data envelopment analysis approach. Appl. Energy 2022, 307, 118201. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc. Math. Phys. Eng. Sci. 2020, 476, 20200351. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Rehman, K.H.; Jawaid, M.; Ibrahim, F.H. Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia. Renew. Sustain. Energy Rev. 2017, 79, 1285–1302. [Google Scholar] [CrossRef]
- Navaras-Anguita, Z.; García-Gusano, D.; Iribarren, D. A review of techno-economic datafor road transportation fuels. Renew. Sustain. Energy Rev. 2019, 112, 11–26. [Google Scholar] [CrossRef]
- European Commission. A European Green Deal. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 1 March 2024).
- International Energy Agency. Resources to Reserves 2013; IEA: Paris, France, 2013; Available online: https://www.iea.org/reports/resources-to-reserves-2013 (accessed on 8 April 2024).
- Renewable Fuels Association. Ethanol Industry Outlook Zeroes in on New Opportunities; Renewable Fuels Association: Washington, DC, USA, 2022. Available online: https://afdc.energy.gov/files/u/publication/2022_ethanol_industry_outlook.pdf (accessed on 8 April 2024).
- Larson, E.D. A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy Sustain. Dev. 2006, 10, 109–126. [Google Scholar] [CrossRef]
- Lin, T.S.; Kheshgi, H.S.; Song, Y.; Vörösmarty, C.J.; Jain, A.K. Which crop has the highest bioethanol yield in the United States? Front. Energy Res. 2023, 11, 1070186. [Google Scholar] [CrossRef]
- Hirani, A.H.; Javed, N.; Asif, M.; Basu, S.K.; Kumar, A. A review on first- and second-generation biofuel productions. In Biofuels: Greenhouse Gas Mitigation and Global Warming: Next Generation Biofuels and Role of Biotechnology; Kumar, A., Ogita, S., Yau, Y.-Y., Eds.; Springer: New Delhi, India, 2018; pp. 141–154. ISBN 978-81-322-3763-1. [Google Scholar]
- Guo, M.; Song, W.; Buhain, J. Bioenergy and biofuels: History, status, and perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Berna, F.; Goldberg, P.; Horwitz, L.K.; Brink, J.; Holt, S.; Bamford, M.; Chazan, M. Microstratigraphic evidence of in situ fire in the Acheulean Strata of Wonderwerk Cave, Northern Cape Province, South Africa. Proc. Natl. Acad. Sci. USA 2012, 20, E1215–E1220. [Google Scholar] [CrossRef] [PubMed]
- Kiehbadroudinezhad, M.; Merabet, A.; Ghenai, C.; Abo-Khalil, A.G.; Salameh, T. The role of biofuels for sustainable microgridsF: A path towards carbon neutrality and the Green Economy. Heliyon 2023, 9, e13407. [Google Scholar] [CrossRef]
- Isah, S.; Ozbay, G. Valorization of food loss and wastes: Feedstocks for biofuels and valuable chemicals. Front. Sustain. Food Syst. 2020, 4, 82. [Google Scholar] [CrossRef]
- Songstad, D.D.; Lakshmanan, P.; Chen, J.; Gibbons, W.; Hughes, S.; Nelson, R. Historical perspective of biofuels: Learning from the past to rediscover the future. In Vitro Cell. Dev. Biol. Plant 2009, 45, 189–192. [Google Scholar] [CrossRef]
- Carolan, M.S. A Sociological look at biofuels: Ethanol in the early decades of the twentieth century and lessons for today. Rural Sociol. 2009, 74, 86–112. [Google Scholar] [CrossRef]
- Biomass Co-Firing: A Renewable Alternative for Utilities. Available online: https://www.nrel.gov/docs/fy00osti/28009.pdf (accessed on 8 April 2024).
- Stolarski, M.J.; Stachowicz, P.; Dudziec, P. Wood pellet quality depending on dendromass species. Renew. Energy 2022, 199, 498–508. [Google Scholar] [CrossRef]
- García, R.; Gil, M.V.; Rubiera, F.; Pevida, C. Pelletization of wood and alternative residual biomass blends for producing industrial quality pellets. Fuel 2019, 251, 739–753. [Google Scholar] [CrossRef]
- Rodriguez Franco, C. Forest Biomass Potential for Wood Pellets Production in the United States of America for Exportation: A review. Biofuels 2022, 13, 983–994. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, S.; Li, L.; Zhang, M.; Tian, S.; Wang, D.; Liu, K.; Liu, H.; Zhu, W.; Wang, X. Comprehensive utilization of corn starch processing by-products: A review. Grain Oil Sci. Technol. 2021, 4, 89–107. [Google Scholar] [CrossRef]
- Corn Use in Revised Doen for 2022/23. Available online: https://www.ers.usda.gov/webdocs/outlooks/106338/fds-23d.pdf?v=3499.7 (accessed on 8 April 2024).
- Silverio García-Lara, S.O.; Serna-Saldivar, S.O. Chapter 1—Corn History and Culture. In Corn, 3rd ed.; Serna-Saldivar, S.O., Ed.; AACC International Press: Saint Paul, MA, USA, 2019; pp. 1–18. [Google Scholar] [CrossRef]
- Safiul Azam, F.M.; Lian, T.; Liang, Q.; Wang, W.; Zhang, C.; Jiang, L. Variation of vitamin B contents in maize inbred lines: Potential genetic resources for biofortification. Front. Nutr. 2022, 9, 1029119. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, D.; Steur, H.D.; Gellynck, X.; Straeten, D.V.D. Metabolic engineering of micronutrients in crop plants. Ann. N. Y. Acad. Sci. 2017, 1390, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, S.; Williams, B.; Jarrell, P.; Hubbs, T. Global Demand for Fuel Ethanol through 2030. Amber Waves: The Economics of Food, Farming, Natural Resources, and Rural America 2023, Bioenergy Number (BIO-05). Available online: https://www.ers.usda.gov/webdocs/outlooks/105762/bio-05.pdf?v=5239.1 (accessed on 8 April 2024).
- Beckman, J.; Nigatu, G.; Global Ethanol Mandates: Opportunities for U.S. Exports of Ethanol and DDGS. 2017. Available online: https://www.ers.usda.gov/webdocs/outlooks/85450/bio-05.pdf?v=768 (accessed on 8 April 2024).
- Mueller, S. 2008 National dry mill corn ethanol survey. Biotechnol. Lett. 2010, 32, 1261–1264. [Google Scholar] [CrossRef]
- Munaiz, E.D.; Albrecht, K.A.; Ordas, B. Genetic diversity for dual use maize: Grain and second-generation biofuel. Agronomy 2021, 11, 230. [Google Scholar] [CrossRef]
- Fasoula, V.A.; Tollenaar, M. The impact of plant population density on crop yield and response to selection in maize. Maydica 2005, 50, 39–48. [Google Scholar]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef]
- Duvick, D.N.; Smith, J.S.C.; Cooper, M. Long-term selection in a commercial hybrid maize breeding program. Plant Breed. Rev. 2004, 24, 109–151. [Google Scholar] [CrossRef]
- Di Matteo, J.A.; Ferreyra, J.M.; Cerrudo, A.A.; Echarte, L.; Andrade, F.H. Yield potential and yield stability of Argentine maize hybrids over 45 years of breeding. Field Crops Res. 2016, 197, 107–116. [Google Scholar] [CrossRef]
- Lewis, M.F.; Lorenzana, R.E.; Jung, H.J.G.; Bernardo, R. Potential for simultaneous improvement of corn grain yield and stover quality for cellulosic ethanol. Crop Sci. 2010, 50, 516–523. [Google Scholar] [CrossRef]
- Sheehan, J.; Aden, A.; Paustian, K.; Killian, K.; Brenner, J.; Walsh, M.; Nelson, R. Energy and environmental aspects of using corn stover for fuel ethanol. J. Ind. Ecol. 2003, 7, 117–146. [Google Scholar] [CrossRef]
- Dien, B.S.; Jung, H.J.G.; Vogel, K.P.; Casler, M.D.; Lamb, J.F.S.; Iten, L.; Mitchell, R.B.; Sarath, G. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 2006, 30, 880–891. Available online: https://digitalcommons.unl.edu/agronomyfacpub/1032 (accessed on 8 April 2024). [CrossRef]
- Wolf, D.P.; Coors, J.G.; Albrecht, K.A.; Undersander, D.J.; Carter, P.R. Forage quality of maize genotypes selected for extreme fiber concentrations. Crop Sci. 1993, 33, 1353–1359. [Google Scholar] [CrossRef]
- Ertiro, B.T.; Twumasi-Afriyie, S.; Blümmel, M.; Friesen, D.; Negera, D.; Worku, M.; Abakemal, D.; Kitenge, K. Genetic variability of maize stover quality and the potential for genetic improvement of fodder value. Field Crops Res. 2013, 153, 79–85. [Google Scholar] [CrossRef]
- Lorenz, A.; Coors, J.; De Leon, N.; Wolfrum, E.; Hames, B.; Sluiter, A.; Weimer, P. Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci. 2009, 49, 85–98. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Sheaffer, C.C.; Lamb, J.A.; Jung, H.J.G.; Rosen, C.J. Maize stover and cob cell wall composition and ethanol potential as affected by nitrogen fertilization. BioEnergy Res. 2015, 8, 1352–1361. [Google Scholar] [CrossRef]
- Sindelar, A.J.; Lamb, J.A.; Coulter, J.A.; Sheaffer, C.C.; Vetsch, J. Nitrogen and tillage management affect corn cellulosic yield, composition, and ethanol potential. BioEnergy Res. 2015, 8, 1284–1291. [Google Scholar] [CrossRef]
- Vermerris, W.; Saballos, A.; Ejeta, G.; Mosier, N.S.; Ladisch, M.R.; Carpita, N.C. Molecular breeding to enhance ethanol production from corn and sorghum stover. Crop Sci. 2007, 47, S142–S153. [Google Scholar] [CrossRef]
- Zhang, Y.; Legland, D.; El Hage, F.; Devaux, M.F.; Guillon, F.; Reymond, M.; Mechin, V. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS ONE 2019, 14, e0219923. [Google Scholar] [CrossRef]
- Jung, H.J.G.; Buxtono, D.R. Forage quality variation among maize inbreds: Relationships of cell-wall composition and in-vitro degradability for stem internodes. J. Sci. Food Agric. 1994, 66, 313–322. [Google Scholar] [CrossRef]
- Méchin, V.; Argillier, O.; Menanteau, V.; Barriere, Y.; Mila, I.; Pollet, B.; Lapierre, C. Relationship of cell wall composition to in vitro cell wall digestibility of maize inbred line stems. J. Sci. Food Agric. 2000, 80, 574–580. [Google Scholar] [CrossRef]
- Li, M.; Heckwolf, M.; Crowe, J.D.; Williams, D.L.; Magee, T.D.; Kaeppler, S.M.; De Leon, N.; Hodge, D.B. Cell-wall properties contributing to improved deconstruction by alkaline pre-treatment and enzymatic hydrolysis in diverse maize (Zea mays L.) lines. J. Exp. Bot. 2015, 66, 4305–4315. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Casler, M.D. Maize stem tissues: Cell wall concentration and composition during development. Crop Sci. 2006, 46, 1793–1800. [Google Scholar] [CrossRef]
- Wilson, J.R.; Mertens, D.R. Cell wall accessibility and cell structure limitations to microbial digestion of forage. Crop Sci. 1995, 35, 251–259. [Google Scholar] [CrossRef]
- Medic, D.; Darr, M.; Shah, A.; Rahn, S. The effects of particle size, different corn stover components, and gas residence time on torrefaction of corn stover. Energies 2012, 5, 1199–1214. [Google Scholar] [CrossRef]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effect of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012, 91, 147–154. [Google Scholar] [CrossRef]
- Li, Z.; Zhai, H.; Zhang, Y.; Yu, L. Cell morphology and chemical characteristics of corn stover fractions. Ind. Crops Prod. 2012, 37, 130–136. [Google Scholar] [CrossRef]
- Li, C.; Aston, J.E.; Lacey, J.A.; Thompson, V.S.; Thompson, D.N. Impact of feedstock quality and variation on biochemical and thermochemical conversion. Renew. Sustain. Energy Rev. 2016, 65, 525–536. [Google Scholar] [CrossRef]
- Le, D.M.; Sørensen, H.R.; Knudsen, N.O.; Meyer, A.S. Implications of silica on biorefineries—Interactions with organic material and mineral elements in grasses. Biofuels Bioprod. Biorefin. 2015, 9, 109–121. [Google Scholar] [CrossRef]
- Merchant, S.S. The elements of plant micronutrients. Plant Physiol. 2010, 154, 512–515. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Kerner, P.; Williams, C.L.; Hoover, A.; Ray, A.E. Characterization and localization of dynamic cell wall structure and inorganic species variability in harvested and stored corn stover fractions as functions of biological degradation. ACS Sustain. Chem. Eng. 2020, 8, 6924–6934. [Google Scholar] [CrossRef]
- Li, S.Y.; Stuart, J.D.; Li, Y.; Parnas, R.S. The feasibility of converting Cannabis sativa L. oil into biodiesel. Bioresour. Technol. 2010, 101, 8457–8460. [Google Scholar] [CrossRef]
- Thompson, T. Hemp for (Ecological) Victory. The Socialist, 11 October 2013. [Google Scholar]
- Visković, J.; Zheljazkov, V.D.; Sikora, V.; Noller, J.; Latković, D.; Ocamb, C.M.; Koren, A. Industrial hemp (Cannabis sativa L.) agronomy and utilization: A review. Agronomy 2023, 13, 931. [Google Scholar] [CrossRef]
- He, B.B.; Van Gerpen, J.H.; Thompson, J.C. Sulfur content in selected oils and fats and their corresponding methyl esters. Appl. Eng. Agric. 2009, 25, 223–226. Available online: https://biodieseleducation.org/Literature/Journal/2009_He_Sulfur_Content_in_Se.pdf (accessed on 5 March 2024).
- Viswanathan, M.B.; Cheng, M.H.; Clemente, T.E.; Dweikat, I.; Singh, V. Economic perspective of ethanol and biodiesel coproduction from industrial hemp. J. Clean. Prod. 2021, 299, 126875. [Google Scholar] [CrossRef]
- Schluttenhofer, C.; Yuan, L. Challenges towards revitalizing hemp: A multifaceted crop. Trends Plant Sci. 2017, 22, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Dien, B.S.; Lee, D.K.; Singh, V. Sugar production from bioenergy Sorghum by using pilot scale continuous hydrothermal pretreatment combined with disk refining. Bioresour. Technol. 2019, 289, 121663. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Dien, B.S.; Rausch, K.D.; Tumbleson, M.E.; Singh, V. Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast. Bioresour. Technol. 2019, 282, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.H.; Huang, H.; Dien, B.S.; Singh, V. The costs of sugar production from different feedstocks and processing technologies. Biofuels Bioprod. Biorefin. 2019, 13, 723–739. [Google Scholar] [CrossRef]
- Sipos, B.; Kreuger, E.; Svensson, S.E.; Réczey, K.; Björnsson, L.; Zacchi, G. Steam pretreatment of dry and ensiled industrial hemp for ethanol production. Biomass Bioenergy 2010, 34, 1721–1731. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Das, L.; Li, W.; Dodge, L.A.; Stevens, J.C.; Williams, D.W.; Hu, H.; Shi, J. Comparative evaluation of industrial hemp cultivars: Agronomical practices, feedstock characterization and potential for biofuels and bioproducts. ACS Sustain. Chem. Eng. 2020, 16, 6200–6210. [Google Scholar] [CrossRef]
- Alcheikh, A. Advantages and Challenges of Hemp Biodiesel Production: A Comparison of Hemp vs. Other Crops Commonly Used for Biodiesel Production. Master’s Thesis, University of Gävle, Gävle, Sweden, 2015. [Google Scholar]
- Parvez, A.; Lewis, J.D.; Afzal, M.T. Potential of industrial hemp (Cannabis sativa L.) for bioenergy production in Canada: Status, challenges and outlook. Renew. Sustain. Energy Rev. 2021, 141, 110784. [Google Scholar] [CrossRef]
- Khan, I.A.; Prasad, N.; Pal, A.; Yadav, A.K. Efficient production of biodiesel from Cannabis sativa oil using intensified transesterification (hydrodynamic cavitation) method. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 2461–2470. [Google Scholar] [CrossRef]
- Hasnain, M.; Munir, N.; Abideen, Z.; Macdonald, H.; Hamid, M.; Abbas, Z.; El-Keblawy, A.; Mancinelli, R.; Radicetti, E. Prospects for biodiesel production from emerging algal resource: Process optimization and characterization of biodiesel properties. Agriculture 2023, 13, 407. [Google Scholar] [CrossRef]
- ASTM. Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distilled Fuels Fuels. Available online: https://www.astm.org/d6751-23a.html (accessed on 8 April 2024).
- EN 14214. Available online: https://www.chemeurope.com/en/encyclopedia/EN_14214.html (accessed on 8 April 2024).
- American ASTM D6751. Available online: https://www.astm.org/d6751-20a.html (accessed on 8 April 2024).
- FAOSTAT. Available online: https://www.fao.org/food-agriculture-statistics/en/ (accessed on 14 October 2016).
- Huang, D.; Zhou, H.; Lin, L. Biodiesel: An alternative to conventional fuel. Energy Procedia 2012, 16, 1874–1885. [Google Scholar] [CrossRef]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional quality and potential functionality for human health and nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- US Food and Drug Administration Center for Veterinary Medicine. Available online: https://www.fda.gov/about-fda/fda-organization/center-veterinary-medicine (accessed on 8 February 2024).
- Sieracka, D.; Frankowski, J.; Wacławek, S.; Czekała, W. Hemp biomass as a raw material for sustainable development. Appl. Sci. 2023, 13, 9733. [Google Scholar] [CrossRef]
- Official Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=OJ:C:2016:202:FULL (accessed on 8 February 2024).
- Das, L.; Liu, E.; Saeed, A.; Williams, D.W.; Hu, H.; Li, C.; Ray, A.E.; Shi, J. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol. 2017, 244, 641–649. [Google Scholar] [CrossRef]
- Ji, A.; Jia, L.; Kumar, D.; Yoo, C.G. Recent advancements in biological conversion of industrial hemp for biofuel and value-added products. Fermentation 2021, 7, 6. [Google Scholar] [CrossRef]
- Wawro, A.; Batog, J.; Gieparda, W. Chemical and enzymatic treatment of hemp biomass for bioethanol production. Appl. Sci. 2019, 9, 5348. [Google Scholar] [CrossRef]
- Paris, H.S. Historical records, origins, and development of the edible cultivar groups of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 1989, 43, 423–443. [Google Scholar] [CrossRef]
- Lazić, B.; Marković, V.; Đurovka, M.; Ilin, Ž. Vegetables; University of Novi Sad, Faculty of Agriculture: Novi Sad, Serbia, 2001; pp. 410–411. [Google Scholar]
- Ikanović, J.; Popović, V.; Rakaščan, N.; Živanović, L.; Kolarić, L.; Kajiš, K.; Pavlović, S. Pumpkin seed and by-products in the production of functional food. In Proceedings of the 61st Oil Industry Conference, Herceg-Novi, Montenegro, 12–17 July 2020. [Google Scholar]
- Mohammed, A.; Abdulrasak, M.A.; Musa, A.L.; Liman, J.H.; Nweke, A. Physicochemical properties of oil extracted from pumpkin (Cucurbita pepo) seeds. LJSIR 2024, 2, 5–9. [Google Scholar] [CrossRef]
- Fedko, M.; Kmiecik, D.; Siger, A.; Kulczyński, B.; Monika Przeor, M.; Kobus-Cisowska, J. Comparative characteristics of oil composition in seeds of 31 Cucurbita varieties. J. Food Meas. Charact. 2020, 14, 894–904. [Google Scholar] [CrossRef]
- Sure, S.; Arooie, H.; Azizi, M. Influence of Plant Growth Regulators (PGRs) and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca). Not. Sci. Biol. 2012, 4, 101–107. [Google Scholar] [CrossRef]
- Berényi, J. Production and utilization of oil pumpkin (Cucurbita pepo L.). In Proceedings of the 40th Conference on Oilseed Production and Processing, Palić, Serbia, 22–27 November 1999; pp. 303–308. [Google Scholar]
- Akinoso, R.; Raji, A.O. Optimization of oil extraction from locust beans using response surface methodology. Eur. J. Lipid Sci. Technol. 2010, 113, 245–252. [Google Scholar] [CrossRef]
- Azam, M.M.; Waris, A.; Nahar, N.M. Suitability of some wildly grown seed oils for use as biodiesel. Energy Sources A Recovery Util. Environ. Eff. 2014, 32, 657–664. [Google Scholar] [CrossRef]
- Bikash, B.; Choudhury, N.D.; Bora, D.K.; Kalita, K. Physicochemical assessment of pumpkin (Cucurbita pepo L.) seed oil as a viable feedstock for biodiesel production. In Conference Proceedings of the Second International Conference on Recent Advances in Bioenergy Research; Springer: Singapore, 2017; pp. 19–28. [Google Scholar] [CrossRef]
- Jafari, M.; Goli, S.A.H.; Rahimmalek, M. The chemical composition of the seeds of Iranian pumpkin cultivars and physicochemical characteristics of the oil extract. Eur. J. Lipid Sci. Technol. 2012, 114, 161–167. [Google Scholar] [CrossRef]
- Ameen, M.; Zafar, M.; Ahmad, M.; Shaheen, A.; Yaseen, G. Wild melon: A novel non-edible feedstock for bioenergy. Pet. Sci. 2018, 15, 405–411. [Google Scholar]
- Ogunwa, K.I.; Ofodile, S.; Achugasim, O. Feasibility study of melon seed oil as a source of biodiesel. J. Energy Eng. 2015, 3, 24–27. [Google Scholar] [CrossRef]
- Hagos, M.; Estifanos Ele Yaya, E.E.; Chandravanshi, B.S.; Redi-Abshiro, M. Determination of fatty acids composition by GC-MS and ohysicochemical parameters of pumpkin (Cucurbita maxima) seed oil cultivated in Ethiopia. Bull. Chem. Soc. Ethiop. 2023, 37, 565–577. [Google Scholar] [CrossRef]
- Ibeto, C.N.; Chukwuma Obiajulu Benedict Okoye, C.O.B.; Akuzuo Uwaoma Ofoefule, A.U. Comparative study of the physicochemical characterization of some oils as potential feedstock for biodiesel production. ISRN Renew. Energy 2012, 2012, 621518. [Google Scholar] [CrossRef]
- Karaye, I.U.; Hayatu, M.; Mustapha, Y.; Sani, A.L. Oil extraction and GC-MS analysis of the seeds oil of three Nigerian cucurbits. IJSGS 2021, 7, 53–63. Available online: https://fugus-ijsgs.com.ng/index.php/ijsgs/article/view/15 (accessed on 5 April 2024).
- Winayanuwattikun, P.; Kaewpiboon, C.; Piriyakananon, K.; Tantong, S.; Thakernkarnkit, W.; Chulalaksananukul, W.; Yongvanich, T. Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenergy 2008, 32, 1279–1286. [Google Scholar] [CrossRef]
- Veličković, D.T.; Ristić, M.S.; Karabegović, I.T.; Stojičević, S.S.; Nikolić, N.C.; Lazić, M.L. Volatiles and fatty oil of pumpkin (Cucurbita maxima). Adv. Technol. 2015, 4, 43–48. [Google Scholar] [CrossRef]
- Berényi, J.; Tulok, M. Comparative analysis of oil content in oil pumpkin varieties without husks. In Proceedings of the Variety Development in Horticulture, Budapest, Hungary, 20–21 October 2005; pp. 221–228. [Google Scholar]
- Yusuf, J.; Kantoma, D.; Mosunmola, R.O. Studies on Cucurbita maxima seed oil for its potentials as feedstock for biodiesel production in Nigeria. NRJCS 2021, 9, 215–233. Available online: https://www.unn.edu.ng/wp-content/uploads/2021/05/Studies-on-Cucurbita-maxima-Seed-Oil-for-its-Potentials-as-Feedstock-for-Biodiesel-Production-in-Nigeria.pdf (accessed on 5 April 2024).
- DIN 51606. Available online: https://www.dinmedia.de/en/draft-standard/din-51606/3014651 (accessed on 8 April 2024).
- Bwade, K.E.; Aliyu, B.; Kwaji, A.M. Physicochemical properties of pumpkin seed oil relevant to bio-diesel production and other industrial applications. IASIR 2013, 4, 72–78. Available online: https://www.researchgate.net/publication/345724607_Physicochemical_properties_of_Pumpkin_Seed_oil_Relevant_to_Biodiesel_Production_and_other_Applications?_tp=eyJjb250ZXh0Ijp7InBhZ2UiOiJwdWJsaWNhdGlvbiIsInByZXZpb3VzUGFnZSI6bnVsbH19 (accessed on 5 April 2024).
- Møller, A.; Fatty Acid Molecularweights and Conversion Factors. Danish Food Information. Available online: https://toolbox.foodcomp.info/References/FattyAcids/Anders%20M%C3%B8ller%20%20-%20%20FattyAcids%20Molecular%20Weights%20and%20Conversion%20Factors.pdf (accessed on 8 April 2024).
- Bhaskar, K.; Sassykova, L.R.; Prabhahar, M.; Sendilvelan, S. Effect of dimethoxy-methane (C3H8O2) additive on emission characteristics of a diesel engine fueled with biodiesel. Int. J. Mech. Prod. Eng. Res. Dev. 2018, 8, 399–406. [Google Scholar] [CrossRef]
- Tamilselvan, P.; Sassykova, L.; Bhaskar, K.; Subramanian, S.; Gomathi, K.; Prabhahar, M.; Prakash, S. Effect of saturated fatty acid composition of biodiesel on oxides of nitrogen and smoke emissions. J. Chem. Technol. Metall. 2023, 58, 177–187. Available online: https://journal.uctm.edu/node/j2023-1/JCTM_2023_58_18_22-79_pp167-177.pdf (accessed on 8 April 2024).
- Schinas, P.; Karavalakis, G.; Davaris, C.; Anastopoulos, G.; Karonis, D.; Zannikos, F.; Stournas, S.; Lois, E. Pumpkin (Cucurbita pepo L.) seed oil as an alternative feedstock for the production of biodiesel in Greece. Biomass Bioenergy 2009, 33, 44–49. [Google Scholar] [CrossRef]
- Barik, S.; Paul, K.K.; Priyadarshi, D. Utilization of kitchen food waste for biodiesel production. In Proceedings of the 8th International Conference on Environment Science and Engineering (ICESE 2018), Barcelona, Spain, 11–13 March 2018. [Google Scholar]
- Kulaitienė, J.; Černiauskienė, J.; Jarienė, E.; Danilčenko, H.; Levickienė, D. Antioxidant activity and other quality parameters of cold pressing pumpkin seed oil. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 161–166. [Google Scholar] [CrossRef]
- Singh, A.; Kumar, V. Phyto-chemical and bioactive compounds of pumpkin seed oil as affected by different extraction methods. Food Chem. Adv. 2023, 2, 100211. [Google Scholar] [CrossRef]
- Hu, Z.; Hu, C.; Li, Y.; Jiang, Q.; Li, Q.; Fang, C. Pumpkin seed oil: A comprehensive review of extraction methods, nutritional constituents, and health benefits. J. Sci. Food Agric. 2024, 104, 572–582. [Google Scholar] [CrossRef]
- Massironi, A.; Di Fonzo, A.D.; Bassanini, I.; Ferrandi, E.E.; Marzorati, S.; Monti, D.; Verotta, L. Selective supercritical CO2 extraction and biocatalytic valorization of Cucurbita pepo industrial residuals. Molecules 2022, 27, 4783. [Google Scholar] [CrossRef]
- Liu, J.; Gasmalla, M.A.; Pengfei, L.; Yang, R. Enzyme-assisted extraction processing from oilseeds: Principle, processing and application. Innov. Food Sci. Emerg. Technol. 2016, 35, 184–193. [Google Scholar] [CrossRef]
- Wang, H.; Chen, K.; Cheng, J.; Jiang, L.; Yu, D.; Dai, Y.; Wang, L. Ultrasound-assisted three phase partitioning for simultaneous extraction of oil, protein and polysaccharide from pumpkin seeds. LWT—Food Sci. Technol. 2021, 151, 112200. [Google Scholar] [CrossRef]
- Gogate, P.R.; Kabadi, A.M. A review of applications of cavitation in biochemical engineering/biotechnology. Biochem. Eng. J. 2009, 44, 60–72. [Google Scholar] [CrossRef]
- Maliha, A.; Abu-Hijleh, B. A review on the current status and post-pandemic prospects of third-generation biofuels. Energy Syst. 2022, 14, 1185–1216. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, J.; Zhou, Z.G. Algae for biofuels: An emerging feedstock. In Handbook of Biofuels Production, 2nd ed.; Luque, R., Lin, C.S.K., Wilson, K., Clark, J., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 673–698. [Google Scholar]
- Raheem, A.; Prinsen, P.; Vuppaladadiyam, A.K.; Zhao, M. A review on sustainable microalgae-based biofuel and bioenergy production: Recent developments. J. Clean. Prod. 2018, 181, 42–59. [Google Scholar] [CrossRef]
- National Renewable Energy Laboratory: Golden, CO, USA, 2015. Available online: http://www.nrel.gov/docs/fy19osti/72716.pdf (accessed on 31 March 2024).
- Lu, J.; Sheahan, C.; Fu, P. Metabolic engineering of algae for fourth generation biofuels production. Energy Environ. Sci. 2011, 4, 2451–2466. [Google Scholar] [CrossRef]
- Abdullah, B.; Syed, M.; Syed, A.F.; Shokravi, Z.; Ismail, S.; Kassim, K.A.; Mahmood, A.N.; Aziz, M.M. Fourth generation biofuel: A review on risks and mitigation strategies. Renew. Sustain. Energy Rev. 2019, 107, 37–50. [Google Scholar] [CrossRef]
- Trentacoste, E.M.; Martinez, A.M.; Zenk, T. The place of algae in agriculture: Policies for algal biomass production. Photosynth. Res. 2014, 123, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Henley, W.J.; Litaker, R.W.; Novoveská, L.; Duke, C.S.; Quemada, H.D.; Sayre, R.T. Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Res. 2013, 2, 66–77. [Google Scholar] [CrossRef]
- Tan, X.B.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Wong, C.Y.; Lee, K.T. Cultivation of microalgae for biodiesel production: A review on upstream and downstream processing. Chin. J. Chem. Eng. 2018, 26, 17–30. [Google Scholar] [CrossRef]
- Bharathiraja, B.; Chakravarthy, M.; Kumar, R.R.; Yogendran, D.; Yuvaraj, D.; Jayamuthunagai, J. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sustain. Energy Rev. 2015, 47, 634–653. [Google Scholar] [CrossRef]
- Glass, D.J. Pathways to obtain regulatory approvals for the use of genetically modified algae in biofuel or biobased chemical production. Ind. Biotechnol. 2015, 11, 71–83. [Google Scholar] [CrossRef]
- Szyjka, S.J.; Mandal, S.; Schoepp, N.G.; Tyler, B.M.; Yohn, C.B.; Poon, Y.S.; Villareal, S.; Burkart, M.D.; Shurin, J.B.; Mayfield, S.P. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 2017, 24, 378–386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visković, J.; Dunđerski, D.; Adamović, B.; Jaćimović, G.; Latković, D.; Vojnović, Đ. Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits. Agronomy 2024, 14, 1195. https://doi.org/10.3390/agronomy14061195
Visković J, Dunđerski D, Adamović B, Jaćimović G, Latković D, Vojnović Đ. Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits. Agronomy. 2024; 14(6):1195. https://doi.org/10.3390/agronomy14061195
Chicago/Turabian StyleVisković, Jelena, Dušan Dunđerski, Boris Adamović, Goran Jaćimović, Dragana Latković, and Đorđe Vojnović. 2024. "Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits" Agronomy 14, no. 6: 1195. https://doi.org/10.3390/agronomy14061195
APA StyleVisković, J., Dunđerski, D., Adamović, B., Jaćimović, G., Latković, D., & Vojnović, Đ. (2024). Toward an Environmentally Friendly Future: An Overview of Biofuels from Corn and Potential Alternatives in Hemp and Cucurbits. Agronomy, 14(6), 1195. https://doi.org/10.3390/agronomy14061195