Straw Returning Proves Advantageous for Regulating Water and Salt Levels, Facilitating Nutrient Accumulation, and Promoting Crop Growth in Coastal Saline Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Design
2.3. Measurement Indicators and Methods
2.3.1. Soil Water Content
2.3.2. Soil Water Storage
2.3.3. Soil Conductivity
2.3.4. Soil Nutrients
2.3.5. Crop Yield and Water Use Efficiency
2.4. Grey Relational Analysis
2.5. Data Analysis
2.6. The Main Physicochemical Properties of the Tested Soil
3. Results
3.1. Effects of Straw-Returning Practices on Soil Water
3.1.1. Impact of Straw Returning on Barley’s Soil Water Storage
3.1.2. Impact of Straw Returning on Cotton’s Soil Water Storage
3.1.3. Grey Relational Analysis of Soil Water across Soil Layers under Different Straw-Returning Measures
3.2. Effects of Various Straw-Returning Measures on Soil Conductivity
3.3. Effects of Various Straw-Returning Measures on Soil Nutrients
3.4. Effects of Different Straw-Returning Measures on Dry Matter Accumulation, Yield, and Water Use Efficiency of Barley and Cotton
3.4.1. Dry Matter Accumulation of Barley at Various Growth Stages under Different Straw-Returning Measures
3.4.2. Yield and Water Use Efficiency of Barley and Cotton under Different Straw-Returning Measures
4. Discussion
4.1. Effects of Straw-Returning Measures on Soil Water Status
4.2. Impact of Straw-Returning Measures on Soil Conductivity
4.3. Impacts of Straw-Returning Measures on Soil Nutrients
4.4. Effects of Straw-Returning Measures on Dry Matter Accumulation and Yield of Crops
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Negacz, K.; Malek, Ž.; de Vos, A.; Vellinga, P. Saline soils worldwide: Identifying the most promising areas for saline agriculture. J. Arid Environ. 2022, 203, 104775. [Google Scholar] [CrossRef]
- Gao, G.; Yan, L.; Tong, K.; Yu, H.; Lu, M.; Wang, L.; Niu, Y. The potential and prospects of modified biochar for comprehensive management of salt-affected soils and plants: A critical review. Sci. Total Environ. 2023, 912, 169618. [Google Scholar] [CrossRef] [PubMed]
- Goswami, S.K.; Kashyap, A.S.; Kumar, R.; Gujjar, R.S.; Singh, A.; Manzar, N. Harnessing Rhizospheric Microbes for Eco-friendly and Sustainable Crop Production in Saline Environments. Curr. Microbiol. 2024, 81, 14. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Wang, Y.; Liu, Y.; Tian, C. Performance of halophytes in soil desalinization and its influencing factors: A meta-analysis. Front. Environ. Sci. 2023, 11, 1198540. [Google Scholar] [CrossRef]
- Rassaei, F. Effects of Different Rates of Sugarcane Biochar on Amelioration of Adverse Salinity Effects in Calcareous Clay Soil. Commun. Soil Sci. Plan. 2024, 55, 1349–1360. [Google Scholar] [CrossRef]
- Jing, X.; Li, Q.; Qiao, X.; Chen, J.; Cai, X. Effects of accumulated straw residues on sorption of pesticides and antibiotics in soils with maize straw return. J. Hazard. Mater. 2021, 418, 126213. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Song, D.; Liang, S.; Qin, X.; Siddique, K.H. The effects of straw incorporation with plastic film mulch on soil properties and bacterial community structure on the loess plateau. Eur. J. Soil Sci. 2021, 72, 979–994. [Google Scholar] [CrossRef]
- Getahun, G.T.; Katterer, T.; Munkholm, L.J.; Parvage, M.M.; Keller, T.; Rychel, K.; Kirchmann, H. Short-term effects of loosening and incorporation of straw slurry into the upper subsoil on soil physical properties and crop yield. Soil Tillage Res. 2018, 184, 62–67. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L.; Zhao, Y.; Yang, B.; Ding, R.; Wang, J.; Nie, J. Changes in soil characteristics and maize yield under straw returning system in dryland farming. Field Crop Res. 2018, 218, 11–17. [Google Scholar] [CrossRef]
- He, L.; Zhong, Z.; Yang, H. Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. J. Integr. Agric. 2017, 16, 704–712. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta. Agric. Water Manag. 2020, 239, 106211. [Google Scholar] [CrossRef]
- Jin, Y.; Yang, S.; Zhang, W.; Pan, C.; Liang, Z. Effects of straw and plastic film mulching on water-salt regulation and maize yield in alternate brackish irrigation. Soil Fertil. Sci. Chin. 2020, 2, 198–205. [Google Scholar]
- Che, W.; Piao, J.; Gao, Q.; Li, X.; Li, X.; Jin, F. Response of soil physicochemical properties, soil nutrients, enzyme activity and rice yield to rice straw returning in highly saline-alkali paddy soils. J. Soil Sci. Plant Nutr. 2023, 23, 4396–4411. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of straw return and straw biochar on soil properties and crop growth: A review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Liu, W.; Cheng, L. Vertical distribution characteristics and temporal stability of soil water in deep profile on the Loess Tableland, Northwest China. J. Appl. Ecol. 2017, 28, 430–438. [Google Scholar]
- Bao, S. Soil Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2018. [Google Scholar]
- Tang, W.; Xiao, X.; Tang, H.; Zhang, H.; Chen, F.; Chen, Z.; Xue, J.; Yang, G. Effects of long-term tillage and rice straw returning on soil nutrient pools and Cd concentration. J. Appl. Ecol. 2015, 26, 168–176. [Google Scholar]
- Zhang, J.-X. Study on the Effect of Straw Mulching on Farmland Soil Water. J. Environ. Public Health 2022, 2022, 3101880. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, S.; Fang, Z. Decision making model of grey comprehensive correlation and relative close degree based on kernel and greyness degree. Control Decis. 2017, 32, 1475–1480. [Google Scholar]
- Tang, M.; Liu, R.; Luo, Z.; Zhang, C.; Kong, J.; Feng, S. Straw Returning Measures Enhance Soil Moisture and Nutrients and Promote Cotton Growth. Agronomy 2023, 13, 1850. [Google Scholar] [CrossRef]
- Dong, F.; Yan, Q.; Wu, L.; Yang, F.; Wang, J.; Zhang, J.; Yan, S. Soil water storage and maize (Zea mays L.) yield under straw return and tillage practices. Crop Sci. 2022, 62, 382–396. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, H.; Xu, C.; Yan, W.; Sun, N.; Tan, G.; Yu, J.; Meng, X.; Li, F.; Bian, S. Effects of straw returning on soil moisture and maize yield in semi-humid area. Cereal Res. Commun. 2022, 50, 539–548. [Google Scholar] [CrossRef]
- Alhassan, A.-R.M. Impact of mulching and planting time on spring-wheat (Triticum aestivum) growth: A combined field experiment and empirical modeling approach. Open Agric. 2024, 9, 20220242. [Google Scholar] [CrossRef]
- Ma, J.; Chang, L.; Li, Y.; Lan, X.; Ji, W.; Zhang, J.; Han, F.; Cheng, H.; Chai, F.; Chai, S. Straw strip mulch improves soil moisture similar to plastic film mulch but with a higher net income. Agric. Ecosyst. Environ. 2024, 362, 108855. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Wu, J.; Gao, C.; Zhang, S.; Tang, D. Long-term combined subsoiling and straw mulching conserves water and improves agricultural soil properties. Land Degrad. Dev. 2023, 35, 1050–1060. [Google Scholar] [CrossRef]
- Peng, X.; Ye, L.; Wang, C.; Zhou, H.; Sun, B. Temperature- and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil Tillage Res. 2011, 112, 159–166. [Google Scholar] [CrossRef]
- Lee, X.; Yang, F.; Xing, Y.; Huang, Y.; Xu, L.; Liu, Z.; Holtzman, R.; Kan, I.; Li, Y.; Zhang, L.; et al. Use of biochar to manage soil salts and water: Effects and mechanisms. Catena 2022, 211, 106018. [Google Scholar] [CrossRef]
- Wilczek, A.; Szyplowska, A.; Lewandowski, A.; Kafarski, M.; Szerement, J.; Skierucha, W. Soil salinity characterization based on 0.05–3 GHz dielectric permittivity measurements. In Proceedings of the 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 20–22 September 2017; IEEE: New York, NY, USA, 2017; pp. 1–3. [Google Scholar]
- Zhang, Y.; Jia, X.; Lai, X.; Huang, Y. Experimental study on relation between whole-salt quantity and electric conductivity. Int. J. Bioautomation 2019, 23, 97. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Pang, H.; Li, Y. Buried straw layer plus plastic mulching reduces soil salinity and increases sunflower yield in saline soils. Soil Tillage Res. 2016, 155, 363–370. [Google Scholar] [CrossRef]
- Rahma, A.E.; Wang, W.; Tang, Z.; Lei, T.; Warrington, D.N.; Zhao, J. Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agric. For. Meteorol. 2017, 232, 141–151. [Google Scholar] [CrossRef]
- Zhao, Y.; Pang, H.; Wang, J.; Huo, L.; Li, Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crop Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Liang, J.; Li, Q.; Gao, J.; Feng, J.; Zhang, X.; Wu, Y.; Yu, F. Biochar rhizosphere addition promoted Phragmites australis growth and changed soil properties in the Yellow River Delta. Sci. Total Environ. 2020, 761, 143291. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, W.; Wang, X.; Yao, C.; Wang, Y.; Wang, Z.; Zhou, W.; Chen, E.; Chen, W. Effect of Straw Mulching and Deep Burial Mode on Water and Salt Transport Regularity in Saline Soils. Water 2023, 15, 3227. [Google Scholar] [CrossRef]
- Yusefi, A.; Firouzi, A.F.; Aminzadeh, M. The effects of shallow saline groundwater on evaporation, soil moisture, and temperature distribution in the presence of straw mulch. Hydrol. Res. 2020, 51, 720–738. [Google Scholar] [CrossRef]
- Khan, I.; Chen, T.; Farooq, M.; Luan, C.; Wu, Q.; Wanning, D.; Xu, S.; Li-Xue, W. The residual impact of straw mulch and biochar amendments on soil physiochemical properties and yield of maize under rainfed system. Agron. J. 2021, 113, 1102–1120. [Google Scholar] [CrossRef]
- Song, C.; Du, H. Effects of corn straw cover years on soil organic matter and compactness in typical black soil areas of Songnen Plain. Arab J. Geosci. 2023, 16, 44. [Google Scholar] [CrossRef]
- Havlin, J.; Heiniger, R. Soil fertility management for better crop production. Agronomy 2020, 10, 1349. [Google Scholar] [CrossRef]
- Brar, S.K.; Dhaliwal, S.S.; Sharma, V.; Sharma, S.; Kaur, M. Replacement of rice-wheat cropping system with alternative diversified systems concerning crop productivity and their impact on soil carbon and nutrient status in soil profile of north-west India. Cogent Food Agric. 2023, 9, 2167483. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, J.; Zhang, M.; Tian, Z.; Wei, T.; Jia, Z.; Ren, X.; Zhang, P. Is adding biochar be better than crop straw for improving soil aggregates stability and organic carbon contents in film mulched fields in semiarid regions?—Evidence of 5-year field experiment. J. Environ. Manag. 2023, 338, 117711. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Zhong, W.; Han, C.; Deng, H.; Jiang, Y. Driving factors of soil organic carbon sequestration under straw returning across China’s uplands. J. Environ. Manag. 2023, 335, 117590. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Zhang, Y.; Zhang, J.; Xia, S.; Qin, H.; Feng, C.; Bie, S. Influence of decomposition agent application and schedule in wheat straw return practice on soil quality and crop yield. Chem. Biol. Technol. Agric. 2023, 10, 8. [Google Scholar] [CrossRef]
- Pang, J.; Wang, Y.; Wang, B.; Wang, J.; Liu, E.; Gao, F.; Sun, S.; Ren, X.; Jia, Z.; Wei, T.; et al. Biochar application increases maize yield under film mulching due to higher soil organic content and soil aggregate stability in a semi-arid area. J. Soils Sediments 2023, 23, 1718–1732. [Google Scholar] [CrossRef]
- Li, Y.; Li, G. Mechanisms of straw biochar’s improvement of phosphorus bioavailability in soda saline-alkali soil. Environ. Sci. Pollut. Res. 2022, 29, 47867–47872. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Huang, W.; Elsgaard, L.; Yang, B.; Li, Z.; Yang, H.; Lu, Y. Optimal biochar amendment rate reduced the yield-scaled N2O emissions from ultisols in an intensive vegetable field in South China. Sci. Total Environ. 2020, 723, 138161. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Xi, X.; Zheng, Q.; Liang, G.; Zhou, W.; Wang, X. Soil nutrient and microbial activity responses to two years after maize straw biochar application in a calcareous soil. Ecotoxicol. Environ. Saf. 2019, 180, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Dalai, A.K.; Berruti, F.; Kozinski, J.A. Biochar as an exceptional bioresource for energy, agronomy, carbon sequestration, activated carbon and specialty materials. Waste Biomass Valoriz. 2016, 7, 201–235. [Google Scholar] [CrossRef]
- Chen, X.; Tian, Y.; Guo, X.; Chen, G.; He, H.; Li, H. The effect of monoculture peanut and cassava/peanut intercropping on physical and chemical properties in peanut rhizosphere soil under the biochar application and straw mulching. IOP Conf. Ser. Earth Environ. Sci. 2017, 59, 012021. [Google Scholar] [CrossRef]
- Watt, M.S.; Clinton, P.W.; Whitehead, D.; Richardson, B.; Mason, E.G.; Leckie, A.C. Above-ground biomass accumulation and nitrogen fixation of broom (Cytisus scoparius L.) growing with juvenile Pinus radiata on a dryland site. For. Ecol. Manag. 2003, 184, 93–104. [Google Scholar] [CrossRef]
- Kaur, A. Productivity and profitability of malt barley (Hordeum vulgare) varieties at different nitrogen levels under saline water irrigation. Indian J. Agron. 2020, 65, 456–461. [Google Scholar] [CrossRef]
- Rogers, C.W.; Dari, B.; Hu, G.; Mikkelsen, R. Dry matter production, nutrient accumulation, and nutrient partitioning of barley. J. Plant Nutr. Soil Sci. 2019, 182, 367–373. [Google Scholar] [CrossRef]
- Song, X.; Sun, R.; Chen, W.; Wang, M. Effects of surface straw mulching and buried straw layer on soil water content and salinity dynamics in saline soils. Can. J. Soil Sci. 2019, 100, 58–68. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Z.; Feng, G.; Lu, P.; Huang, M.; Zhao, X. Biochar Amendment Combined with Straw Mulching Increases Winter Wheat Yield by Optimizing Soil Water-Salt Condition under Saline Irrigation. Agriculture 2022, 12, 1681. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kang, J.G.; Kim, Y.J.; Oh, Y.Y.; Lee, S.H.; Kim, S.; Hong, H.; Kim, Y.; Kim, S.L. Effects of straw mulching on soil physicochemical properties in Saemangeum reclaimed land. Korean J. Soil Sci. Fertil. 2016, 49, 12–16. [Google Scholar] [CrossRef]
- Shan, Y.; Li, G.; Bai, Y.; Liu, H.; Zhang, J.; Wei, K.; Wang, Q.; Wu, B.; Cao, L. Effects of different improvement measures on hydrothermal carbon and cotton (Gossypium hirsutum L.) yield in saline-alkali soil. Appl. Ecol. Environ. Res. 2022, 20, 1821–1835. [Google Scholar] [CrossRef]
- Li, X.; Yao, T.; Huang, X.; Li, X.; Li, P.; Du, S.; Wang, W.; Miao, S.; Wang, D.; Jin, F.; et al. Biochar increases rice yield by improving root morphological and root physiological functions in heavily saline-sodic paddy soil of Northeast China. BioResources 2022, 17, 1241–1256. [Google Scholar] [CrossRef]
- Bezborodov, G.A.; Shadmanov, D.K.; Mirhashimov, R.T.; Yuldashev, T.; Qureshi, A.S.; Noble, A.D.; Qadir, M. Mulching and water quality effects on soil salinity and sodicity dynamics and cotton productivity in Central Asia. Agric. Ecosyst. Environ. 2010, 138, 95–102. [Google Scholar] [CrossRef]
Soil Layer (cm) | Dry Bulk Density (g·cm−3) | Soil Texture | Saturated Water Content (g·g−1) | Soil Conductivity (ms·cm−1) | Available Nitrogen (mg·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) | Soil Organic Carbon (g/kg) | ||
---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | ||||||||
0–10 | 1.24 | 25.97 ± 2.29 | 63.89 ± 1.23 | 10.14 ± 1.15 | 29.87% | 1.36 ± 0.09 | 50.31 ± 4.38 | 7.75 ± 1.47 | 213.33 ± 15.04 | 5.97 ± 0.17 |
10–20 | − | 28.66 ± 2.82 | 61.69 ± 0.78 | 9.66 ± 2.04 | − | 1.89 ± 0.19 | ||||
20–30 | − | 27.58 ± 3.19 | 63.25 ± 1.67 | 9.17 ± 1.65 | − | 2.07 ± 0.07 | ||||
30–40 | − | 26.87 ± 2.30 | 63.53 ± 2.36 | 9.61 ± 2.17 | − | 2.02 ± 0.12 |
Crop Species | Grey Relational Grade | Straw-Returning Measures | |||
---|---|---|---|---|---|
BS | SI | SM | BC | ||
Barley | R12 | 0.8048 | 0.6955 | 0.9238 | 0.8762 |
R13 | 0.6641 | 0.6537 | 0.7193 | 0.7613 | |
R14 | 0.5891 | 0.7115 | 0.673 | 0.6471 | |
R23 | 0.6329 | 0.7165 | 0.9092 | 0.8483 | |
R24 | 0.7052 | 0.7127 | 0.8669 | 0.8229 | |
R34 | 0.6402 | 0.7587 | 0.6676 | 0.8435 | |
Cotton | R12 | 0.7132 | 0.8038 | 0.7467 | 0.7689 |
R13 | 0.6797 | 0.6502 | 0.6841 | 0.7153 | |
R14 | 0.6422 | 0.7339 | 0.6189 | 0.6655 | |
R23 | 0.6820 | 0.8129 | 0.6973 | 0.7369 | |
R24 | 0.6431 | 0.7998 | 0.7002 | 0.6137 | |
R34 | 0.7150 | 0.7155 | 0.6035 | 0.6482 |
Crop Species | Treatment | Plough Layer (cm) | Bulk Density (g·cm−3) | Organic Carbon (kg·hm−2) | Available Nitrogen (kg·hm−2) | Available Phosphorus (kg·hm−2) | Available Potassium (kg·hm−2) | Total Available Nutrients (kg·hm−2) |
---|---|---|---|---|---|---|---|---|
Barley | BS | 15 | 1.17 a | 10,515.00 ± 296.13 b | 88.62 ± 7.71 a | 13.66 ± 2.59 a | 375.81 ± 26.50 b | 10,993.09 ± 312.08 c |
SI | 15 | 1.05 a | 10,383.05 ± 1514.28 b | 80.61 ± 4.27 a | 9.45 ± 0.98 a | 345.65 ± 39.46 b | 10,818.76 ± 1479.54 c | |
SM | 15 | 1.15 a | 11,454.82 ± 1426.21 b | 82.57 ± 7.99 a | 10.68 ± 2.09 a | 419.12 ± 18.00 a | 11,967.19 ± 1431.7 b | |
BC | 15 | 0.99 a | 13,125.18 ± 1169.78 a | 72.90 ± 6.31 a | 10.70 ± 0.97 a | 400.49 ± 75.85 a | 13,609.27 ± 1162.25 a | |
Cotton | BS | 15 | 1.24 a | 5137.02 ± 677.86 b | 69.95 ± 7.55 b | 73.09 ± 15.61 a | 237.93 ± 4.28 b | 5517.99 ± 690.75 b |
SI | 15 | 1.11 a | 5277.70 ± 249.73 b | 69.90 ± 6.08 b | 83.43 ± 17.67 a | 233.34 ± 30.09 b | 5664.37 ± 216.52 b | |
SM | 15 | 1.19 a | 4929.86 ± 983.28 b | 82.15 ± 0.79 a | 85.97 ± 7.36 a | 261.64 ± 26.78 a | 5359.62 ± 956.21 b | |
BC | 15 | 1.05 a | 5431.13 ± 583.19 a | 55.33 ± 2.58 b | 119.57 ± 40.62 b | 245.85 ± 71.93 a | 5851.88 ± 629.00 a |
Crop Organs | Heading Stage | Filling Stage | Maturation Stage | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
BS | SI | SM | BC | BS | SI | SM | BC | BS | SI | SM | BC | |
Leaf | 1.85 ± 0.05 ab | 1.56 ± 0.16 b | 2.08 ± 0.47 a | 1.87 ± 0.02 ab | 1.50 ± 0.35 ab | 1.18 ± 0.36 b | 1.69 ± 0.39 a | 1.71 ± 0.36 a | − | − | − | − |
Stem | 2.65 ± 0.21 a | 3.17 ± 0.67 a | 2.32 ± 0.16 a | 2.57 ± 0.64 a | 5.50 ± 1.05 a | 5.45 ± 0.60 a | 6.55 ± 1.67 a | 5.39 ± 0.98 a | 4.49 ± 1.08 a | 4.63 ± 0.46 a | 6.01 ± 2.06 b | 4.76 ± 0.99 a |
Spike | − | − | − | − | 2.87 ± 1.73 a | 2.88 ± 1.58 a | 3.09 ± 1.84 a | 2.99 ± 1.66 a | 5.40 ± 1.58 a | 6.31 ± 0.27 a | 6.85 ± 2.51 a | 5.41 ± 0.4 a |
Total | 4.50 ± 0.25 a | 4.73 ± 0.61 a | 4.40 ± 0.56 a | 4.44 ± 0.64 a | 9.87 ± 1.95 ab | 9.51 ± 1.54 b | 11.33 ± 3.01 a | 10.09 ± 1.90 ab | 9.89 ± 2.65 a | 10.94 ± 0.72 ab | 12.86 ± 4.52 b | 10.17 ± 1.28 ab |
Treatment | Number of Spikes (104·hm−2) | Number of Grains per Plant | Thousand-Grain Weight (g) | Yield (kg·hm−2) | ET (mm) | WUE (kg·mm−1·hm−2) |
---|---|---|---|---|---|---|
BS | 663.10 ± 11.48 a | 28.93 ± 1.4 ab | 45.08 ± 5.56 a | 4895.54 ± 101.42 b | 637.87 ± 26.83 a | 7.82 ± 2.01 b |
SI | 459.52 ± 16.5 b | 27.00 ± 0.53 b | 47.83 ± 1.78 a | 4795.48 ± 315.05 b | 637.89 ± 6.38 a | 7.52 ± 0.44 b |
SM | 404.76 ± 60.22 b | 30.67 ± 2.73 a | 45.20 ± 2.64 a | 5102.14 ± 329.97 a | 595.89 ± 14.54 b | 8.56 ± 0.68 a |
BC | 635.71 ± 3.57 a | 27.93 ± 1.5 b | 36.37 ± 2.44 b | 5125.24 ± 192.42 a | 632.08 ± 9.72 a | 8.11 ± 0.32 ab |
Treatment | Total Boll Number (104·hm−2) | Seed Cotton Yield (kg·hm−2) | Lint Yield (kg·hm−2) | Lint Cotton Yield Increase Rate (%) | ET (mm) | WUE (kg·mm−1·hm−2) |
---|---|---|---|---|---|---|
BS | 205.95 ± 44.08 b | 7169.29 ± 1395.02 b | 3165.35 ± 615.92 b | - | 1185.08 ± 4.48 a | 6.05 ± 1.17 b |
SI | 210.71 ± 56.13 b | 9402.62 ± 1211.65 a | 4151.41 ± 534.96 a | 23.75 | 1202.75 ± 31.63 b | 7.82 ± 0.85 a |
SM | 234.52 ± 7.43 a | 9497.38 ± 367.86 a | 4193.24 ± 162.41 a | 24.51 | 1163.78 ± 23.22 a | 8.16 ± 0.18 a |
BC | 175.00 ± 55.44 c | 7389.88 ± 1815.46 b | 3262.75 ± 801.56 b | 2.99 | 1208.58 ± 2.59 b | 6.11 ± 1.49 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Tang, M.; Luo, Z.; Zhang, C.; Liao, C.; Feng, S. Straw Returning Proves Advantageous for Regulating Water and Salt Levels, Facilitating Nutrient Accumulation, and Promoting Crop Growth in Coastal Saline Soils. Agronomy 2024, 14, 1196. https://doi.org/10.3390/agronomy14061196
Liu R, Tang M, Luo Z, Zhang C, Liao C, Feng S. Straw Returning Proves Advantageous for Regulating Water and Salt Levels, Facilitating Nutrient Accumulation, and Promoting Crop Growth in Coastal Saline Soils. Agronomy. 2024; 14(6):1196. https://doi.org/10.3390/agronomy14061196
Chicago/Turabian StyleLiu, Rui, Min Tang, Zhenhai Luo, Chao Zhang, Chaoyu Liao, and Shaoyuan Feng. 2024. "Straw Returning Proves Advantageous for Regulating Water and Salt Levels, Facilitating Nutrient Accumulation, and Promoting Crop Growth in Coastal Saline Soils" Agronomy 14, no. 6: 1196. https://doi.org/10.3390/agronomy14061196
APA StyleLiu, R., Tang, M., Luo, Z., Zhang, C., Liao, C., & Feng, S. (2024). Straw Returning Proves Advantageous for Regulating Water and Salt Levels, Facilitating Nutrient Accumulation, and Promoting Crop Growth in Coastal Saline Soils. Agronomy, 14(6), 1196. https://doi.org/10.3390/agronomy14061196