Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Essential Oils
2.3. Chemical Composition Analysis
2.4. Laboratory Bioassay
2.5. Olfactory Test
2.6. Pot Experiment
2.7. Statistical Analysis
3. Results
3.1. Laboratory Bioassay
3.2. Pot Experiment
3.3. Olfactory Test
3.4. Chemical Analysis of Essential Oils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Zhao, Y.J.; Wang, D.; Yang, J.; Ding, N.; Shi, S.S. Effect of different plants on the growth and reproduction of Thrips flavus (Thysanoptera: Thripidae). Insects 2021, 12, 502. [Google Scholar] [CrossRef] [PubMed]
- Dillon, F.M.; Panagos, C.; Gouveia, G.; Tayyari, F.; Chludil, H.D.; Edison, A.S.; Zavala, J.A. Changes in primary metabolite content may affect thrips feeding preference in soybean crops. Phytochemistry 2024, 220, 114014. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, R.; Seal, D.R.; Schaffer, B.; Liburd, O.E.; Khan, R.A. Within-plant and within-field distribution patterns of asian bean thrips and melon thrips in snap bean. Insects 2023, 14, 175. [Google Scholar] [CrossRef] [PubMed]
- Gu, Z.Y.; Zhang, T.; Long, S.C.; Li, S.; Wang, C.; Chen, Q.C.; Chen, J.; Feng, Z.Y.; Cao, Y. Responses of Thrips hawaiiensis and Thrips flavus populations to elevated CO2 concentrations. J. Econ. Entomol. 2023, 116, 416–425. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ding, N.; Wang, D.; Zhao, Y.J.; Cui, J.; Li, W.B.; Pei, T.H.; Shi, S.S. Effect of temperature on the development and reproduction of Thrips flavus (Thysanoptera: Thripidae). Agric. For. Entomol. 2022, 24, 279–288. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.X.; Chen, G.H.; Li, X.X.; Liu, J.H.; Xu, Z.W.; Zhou, Y.; Wu, D.H.; Zhang, X.M. Insecticide-mediated changes in the population and toxicity of the thrips species, Frankliniella occidentalis (Pergande) and Thrips flavus (Schrank) (Thysanoptera: Thripidae). J. Econ. Entomol. 2024, 117, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.J.; Chen, J.C.; Cao, L.J.; Ma, Z.Z.; Sun, L.N.; Gao, Y.F.; Ma, L.J.; Wang, J.X.; Ren, Y.J.; Cao, H.Q.; et al. Interspecific and intraspecific variation in susceptibility of two co-occurring pest thrips, Frankliniella occidentalis and Thrips palmi, to nine insecticides. Pest Manag. Sci. 2023, 79, 3218–3226. [Google Scholar] [CrossRef] [PubMed]
- Reitz, S.R.; Gao, Y.L.; Kirk, W.D.J.; Hoddle, M.S.; Leiss, K.A.; Funderburk, J.E. Invasion biology, ecology and management of western flower thrips. Annu. Rev. Entomol. 2020, 65, 17–37. [Google Scholar] [CrossRef] [PubMed]
- Kilaso, M. Toxicity for control of Frankliniella schultzei and Selenothrips rubrocinctus (Thysanoptera: Thripidae) of several common synthetic insecticides. Fla. Entomol. 2022, 105, 155–159. [Google Scholar] [CrossRef]
- Monzote, L.; Scull, R.; Cos, P.; Setzer, W.N. Essential oil from piper aduncum: Chemical analysis, antimicrobial assessment, and literature review. Medicines 2017, 4, 49. [Google Scholar] [CrossRef]
- Kheloul, L.; Kellouche, A.; Bréard, D.; Gay, M.; Gadenne, C.; Anton, S. Trade-off between attraction to aggregation pheromones and repellent effects of spike lavender essential oil and its main constituent linalool in the flour beetle Tribolium confusum. Entomol. Exp. Appl. 2019, 167, 826–834. [Google Scholar] [CrossRef]
- Li, Y.; Yu, S.; Huang, J.; Wang, Z.Y.; Zeng, Y.F.; Wu, X.M.; Han, K.Z.; Zhou, H.J.; Wang, G.H.; Yu, Z.W. Study of behavioral, electrophysiological response, and the active compounds of the essential oils from six kinds of flowers against Solenopsis invicta Buren (Hymenoptera: Formicidae). Ind. Crop. Prod. 2022, 188, 115603. [Google Scholar] [CrossRef]
- Hu, Z.J.; Yang, J.W.; Chen, Z.H.; Chang, C.; Ma, Y.P.; Li, N.; Deng, M.; Mao, G.L.; Bao, Q.; Deng, S.Z.; et al. Exploration of clove bud (Syzygium aromaticum) essential oil as a novel attractant against Bactrocera dorsalis (Hendel) and its safety evaluation. Insects 2022, 13, 918. [Google Scholar] [CrossRef]
- Ikbal, C.; Pavela, R. Essential oils as active ingredients of botanical insecticides against aphids. J. Pest Sci. 2019, 92, 971–986. [Google Scholar] [CrossRef]
- Nenaah, G.E.; Alasmari, S.; Almadiy, A.A.; Albogami, B.Z.; Shawer, D.M.; Fadl, A.E. Bio-efficacy of Salvia officinalis essential oil, nanoemulsion and monoterpene components as eco-friendly green insecticides for controlling the granary weevil. Ind. Crop. Prod. 2023, 204, 117298. [Google Scholar] [CrossRef]
- Zhao, F.; Chen, Y.P.; Salmaki, Y.; Drew, B.T.; Wilson, T.C.; Scheen, A.C.; Celep, F.; Bräuchler, C.; Bendiksby, M.; Wang, Q.; et al. An updated tribal classification of Lamiaceae based on plastome phylogenomics. BMC Biol. 2021, 19, 2. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, A.K. Prospective of essential oils of the Genus Mentha as biopesticides: A review. Front. Plant Sci. 2018, 9, 1295. [Google Scholar] [CrossRef]
- Patrignani, F.; Prasad, S.; Novakovic, M.; Marin, P.D.; Bukvicki, D. Lamiaceae in the treatment of cardiovascular diseases. Front. Biosci. 2021, 26, 612–643. [Google Scholar] [CrossRef]
- Ahmed, A.M.A.; Elsayed, A.A.A.; El-Gohary, A.E.; Khalid, K.A. Exogenous l-tyrosine motivates diversities in horsemint essential oil. J. Essent. Oil Bear. Plants. 2022, 25, 601–610. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Tomou, E.M.; Goula, K.; Dimakopoulou, K.; Tzortzakis, N.; Skaltsa, H. Sideritis L. essential oils: A systematic review. Phytochemistry 2023, 209, 113607. [Google Scholar] [CrossRef]
- Chen, Y.J.; Luo, J.X.; Zhang, N.; Yu, W.J.; Jiang, J.X.; Dai, G.H. Insecticidal activities of Salvia hispanica L. essential oil and combinations of their main compounds against the beet armyworm Spodoptera exigua. Ind. Crop. Prod. 2021, 162, 113271. [Google Scholar] [CrossRef]
- Karpinski, T.M. Essential oils of lamiaceae family plants as antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef]
- Bedini, S.; Djebbi, T.; Ascrizzi, R.; Farina, P.; Pieracci, Y.; Echeverría, M.C.; Flamini, G.; Trusendi, F.; Ortega, S.; Chiliquinga, A.; et al. Repellence and attractiveness: The hormetic effect of aromatic plant essential oils on insect behavior. Ind. Crop. Prod. 2024, 210, 118122. [Google Scholar] [CrossRef]
- Fuchs, L.K.; Holland, A.H.; Ludlow, R.A.; Coates, R.J.; Armstrong, H.; Pickett, J.A.; Harwood, J.L.; Scofield, S. Genetic manipulation of biosynthetic pathways in mint. Front. Plant Sci. 2022, 13, 928178. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential oils extracted from different species of the Lamiaceae plant family as prospective bioagents against several detrimental pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef]
- Peschiutta, M.L.; Achimon, F.; Brito, V.D.; Pizzolitto, R.P.; Zygadlo, J.A.; Zunino, M.P. Fumigant toxicity of essential oils against Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae): A systematic review and meta-analysis. J. Pest Sci. 2022, 95, 1037–1056. [Google Scholar] [CrossRef]
- Teke, M.A.; Mutlu, Ç. Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst). J. Plant Dis. Prot. 2021, 128, 109–119. [Google Scholar] [CrossRef]
- Azeem, M.; Iqbal, Z.; Emami, S.N.; Nordlander, G.; Nordenhem, H.; Mozuraitis, R.; El-Seedi, H.R.; Borg-Karlson, A.K. Chemical composition and antifeedant activity of some aromatic plants against pine weevil (Hylobius abietis). Ann. Appl. Biol. 2020, 177, 121–131. [Google Scholar] [CrossRef]
- Galland, C.D.; Glesner, V.; Verheggen, F. Laboratory and field evaluation of a combination of attractants and repellents to control Drosophila suzukii. Entomol. Gen. 2020, 40, 263–272. [Google Scholar] [CrossRef]
- Katerinopoulos, H.E.; Pagona, G.; Afratis, A.; Stratigakis, N.; Roditakis, N. Composition and insect attracting activity of the essential oil of Rosmarinus officinalis. J. Chem. Ecol. 2005, 31, 111–122. [Google Scholar] [CrossRef]
- Barros, F.A.P.; Radünz, M.; Scariot, M.A.; Camargo, T.M.; Nunes, C.F.P.; de Souza, R.R.; Gilson, I.K.; Hackbart, H.C.S.; Radünz, L.L.; Oliveira, J.V.; et al. Efficacy of encapsulated and non-encapsulated thyme essential oil (Thymus vulgaris L.) in the control of Sitophilus zeamais and its effects on the quality of corn grains throughout storage. Crop Prot. 2022, 153, 105885. [Google Scholar] [CrossRef]
- Farag, S.M.; Moustafa, M.A.M.; Fónagy, A.; Kamel, O.; Abdel-Haleem, D.R. Chemical composition of four essential oils and their adulticidal, repellence, and field oviposition deterrence activities against Culex pipiens L. (Diptera: Culicidae). Parasitol. Res. 2024, 123, 110. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.F. Fauna of Economic Insects in China (Thysanoptera); Science Press: Beijing, China, 1997. [Google Scholar]
- Mound, L.A.; Collins, D.W.; Hastings, A. Thysanoptera Britannica et Hibernica–Thrips of the British Isles; Lucidcentral.org, Identic Pty Ltd.: Queensland, Australia, 2018; Available online: https://keys.lucidcentral.org/keys/v3/british_thrips/index.html (accessed on 15 May 2024).
- Brenner, R.; Prischmann-Voldseth, D.A. Influence of a neonicotinoid seed treatment on a nontarget herbivore of soybean (twospotted spider mite) and diet switching by a co-occurring omnivore (western flower thrips). Environ. Entomol. 2020, 49, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Pei, T.H.; Zhao, Y.J.; Wang, S.Y.; Li, X.F.; Sun, C.Q.; Shi, S.S.; Xu, M.L.; Gao, Y. Preliminary study on insecticidal potential and chemical composition of five Rutaceae essential oils against Thrips flavus (Thysanoptera: Thripidae). Molecules 2023, 28, 2998. [Google Scholar] [CrossRef] [PubMed]
- Baviskar, K.P.; Jain, D.V.; Pingale, S.D.; Wagh, S.S.; Gangurde, S.P.; Shardul, S.A.; Dahale, A.R.; Jain, K.S. A review on hyphenated techniques in analytical chemistry. Curr. Anal. Chem. 2022, 18, 956–976. [Google Scholar] [CrossRef]
- Smelcerovic, A.; Djordjevic, A.; Lazarevic, J.; Stojanovic, G. Recent advances in analysis of essential oils. Curr. Anal. Chem. 2013, 9, 61–70. [Google Scholar] [CrossRef]
- Huang, X.; Ge, S.Y.; Liu, J.H.; Wang, Y.; Liang, X.Y.; Yuan, H.B. Chemical composition and bioactivity of the essential oil from Artemisia lavandulaefolia (Asteraceae) on Plutella xylostella (Lepidoptera: Plutellidae). Fla. Entomol. 2018, 101, 44–48. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Sun, X.L.; Xin, Z.J.; Luo, Z.X.; Gao, Y.; Bian, L.; Chen, Z.M. Identification and field evaluation of non-host volatiles disturbing host location by the tea geometrid, Ectropis obliqua. J. Chem. Ecol. 2013, 39, 1284–1296. [Google Scholar] [CrossRef]
- Tang, Q.Y.; Zhang, C.X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 2013, 20, 254–260. [Google Scholar] [CrossRef]
- Zouirech, O.; El Moussaoui, A.; Saghrouchni, H.; Gaafar, A.R.Z.; Nafidi, H.A.; Bourhia, M.; Khallouki, F.; Lyoussi, B.; Derwich, E. Prefatory in silico studies and in vitro insecticidal effect of Nigella sativa (L.) essential oil and its active compound (carvacrol) against the Callosobruchus maculatus adults (Fab), a major pest of chickpea. Open Chem. 2023, 21, 20230133. [Google Scholar] [CrossRef]
- Elumalai, K.; Krishnappa, K.; Pandiyan, J.; Alharbi, N.S.; Kadaikunnan, S.; Khaled, J.M.; Barnard, D.R.; Vijayakumar, N.; Govindarajan, M. Characterization of secondary metabolites from Lamiaceae plant leaf essential oil: A novel perspective to combat medical and agricultural pests. Physiol. Mol. Plant Pathol. 2022, 117, 101752. [Google Scholar] [CrossRef]
- Palazzolo, E.; Laudicina, V.A.; Germanà, M.A. Current and potential use of citrus essential oils. Curr. Org. Chem. 2013, 17, 3042–3049. [Google Scholar] [CrossRef]
- Yang, X.; Han, H.; Li, B.L.; Zhang, D.Y.; Zhang, Z.L.; Xie, Y.J. Fumigant toxicity and physiological effects of spearmint (Mentha spicata, Lamiaceae) essential oil and its major constituents against Reticulitermes dabieshanensis. Ind. Crop. Prod. 2021, 171, 113894. [Google Scholar] [CrossRef]
- Yeom, H.J.; Lee, H.R.; Lee, S.C.; Lee, J.E.; Seo, S.M.; Park, I.K. Insecticidal activity of lamiaceae plant essential oils and their constituents against Blattella germanica L. adult. J. Econ. Entomol. 2018, 111, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Stepanycheva, E.; Petrova, M.; Chermenskaya, T.; Pavela, R. Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environ. Sci. Pollut. Res. 2019, 26, 30885–30892. [Google Scholar] [CrossRef] [PubMed]
- Topuz, E. Insecticidal activity of Mentha pulegium essential oil against Thrips tabaci, Bemisia tabaci and Tuta absoluta adults. Int. J. Trop. Insect Sci. 2023, 43, 1475–1483. [Google Scholar] [CrossRef]
- Yi, C.G.; Choi, B.R.; Park, H.M.; Park, C.G.; Ahn, Y.J. Fumigant toxicity of plant essential oils to Thrips palmi (Thysanoptera: Thripidae) and Orius strigicollis (Heteroptera: Anthocoridae). J. Econ. Entomol. 2006, 99, 1733–1738. [Google Scholar] [CrossRef] [PubMed]
- Pumnuan, J.; Insung, A. Fumigant toxicity of plant essential oils in controlling thrips, Frankliniella schultzei (Thysanoptera: Thripidae) and mealybug, Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae). J. Entomol. 2016, 40, 1–10. [Google Scholar] [CrossRef]
- Ni, Z.J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.Z.; Zhang, J.G.; Hu, F.; Wei, Z.J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Russo, A.; Bruno, M.; Avola, R.; Cardile, V.; Rigano, D. Chamazulene-Rich Artemisia arborescens essential oils affect the cell growth of human melanoma cells. Plants 2020, 9, 1000. [Google Scholar] [CrossRef]
- da Silva, W.M.F.; Kringel, D.H.; de Souza, E.J.D.; Zavareze, E.D.; Dias, A.R.G. Basil essential oil: Methods of extraction, chemical composition, biological activities, and food applications. Food Bioprocess Technol. 2022, 15, 1–27. [Google Scholar] [CrossRef]
- Saleh, I.A.; El Gendy, A.N.G.; Afifi, M.A.; El-Seedi, H.R. Microwave extraction of essential oils from Senecio serpens GD rowly and comparison with conventional hydro-distillation method. J. Essent. Oil Bear. Plants. 2019, 22, 955–961. [Google Scholar] [CrossRef]
- Passos, B.G.; de Albuquerque, R.; Muñoz-Acevedo, A.; Echeverria, J.; Llaure-Mora, A.M.; Ganoza-Yupanqui, M.L.; Rocha, L. Essential oils from Ocotea species: Chemical variety, biological activities and geographic availability. Fitoterapia 2022, 156, 105065. [Google Scholar] [CrossRef]
- Kaur, H.; Bhardwaj, U.; Kaur, R. Cymbopogon nardus essential oil: A comprehensive review on its chemistry and bioactivity. J. Essent. Oil Res. 2021, 33, 205–220. [Google Scholar] [CrossRef]
- Ayub, M.A.; Goksen, G.; Fatima, A.; Zubair, M.; Abid, M.A.; Starowicz, M. Comparison of conventional extraction techniques with superheated steam distillation on chemical characterization and biological activities of Syzygium aromaticum L. essential oil. Separations 2023, 10, 27. [Google Scholar] [CrossRef]
- You, C.X.; Yang, K.; Wu, Y.; Zhang, W.J.; Wang, Y.; Geng, Z.F.; Chen, H.P.; Jiang, H.Y.; Du, S.S.; Deng, Z.W.; et al. Chemical composition and insecticidal activities of the essential oil of Perilla frutescens (L.) Britt. aerial parts against two stored product insects. Eur. Food Res. Technol. 2014, 239, 481–490. [Google Scholar] [CrossRef]
- Eliopoulos, P.A.; Hassiotis, C.N.; Andreadis, S.S.; Porichi, A.E.E. Fumigant toxicity of essential oils from basil and spearmint against two major pyralid pests of stored products. J. Econ. Entomol. 2015, 108, 805–810. [Google Scholar] [CrossRef]
- Shivaramu, S.; Parepally, S.K.; Byregowda, V.Y.; Damodaram, K.J.P.; Bhatnagar, A.; Naga, K.C.; Sharma, S.; Kumar, M.; Kempraj, V. Estragole, a potential attractant of the winged melon aphid Aphis gossypii. Pest Manag. Sci. 2023, 79, 2365–2371. [Google Scholar] [CrossRef]
- Sadeh, D.; Nitzan, N.; Shachter, A.; Chaimovitsh, D.; Dudai, N.; Ghanim, M. Whitefly attraction to rosemary (Rosmarinus officinialis L.) is associated with volatile composition and quantity. PLoS ONE 2017, 12, e0177483. [Google Scholar] [CrossRef]
- Blythe, E.K.; Tabanca, N.; Demirci, B.; Kendra, P.E. Chemical composition of essential oil from Tetradenia riparia and its attractant activity for mediterranean fruit fly, Ceratitis capitata. Nat. Prod. Commun. 2020, 15, 6. [Google Scholar] [CrossRef]
- Feng, Y.X.; Wang, Y.; You, C.X.; Guo, S.S.; Du, Y.S.; Du, S.S. Bioactivities of patchoulol and phloroacetophenone from Pogostemon cablin essential oil against three insects. Int. J. Food Prop. 2019, 22, 1365–1374. [Google Scholar] [CrossRef]
- van Tol, R.; James, D.E.; de Kogel, W.J.; Teulon, D.A.J. Plant odours with potential for a push-pull strategy to control the onion thrips, Thrips tabaci. Entomol. Exp. Appl. 2007, 122, 69–76. [Google Scholar] [CrossRef]
- Zvaríková, M.; Masarovic, R.; Zvarík, M.; Bagová, K.; Procházková, L.; Prokop, P.; Fedor, P. The effect of plant essential oils on the Banded Greenhouse Thrips (Hercinothrips femoralis O. M. Reuter 1891) (Thysanoptera: Thripidae: Panchaetothripinae). J. Plant Dis. Prot. 2023, 130, 747–755. [Google Scholar] [CrossRef]
- Koschier, E.H.; Sedy, K.A. Labiate essential oils affecting host selection and acceptance of Thrips tabaci lindeman. Crop Prot. 2003, 22, 929–934. [Google Scholar] [CrossRef]
- Li, X.W.; Zhang, Z.J.; Hafeez, M.; Huang, J.; Zhang, J.M.; Wang, L.K.; Lu, Y.B. Rosmarinus officinialis L. (Lamiales: Lamiaceae), a promising repellent plant for Thrips Management. J. Econ. Entomol. 2021, 114, 131–141. [Google Scholar] [CrossRef]
- Sanei-Dehkordi, A.; Hatami, S.; Zarenezhad, E.; Montaseri, Z.; Osanloo, M. Efficacy of nanogels containing carvacrol, cinnamaldehyde, thymol, and a mix compared to a standard repellent against Anopheles stephensi. Ind. Crop. Prod. 2022, 189, 115883. [Google Scholar] [CrossRef]
- Liu, S.Y.; Zhao, J.; Hamada, C.; Cai, W.L.; Khan, M.; Zou, Y.L.; Hua, H.X. Identification of attractants from plant essential oils for Cyrtorhinus lividipennis, an important predator of rice planthoppers. J. Pest Sci. 2019, 92, 769–780. [Google Scholar] [CrossRef]
- Diabate, S.; Martin, T.; Murungi, L.K.; Fiaboe, K.K.M.; Subramanian, S.; Wesonga, J.; Deletre, E. Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. J. Appl. Entomol. 2019, 143, 855–866. [Google Scholar] [CrossRef]
- López, S.B.; López, M.L.; Aragón, L.M.; Tereschuk, M.L.; Slanis, A.C.; Feresin, G.E.; Zygadlo, J.A.; Tapia, A.A. Composition and anti-insect activity of essential oils from Tagetes L. Species (Asteraceae, Helenieae) on Ceratitis capitata Wiedemann and Triatoma infestans Klug. J. Agric. Food Chem. 2011, 59, 5286–5292. [Google Scholar] [CrossRef]
- Dukic, N.; Markovic, T.; Mikic, S.; Cutovic, N. Repellent activity of basil, clary sage and celery essential oils on Tribolium castaneum (Herbst). J. Stored Prod. Res. 2023, 103, 102150. [Google Scholar] [CrossRef]
- Jesser, E.; Yeguerman, C.; Stefanazzi, N.; Gomez, R.; Murray, A.P.; Ferrero, A.A.; Werdin-González, J.O. Ecofriendly approach for the control of a common insect pest in the food industry, combining polymeric nanoparticles and post-application temperatures. J. Agric. Food Chem. 2020, 68, 5951–5958. [Google Scholar] [CrossRef] [PubMed]
- Chatzidaki, M.D.; Demisli, S.; Zingkou, E.; Liggri, P.G.V.; Papachristos, D.P.; Balatsos, G.; Karras, V.; Nallet, F.; Michaelakis, A.; Sotiropoulou, G.; et al. Essential oil-in-water microemulsions for topical application: Structural study, cytotoxic effect and insect repelling activity. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 654, 10. [Google Scholar] [CrossRef]
- Kotronia, M.; Kavetsou, E.; Loupassaki, S.; Kikionis, S.; Vouyiouka, S.; Detsi, A. Encapsulation of oregano (Origanum onites L.) essential oil in -cyclodextrin (-CD): Synthesis and characterization of the inclusion complexes. Bioengineering 2017, 4, 74. [Google Scholar] [CrossRef] [PubMed]
- Caetano, A.R.S.; Cardoso, M.D.; Haddi, K.; Campolina, G.A.; De Souza, B.M.; Da SilvaLunguinho, A.; De Souza, L.; Nelson, D.L.; De Oliveira, J.E. Rosmarinus officinalis essential oil incorporated into nanoparticles as an efficient insecticide against Drosophila suzukii (Diptera: Drosophilidae). Austral Entomol. 2022, 61, 265–272. [Google Scholar] [CrossRef]
- Gebaly, A.S.E.; Sofy, A.R.; Hmed, A.A.; Youssef, A.M. Combination of nanoparticles (NPs) and essential oils (EOs) as promising alternatives to non-effective antibacterial, antifungal and antiviral agents: A review. Biocatal. Agric. Biotechnol. 2024, 57, 103067. [Google Scholar] [CrossRef]
- Rodrigues, A.B.L.; Martins, R.L.; Rabelo, É.; Tomazi, R.; Santos, L.L.; Brandao, L.B.; Faustino, C.G.; Farias, A.L.F.; dos Santos, C.B.R.; Cantuária, P.D.; et al. Development of nano-emulsions based on Ayapana triplinervis essential oil for the control of Aedes aegypti larvae. PLoS ONE 2021, 16, e0254225. [Google Scholar] [CrossRef] [PubMed]
- Indriyani, N.N.; Al Anshori, J.; Permadi, N.; Nurjanah, S.; Julaeha, E. Bioactive components and their activities from different parts of Citrus aurantifolia (Christm.) swingle for food development. Foods 2023, 12, 2036. [Google Scholar] [CrossRef]
- Koschier, E.H. Essential oil compounds for thrips control—A review. Nat. Prod. Commun. 2008, 3, 1171–1182. [Google Scholar] [CrossRef]
Essential Oils | 95% Confidence Interval | LC50 (mg/mL) | Regression Equation | Correlation Coefficient | χ2 | df |
---|---|---|---|---|---|---|
Perilla leaf oil | 0.35~0.51 | 0.43 | y = 6.2134 + 3.3226x | 0.89 | 7.03 | 3 |
Marjoram oil | 0.17~0.60 | 0.41 | y = 6.5178 + 3.9312x | 0.88 | 17.87 | 3 |
Clary sage oil | 0.35~0.48 | 0.42 | y = 6.1932 + 4.1952x | 0.99 | 0.94 | 3 |
Spearmint oil | 0.47~0.62 | 0.54 | y = 6.1934 + 4.4029x | 0.94 | 7.41 | 3 |
30% thiamethoxam | 0.0053~0.0095 | 0.0077 | y = 10.4813 + 2.5941x | 0.92 | 3.1347 | 3 |
No. | Retention Time (min) | Retention Index | Compounds | Relative Percentage (%) |
---|---|---|---|---|
1 | 8.14 | 1085 | linalool | 24.52 |
2 | 3.308 | 843 | leaf alcohol | 0.26 |
3 | 7.637 | 1069 | methyl benzoate | 2.95 |
4 | 9.765 | 1145 | benzyl acetate | 16.42 |
5 | 11.575 | 1215 | ethyl phenylacetate | 4.31 |
6 | 11.96 | 1240 | nerol | 0.57 |
7 | 13.012 | 1306 | methyl aminobenzoate | 2.95 |
8 | 13.135 | 1317 | 2-tert-butylcyclohexanol | 3.09 |
9 | 13.307 | 1332 | phenol, 2-methoxy-3-(2-propenyl) | 1.64 |
10 | 13.579 | 1355 | 4-tert-butylcyclohexanol | 5.78 |
11 | 13.758 | 1370 | 2,6,6-trimethyl-2,4-cycloheptadien-1-one | 0.29 |
12 | 15.226 | 1494 | butylated hydroxytoluene | 2.35 |
13 | 16.93 | 1618 | methyl dihydrojasmonate | 4.65 |
14 | 17.368 | 1645 | cis-3-hexenyl salicylate | 0.94 |
15 | 18.666 | 1720 | α-hexylcinnamaldehyde | 14.28 |
16 | 19.198 | 1747 | 1-phenyl-1-nonen-3-one | 0.67 |
Number | Retention Time (min) | Retention Index | Compounds | Relative Percentage (%) |
---|---|---|---|---|
1 | 14.557 | 1438 | α-guaiene | 0.44 |
2 | 15.348 | 1504 | α-bulnesene | 0.57 |
3 | 17.518 | 1654 | patchouli alcohol | 1.10 |
4 | 6.142 | 1013 | p-cymene | 2.23 |
5 | 4.554 | 933 | α-pinene | 1.24 |
6 | 5.261 | 973 | β-pinene | 0.37 |
7 | 14.357 | 1420 | bicyclo[5.2.0]nonane, 4-ethenyl-4,8,8-trimethyl-2-methylene- | 0.45 |
8 | 6.336 | 1021 | 1,8-cineole | 7.31 |
9 | 10.482 | 1171 | terpinen-4-ol | 1.12 |
10 | 10.731 | 1179 | α-terpineol | 2.52 |
11 | 12.056 | 1246 | linalyl acetate | 20.07 |
12 | 13.476 | 1346 | geranyl acetate | 0.52 |
13 | 8.132 | 1085 | linalool | 15.18 |
14 | 9.286 | 1126 | DL-camphor | 4.13 |
15 | 11.479 | 1208 | 7-methoxy-3,7-dimethyloctanal | 1.20 |
16 | 13.382 | 1338 | linalyl anthranilate | 0.34 |
17 | 13.687 | 1364 | neryl acetate | 0.6 |
18 | 18.819 | 1728 | benzyl benzoate | 11.87 |
19 | 20.475 | 1813 | isopropyl myristate | 28.74 |
Number | Retention Time (min) | RI | Compounds | Relative Percentage (%) |
---|---|---|---|---|
1 | 6.139 | 1013 | p-cymene | 13.25 |
2 | 6.375 | 1023 | (+)-limonene | 32.44 |
3 | 7.097 | 1051 | γ-terpinene | 23.92 |
4 | 7.956 | 1079 | terpinolene | 10.53 |
5 | 6.783 | 1039 | 1,3,6-octatriene, 3,7-dimethyl-, (z)- | 2.34 |
6 | 7.2 | 1054 | 3-carene | 0.61 |
7 | 7.33 | 1059 | cis-linalool oxide | 0.59 |
8 | 7.608 | 1068 | (-)-fenchone | 0.70 |
9 | 11.87 | 1234 | cinnamaldehyde | 15.61 |
Number. | Retention Time (min) | RI | Compounds | Relative Percentage (%) |
---|---|---|---|---|
1 | 4.557 | 934 | α-pinene | 1.05 |
2 | 6.373 | 1023 | (+)-limonene | 26.22 |
3 | 5.263 | 973 | β-pinene | 1.19 |
4 | 10.382 | 1167 | 3-p-menthol | 1.20 |
5 | 11.614 | 1217 | (+)-carvone | 70.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Pei, T.; Zhao, Y.; Zhou, C.; Liu, B.; Shi, S.; Xu, M.-L.; Gao, Y. Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus. Agronomy 2024, 14, 1212. https://doi.org/10.3390/agronomy14061212
Niu Y, Pei T, Zhao Y, Zhou C, Liu B, Shi S, Xu M-L, Gao Y. Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus. Agronomy. 2024; 14(6):1212. https://doi.org/10.3390/agronomy14061212
Chicago/Turabian StyleNiu, Yulong, Tianhao Pei, Yijin Zhao, Changjun Zhou, Bing Liu, Shusen Shi, Meng-Lei Xu, and Yu Gao. 2024. "Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus" Agronomy 14, no. 6: 1212. https://doi.org/10.3390/agronomy14061212
APA StyleNiu, Y., Pei, T., Zhao, Y., Zhou, C., Liu, B., Shi, S., Xu, M. -L., & Gao, Y. (2024). Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus. Agronomy, 14(6), 1212. https://doi.org/10.3390/agronomy14061212