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Automation is crucial for the advancement of modern agriculture. It plays a significant
role in enhancing production efficiency and output, reducing labor costs, addressing
natural disasters, and boosting sustainability. Automation utilizes big data and artificial
intelligence to monitor agricultural production. It introduces new farming models that
adapt to the challenges of scalability and environmental changes, achieving precise and
efficient agricultural development.

In the field of smart agriculture, the emergence of unmanned systems represents a
significant evolutionary breakthrough. Currently, smart agricultural unmanned systems
encompass four spatial dimensions: sky (including navigation, remote sensing, meteo-
rological, and communication satellites) [1,2], air (comprising plant protection drones,
remote sensing mapping drones, long-duration solar drones, airships, and biomimetic
flying robots) [3,4], land (featuring unmanned farming/harvesting machinery, biomass
energy systems, soil improvement biomimetic robots, and unmanned livestock robots) [5,6],
and water (including unmanned underwater vehicles, underwater operation robots, and
unmanned aquaculture systems) [7,8]. These developments promise a bright future. This
Special Issue, titled “Agricultural Unmanned Systems: Empowering Agriculture with
Automation”, focuses on sharing knowledge related to integrated and precise operational
agriculture systems in the sky, air, land, and water. It explores intelligent sensing and
control technologies in smart agricultural unmanned systems to advance the progress of
unmanned agriculture. Establishing global demonstration sites is essential. These sites
support the revolutionary advancement of smart agricultural machinery in automated,
intelligent, unmanned, and cluster operations.

The following five studies explore the application of intelligent algorithms in precision
agriculture. To effectively cover the canopy area of tall spindle-shaped apple trees, Wang
et al. [9] developed an improved lightweight transfer learning model for citrus pest detec-
tion. They utilized networks such as ResNet50, InceptionV3, VGG16, and MobileNetV3, in
conjunction with a pre-trained single-shot multibox detector (SSD). This system can classify
and rapidly detect pests in citrus orchards, and can be integrated into mobile devices for
quick testing and pest counting. It assists farm managers in assessing pest damage and
making informed pesticide decisions in orchard management. Peng et al. [10] proposed
a new method that utilizes an optimized neural network to quickly identify crop water
and nitrogen content. They specifically improved a traditional backpropagation neural
network by incorporating particle swarm optimization (PSO). This improved network, with
a dual hidden layer structure, enhances prediction accuracy. The enhanced PSO-BPNN
model demonstrates a 9.87% increase in accuracy compared to conventional BPNN models.
This advancement establishes a strong foundation for precision irrigation and fertilization
in modern agriculture. It offers the potential to greatly improve resource management
and crop yields. Xiao et al. [11] investigated the present status of target detection and
recognition technologies for fruit- and vegetable-harvesting robots, with a focus on digital
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image processing and traditional machine learning methods. They assessed how these tech-
nologies affect the robots’ accuracy, speed, and robustness, identifying current challenges
and future developments to enhance robotic harvesting through improved computer vision
technologies. Xiao et al. [12] provided a comprehensive overview of the advancements
in fruit detection and automated harvesting using deep learning, particularly through
Convolutional Neural Networks (CNNs), from 2018 to the present. They detailed the
challenges faced, proposed solutions, and future research directions aimed at enhancing
the accuracy, speed, and robustness of visual detection systems for fruit while reducing
overall complexity and costs. This work serves as a reference for future research in the field
of deep learning-based automatic fruit harvesting detection and recognition. Ji et al. [13]
investigated the progress of the “eye-brain-hand” harvesting system in smart agriculture.
This system integrates sensor technology, machine vision algorithms, and intelligent con-
trol to simulate human functions for automated and precise fruit and vegetable picking.
It explores the development of robotic arms, visual recognition, and decision systems,
emphasizing technologies such as image processing and deep learning. The review also
evaluates the system’s application across various crops and environments. It emphasizes
future challenges in algorithm optimization and mechanical device reliability.

In the field of agricultural intelligent robotics technology and applications, Xiong
et al. [14] proposed an optimized design method for an efficient dual-mechanical-arm
harvesting system. For the typical spatial distribution of fruits in dwarf dense plants, a
pair of vertically synchronized, three-degree-range Cartesian coordinate dual mechanical
arms was designed. Through the development of a multi-objective optimization model
and evaluation using the CRITIC-TOPSIS method, simulation analysis determined the
optimal configuration to maximize harvesting efficiency, advancing robotic fruit-picking
technology. Zhang et al. [15] implemented a mechanized picking method in trellised pear
orchards by designing an integrated picker–placer end effector. They utilized the YOLOv5s
object detection algorithm and a depth camera for precise fruit localization. By introduc-
ing a simulated annealing algorithm to optimize the picking order and proposing a task
allocation method, the system was experimentally verified to improve picking efficiency
by 30%. This study provides important references for the further development of robotic
picking technologies. Shang et al. [16] addressed the issue of collisions with obstacles in
unmanned agricultural machinery by proposing an obstacle detection algorithm based on
two-dimensional LiDAR. This method utilizes differences between LiDAR data frames to
determine collision incidents; employs preprocessing, median filtering, and DBSCAN to
detect obstacles; and computes collision timing following the 6σ principle. Utilizing this
algorithm, a pre-collision system was designed, integrated into agricultural navigation
software, and tested on a harvester, achieving high accuracy and recall. This system enables
emergency stops when farm machinery encounters obstacles during automated operation.
It lays the groundwork for unmanned driving in more complex scenarios. Zhang et al. [17]
investigated the application of mobile robots in agriculture, specifically emphasizing full-
coverage path planning for orchard lawnmowers. They proposed a simplified motion
model designed for orchard environments and enhanced the A* algorithm to optimize
the lawnmower’s navigation paths, reducing unnecessary turns during traversal. These
improvements were validated through MATLAB 2020b simulations and field tests, demon-
strating the method’s effectiveness in enhancing navigation efficiency and task allocation
in agricultural settings. Existing methods for controlling drive wheel slip in prototype
machines have limitations, which result in suboptimal cultivation and finishing operations.
To address this issue, Luo et al. [18] proposed a slip rate control method that is adjusted
by both wheel speed and tillage depth. This method was validated using a New Holland
T1404 power shift tractor. This method controls slip within an optimal range while ensuring
maximum operational quality (tillage depth).

Additionally, the following three papers discuss and research improvements in auto-
mated agricultural equipment. Jiang et al. [19] discussed issues related to significant droplet
loss, pesticide wastage, and environmental pollution caused by improper spray parameters.
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They conducted a two-factor, five-level experiment focusing on power gradient and foliar
area volume density (FAVD) to analyze the impact of these factors and the position of
sampling points (considering horizontal distance, forward distance, and height) on droplet
coverage. This research improves sprayer efficiency and establishes a foundation for future
studies on precision spraying. It contributes to more sustainable agricultural practices.
Liu et al. [20] developed an innovative baler feed rate detection model by utilizing power
monitoring of the pickup platform. They utilized advanced signal processing techniques to
mitigate the impact of machine vibration and precisely detect the feed rate of the baler. The
model analyzes the dynamic characteristics of the pickup platform and utilizes frequency
domain filtering to eliminate noise signals. This approach effectively correlates the power
output of the pickup platform with the feed rate. Field experiments have confirmed the
model’s high accuracy and stability. This significantly improves the precision of feed rate
measurements. The model meets the requirements of baler feed rate monitoring in field
operations. Hui et al. [21] addressed low throughput and uneven treatment in plasma
seed equipment. They designed a dielectric barrier discharge vibrating homogeneous
material plasma seed treatment device. They systematically analyzed the structure and
working principles of the vibrating homogeneous material equipment and established
a mathematical model of seed force. Utilizing EDEM 2021 discrete element simulation
software and a three-factor, three-level orthogonal experiment for empirical testing, the
study demonstrated promising improvements in seed vitality, germination, and growth.
This marks a significant advancement in seed treatment technology.

This Special Issue extends its deepest gratitude to all contributors. The papers included
represent a broad range of research in the field of smart agriculture. However, there are
still gaps related to ‘sky’, ‘air’, and ‘water’. In the future, we anticipate more innovative
research in these areas, especially focusing on how technological advancements can address
current challenges and advance the holistic development of smart agriculture.

Conflicts of Interest: The authors declare no conflicts of interest.
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