Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information
Abstract
:1. Introduction
- (1)
- To validate the remote sensing model with measurements from an EC flux tower in terms of quantity and seasonal and interannual dynamics.
- (2)
- To compare the model at different spatial and temporal resolutions using Sentinel-2 and MODIS data.
2. Materials and Methods
2.1. Study Area
2.2. Flux Tower Data
2.3. Photosynthetically Active Radiation from the Top of the Atmosphere (PARTOA)
2.4. Remote Sensing Data
2.4.1. MODIS
2.4.2. Sentinel-2
2.5. Model Construction
2.6. Statistical Methods
3. Results
3.1. Dynamics of GPP_T in the Mediterranean Grassland
3.2. MOD17A2HGF v 6.1 Gross Primary Productivity (GPP) Product (MODIS_GPP)
3.3. eLUE Models Using MODIS
3.4. Footprint Estimation for Sentinel-2
3.5. eLUE Models Using Sentinel-2
3.6. Summary of the Models
4. Discussion
4.1. Overall Discussion
4.2. Study Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef]
- Nogueira, C.; Bugalho, M.N.; Pereira, J.S.; Caldeira, M.C. Extended Autumn Drought, but Not Nitrogen Deposition, Affects the Diversity and Productivity of a Mediterranean Grassland. Environ. Exp. Bot. 2017, 138, 99–108. [Google Scholar] [CrossRef]
- Hector, A.; Bagchi, R. Biodiversity and Ecosystem Multifunctionality. Nature 2007, 448, 188–190. [Google Scholar] [CrossRef]
- Bugalho, M.N.; Abreu, J.M.F. The Multifunctional Role of Grasslands. In Sustainable Mediterranean Grasslands and Their Multi-Functions; Porqueddu, C., Tavares de Sousa, M.M., Eds.; HAL: Lyon, France, 2008; pp. 25–30. [Google Scholar]
- Papanastasis, V.P.; Mansat, P. Grasslands and Related Forage Resources in Mediterranean Areas. In Proceedings of the 16th European Grasslands Federation, Grado, Italy, 15–19 September 1996; pp. 47–57. [Google Scholar]
- Porqueddu, C.; Ates, S.; Louhaichi, M.; Kyriazopoulos, A.P.; Moreno, G.; del Pozo, A.; Ovalle, C.; Ewing, M.A.; Nichols, P.G.H. Grasslands in “Old World” and “New World” Mediterranean-Climate Zones: Past Trends, Current Status and Future Research Priorities. Grass Forage Sci. 2016, 71, 1–35. [Google Scholar] [CrossRef]
- San Miguel, A. Pastos Naturales Españoles. Caracterización, Aprovechamiento y Posibilidades de Mejora; Fundación Conde del Valle de Salazar–Mundi Prensa: Madrid, Spain, 2001. [Google Scholar]
- Marcolla, B.; Rödenbeck, C.; Cescatti, A. Patterns and Controls of Inter-Annual Variability in the Terrestrial Carbon Budget. Biogeosciences 2017, 14, 3815–3829. [Google Scholar] [CrossRef]
- Mendes, K.R.; Campos, S.; da Silva, L.L.; Mutti, P.R.; Ferreira, R.R.; Medeiros, S.S.; Perez-Marin, A.M.; Marques, T.V.; Ramos, T.M.; de Lima Vieira, M.M.; et al. Seasonal Variation in Net Ecosystem CO2 Exchange of a Brazilian Seasonally Dry Tropical Forest. Sci. Rep. 2020, 10, 9454. [Google Scholar] [CrossRef]
- Stoy, P.C.; Katul, G.G.; Siqueira, M.B.S.; Juang, J.-Y.; McCarthy, H.R.; Kim, H.-S.; Oishi, A.C.; Oren, R. Variability in Net Ecosystem Exchange from Hourly to Inter-Annual Time Scales at Adjacent Pine and Hardwood Forests: A Wavelet Analysis. Tree Physiol. 2005, 25, 887–902. [Google Scholar] [CrossRef]
- Piao, S.; Wang, X.; Wang, K.; Li, X.; Bastos, A.; Canadell, J.G.; Ciais, P.; Friedlingstein, P.; Sitch, S. Interannual Variation of Terrestrial Carbon Cycle: Issues and Perspectives. Glob. Chang. Biol. 2020, 26, 300–318. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skeg, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.-O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, S.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Cramer, W.; Bondeau, A.; Woodward, F.I.; Prentice, I.C.; Betts, R.A.; Brovkin, V.; Cox, P.M.; Fisher, V.; Foley, J.A.; Friend, A.D.; et al. Global Response of Terrestrial Ecosystem Structure and Function to CO2 and Climate Change: Results from Six Dynamic Global Vegetation Models. Ecosyste Dyn. CO2 Clim. Change 2001, 7, 357–373. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Philip, A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.; et al. Assesing the Response of Terrestrial Ecosystems to Potential Changes in Precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Heyder, U.; Schaphoff, S.; Gerten, D.; Lucht, W. Risk of Severe Climate Change Impact on the Terrestrial Biosphere. Environ. Res. Lett. 2011, 6, 034036. [Google Scholar] [CrossRef]
- de Leeuw, J.; Rizayeva, A.; Namazov, E.; Bayramov, E.; Marshall, M.T.; Etzold, J.; Neudert, R. Application of the MODIS MOD 17 Net Primary Production Product in Grassland Carrying Capacity Assessment. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 66–76. [Google Scholar] [CrossRef]
- Maselli, F.; Argenti, G.; Chiesi, M.; Angeli, L.; Papale, D. Simulation of Grassland Productivity by the Combination of Ground and Satellite Data. Agric. Ecosyst. Environ. 2013, 165, 163–172. [Google Scholar] [CrossRef]
- Sabzchi-Dehkharghani, H.; Biswas, A.; Meshram, S.G.; Majnooni-Heris, A. Estimating Gross and Net Primary Productivities Using Earth Observation Products: A Review. Environ. Model. Assess. 2023, 29, 179–200. [Google Scholar] [CrossRef]
- Recuero, L.; Maila, L.; Cicuéndez, V.; Sáenz, C.; Litago, J.; Tornos, L.; Merino-de-Miguel, S.; Palacios-Orueta, A. Mapping Cropland Intensification in Ecuador through Spectral Analysis of MODIS NDVI Time Series. Agronomy 2023, 13, 2329. [Google Scholar] [CrossRef]
- Palacios-Orueta, A.; Huesca, M.; Whiting, M.L.; Litago, J.; Khanna, S.; Garcia, M.; Ustin, S.L. Derivation of Phenological Metrics by Function Fitting to Time-Series of Spectral Shape Indexes AS1 and AS2: Mapping Cotton Phenological Stages Using MODIS Time Series. Remote Sens. Environ. 2012, 126, 148–159. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Zhang, C.; Ju, W.; Wang, X.; Chen, Z.; Fang, B. Improved Modeling of Gross Primary Productivity (GPP) by Better Representation of Plant Phenological Indicators from Remote Sensing Using a Process Model. Ecol. Indic. 2018, 88, 332–340. [Google Scholar] [CrossRef]
- Song, C.; Dannenberg, M.P.; Hwang, T. Optical Remote Sensing of Terrestrial Ecosystem Primary Productivity. Prog. Phys. Geogr. Earth Environ. 2013, 37, 834–854. [Google Scholar] [CrossRef]
- Kanniah, K.D.; Beringer, J.; Hutley, L.B. Environmental Controls on the Spatial Variability of Savanna Productivity in the Northern Territory, Australia. Agric. For. Meteorol. 2011, 151, 1429–1439. [Google Scholar] [CrossRef]
- Monteith, J.L. Solar Radiation and Productivity in Tropical Ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Verma, S.B.; Rundquist, D.C.; Arkebauer, T.J.; Keydan, G.; Leavitt, B.; Ciganda, V.; Burba, G.G.; Suyker, A.E. Relationship between Gross Primary Production and Chlorophyll Content in Crops: Implications for the Synoptic Monitoring of Vegetation Productivity. J. Geophys. Res. Atmos. 2006, 111, 1984–2012. [Google Scholar] [CrossRef]
- Peng, Y.; Gitelson, A.A.; Sakamoto, T. Remote Estimation of Gross Primary Productivity in Crops Using MODIS 250 m Data. Remote Sens. Environ. 2013, 128, 186–196. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Yu, Q.; Restrepo-Coupe, N.; Beringer, J.; Hutley, L.B.; Kanniah, K.D.; Cleverly, J.; Eamus, D. Parameterization of an Ecosystem Light-Use-Efficiency Model for Predicting Savanna GPP Using MODIS EVI. Remote Sens. Environ. 2014, 154, 253–271. [Google Scholar] [CrossRef]
- Pabon-Moreno, D.E.; Migliavacca, M.; Reichstein, M.; Mahecha, M.D. On the Potential of Sentinel-2 for Estimating Gross Primary Production. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Ma, X.; Mahecha, M.D.; Migliavacca, M.; van der Plas, F.; Benavides, R.; Ratcliffe, S.; Kattge, J.; Richter, R.; Musavi, T.; Baeten, L.; et al. Inferring Plant Functional Diversity from Space: The Potential of Sentinel-2. Remote Sens. Environ. 2019, 233, 111368. [Google Scholar] [CrossRef]
- Clementini, C.; Pomente, A.; Latini, D.; Kanamaru, H.; Vuolo, M.R.; Heureux, A.; Fujisawa, M.; Schiavon, G.; Frate, F. Del Long-Term Grass Biomass Estimation of Pastures from Satellite Data. Remote Sens. 2020, 12, 2160. [Google Scholar] [CrossRef]
- Cicuéndez, V.; Litago, J.; Huesca, M.; Rodriguez-Rastrero, M.; Recuero, L.; Merino-de-Miguel, S.; Palacios-Orueta, A. Assessment of the Gross Primary Production Dynamics of a Mediterranean Holm Oak Forest by Remote Sensing Time Series Analysis. Agrofor. Syst. 2015, 89, 491–510. [Google Scholar] [CrossRef]
- Cao, R.; Chen, J.; Shen, M.; Tang, Y. An Improved Logistic Method for Detecting Spring Vegetation Phenology in Grasslands from MODIS EVI Time-Series Data. Agric. For. Meteorol. 2015, 200, 9–20. [Google Scholar] [CrossRef]
- Sakowska, K.; Juszczak, R.; Gianelle, D. Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission. J. Sens. 2016, 2016, 4612809. [Google Scholar] [CrossRef]
- Misra, G.; Cawkwell, F.; Wingler, A. Status of Phenological Research Using Sentinel-2 Data: A Review. Remote Sens. 2020, 12, 2760. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Sharma, R.C. Dominant Species-Physiognomy-Ecological (DSPE) System for the Classification of Plant Ecological Communities from Remote Sensing Images. Ecologies 2022, 3, 323–335. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Siachalou, S.; Patias, P. Assessing the Relationships between Growing Stock Volume and Sentinel-2 Imagery in a Mediterranean Forest Ecosystem. Remote Sens. Lett. 2017, 8, 508–517. [Google Scholar] [CrossRef]
- Cerasoli, S.; Campagnolo, M.; Faria, J.; Nogueira, C.; Da Conceição Caldeira, M. On Estimating the Gross Primary Productivity of Mediterranean Grasslands under Different Fertilization Regimes Using Vegetation Indices and Hyperspectral Reflectance. Biogeosciences 2018, 15, 5455–5471. [Google Scholar] [CrossRef]
- Gómez-Giráldez, P.J.; Aguilar, C.; Caño, A.B.; García-Moreno, A.; González-Dugo, M.P. Remote Sensing Estimation of Net Primary Production as Monitoring Indicator of Holm Oak Savanna Management. Ecol. Indic. 2019, 106, 1055260. [Google Scholar] [CrossRef]
- Spinosa, A.; Fuentes-Monjaraz, M.A.; El Serafy, G. Assessing the Use of Sentinel-2 Data for Spatio-Temporal Upscaling of Flux Tower Gross Primary Productivity Measurements. Remote Sens. 2023, 15, 562. [Google Scholar] [CrossRef]
- Falge, E.; Baldocchi, D.; Tenhunen, J.; Aubinet, M.; Bakwin, P.; Berbigier, P.; Bernhofer, C.; Burba, G.; Clement, R.; Davis, K.J.; et al. Seasonality of Ecosystem Respiration and Gross Primary Production as Derived from FLUXNET Measurements. Agric. For. Meteorol. 2002, 113, 53–74. [Google Scholar] [CrossRef]
- Baldocchi, D. Measuring Fluxes of Trace Gases and Energy between Ecosystems and the Atmosphere—The State and Future of the Eddy Covariance Method. Glob. Chang. Biol. 2014, 20, 3600–3609. [Google Scholar] [CrossRef]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates; LI-Cor Biosciences: Lincoln, NE, USA, 2013. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Rivas-Martínez, S. Mapa de Las Series de Vegetación de Madrid; Diputacion de Madrid: Madrid, Spain, 1982. [Google Scholar]
- GuMNet. Available online: https://www.ucm.es/Gumnet/ (accessed on 20 September 2023).
- Arrillaga, J.A.; Yagüe, C.; Román-Cascón, C.; Sastre, M.; Jiménez, M.A.; Maqueda, G.; Vilà-Guerau de Arellano, J. From Weak to Intense Downslope Winds: Origin, Interaction with Boundary-Layer Turbulence and Impact on CO2 Variability. Atmos. Chem. Phys. 2019, 19, 4615–4635. [Google Scholar] [CrossRef]
- Román-Cascón, C.; Yagüe, C.; Arrillaga, J.A.; Lothon, M.; Pardyjak, E.R.; Lohou, F.; Inclán, R.M.; Sastre, M.; Maqueda, G.; Derrien, S.; et al. Comparing Mountain Breezes and Their Impacts on CO2 Mixing Ratios at Three Contrasting Areas. Atmos. Res. 2019, 221, 111–126. [Google Scholar] [CrossRef]
- Mauder, M.; Foken, T. Impact of Post-Field Data Processing on Eddy Covariance Flux Estimates and Energy Balance Closure. Meteorol. Z. 2006, 15, 597–609. [Google Scholar] [CrossRef]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the Separation of Net Ecosystem Exchange into Assimilation and Ecosystem Respiration: Review and Improved Algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Lasslop, G.; Reichstein, M.; Papale, D.; Richardson, A.D.; Arneth, A.; Barr, A.; Stoy, P.; Wohlfahrt, G. Separation of Net Ecosystem Exchange into Assimilation and Respiration Using a Light Response Curve Approach: Critical Issues and Global Evaluation. Glob. Chang. Biol. 2010, 16, 187–208. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- Monteith, J.; Unsworth, M. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 4th ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Running, S.; Zhao, M. MODIS/Terra Gross Primary Productivity Gap-Filled 8-Day L4 Global 500 m SIN Grid V061. NASA EOSDIS Land Processes Distributed Active Archive Center. 2021. Available online: https://doi.org/10.5067/MODIS/MOD17A2HGF.061 (accessed on 19 May 2024).
- AppEEARS Team. Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). Ver. 3.54. NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, SD, USA. 2024. Available online: https://appeears.earthdatacloud.nasa.gov (accessed on 19 May 2024).
- Sáenz, C.; Cicuéndez, V.; García, G.; Madruga, D.; Recuero, L.; Bermejo-Saiz, A.; Litago, J.; De la Calle Pérez, I.; Palacios-Orueta, A. New Insights on Information Content of NDVI Sentinel-2 Time Series to Assess Vegetation Dynamics in Agricultural and Forests Scenarios. Information Enhancement by Interpolation and Filtering Procedures. Submitt. Remote Sens. 2024; In press. [Google Scholar]
- AEMET. Available online: https://www.aemet.es/es/portada (accessed on 18 May 2024).
- Baldocchi, D.; Tang, J.; Xu, L. How Switches and Lags in Biophysical Regulators Affect Spatial-Temporal Variation of Soil Respiration in an Oak-Grass Savanna. J. Geophys. Res. Biogeosci. 2006, 111, G2. [Google Scholar] [CrossRef]
- Jongen, M.; Pereira, J.S.; Aires, L.M.I.; Pio, C.A. The Effects of Drought and Timing of Precipitation on the Inter-Annual Variation in Ecosystem-Atmosphere Exchange in a Mediterranean Grassland. Agric. For. Meteorol. 2011, 151, 595–606. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Davy, A.J. Response of Mediterranean Grassland Species to Changing Rainfall. J. Ecol. 1991, 79, 925. [Google Scholar] [CrossRef]
- Huang, X.; Zheng, Y.; Zhang, H.; Lin, S.; Liang, S.; Li, X.; Ma, M.; Yuan, W. High Spatial Resolution Vegetation Gross Primary Production Product: Algorithm and Validation. Sci. Remote Sens. 2022, 5, 100049. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial Primary Production for the Conterminous United States Derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- Endsley, K.A.; Zhao, M.; Kimball, J.S.; Devadiga, S. Continuity of Global MODIS Terrestrial Primary Productivity Estimates in the VIIRS Era Using Model-Data Fusion. J. Geophys. Res. Biogeosci. 2023, 128, e2023JG007457. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Palacios-Orueta, A.; Khanna, S.; Litago, J.; Whiting, M.L.; Ustin, S.L. Assessment of NDVI and NDWI Spectral Indices Using MODIS Time Series Analysis and Development of a New Spectral Index Based on MODIS Shortwave Infrared Bands. In Proceedings of the 1st International Conference of Remote Sensing and Geoinformation Processing, Trier, Germany, 7–9 September 2006; pp. 207–209. [Google Scholar]
- Lin, X.; Chen, B.; Chen, J.; Zhang, H.; Sun, S.; Xu, G.; Guo, L.; Ge, M.; Qu, J.; Li, L.; et al. Seasonal Fluctuations of Photosynthetic Parameters for Light Use Efficiency Models and the Impacts on Gross Primary Production Estimation. Agric. For. Meteorol. 2017, 236, 22–35. [Google Scholar] [CrossRef]
- Liu, J.; Sun, O.J.; Jin, H.; Zhou, Z.; Han, X. Application of Two Remote Sensing GPP Algorithms at a Semiarid Grassland Site of North China. J. Plant Ecol. 2011, 4, 302–312. [Google Scholar] [CrossRef]
- Xu, L.; Baldocchi, D.D. Seasonal Variation in Carbon Dioxide Exchange over a Mediterranean Annual Grassland in California. Agric. For. Meteorol. 2004, 123, 79–96. [Google Scholar] [CrossRef]
- Cubera, E.; Moreno, G. Effect of Single Quercus Ilex Trees upon Spatial and Seasonal Changes in Soil Water Content in Dehesas of Central Western Spain. Ann. For. Sci. 2007, 64, 355–364. [Google Scholar] [CrossRef]
- Cicuéndez, V.; Litago, J.; Sánchez-Girón, V.; Román-Cascón, C.; Recuero, L.; Saénz, C.; Yagüe, C.; Palacios-Orueta, A. Dynamic Relationships between Gross Primary Production and Energy Partitioning in Three Different Ecosystems Based on Eddy Covariance Time Series Analysis. Front. For. Glob. Change 2023, 6, 1017365. [Google Scholar] [CrossRef]
- Ma, X.; Huete, A.; Moore, C.E.; Cleverly, J.; Hutley, L.B.; Beringer, J.; Leng, S.; Xie, Z.; Yu, Q.; Eamus, D. Spatiotemporal Partitioning of Savanna Plant Functional Type Productivity along NATT. Remote Sens. Environ. 2020, 246, 111855. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Xu, L.; Kiang, N. How Plant Functional-Type, Weather, Seasonal Drought, and Soil Physical Properties Alter Water and Energy Fluxes of an Oak-Grass Savanna and an Annual Grassland. Agric. For. Meteorol. 2004, 123, 13–39. [Google Scholar] [CrossRef]
- Flexas, J.; Diaz-Espejo, A.; Gago, J.; Gallé, A.; Galmés, J.; Gulías, J.; Medrano, H. Photosynthetic Limitations in Mediterranean Plants: A Review. Environ. Exp. Bot. 2014, 103, 12–23. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q.; Li, L.; Zhao, J.; Yu, W. Evaluating the Effectiveness of Using Vegetation Indices Based on Red-Edge Reflectance from Sentinel-2 to Estimate Gross Primary Productivity. Remote Sens. 2019, 11, 1303. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Aguirre-García, S.-D.; Aranda-Barranco, S.; Nieto, H.; Serrano-Ortiz, P.; Sánchez-Cañete, E.-P.; Guerrero-Rascado, J.-L. Modelling Actual Evapotranspiration Using a Two Source Energy Balance Model with Sentinel Imagery in Herbaceous-Free and Herbaceous-Cover Mediterranean Olive Orchards. Agric. For. Meteorol. 2021, 311, 108692. [Google Scholar] [CrossRef]
- Foken, T.; Mauder, M. Micrometeorology; Springer International Publishing: New York, NY, USA, 2024; ISBN 978-3-031-47525-2. [Google Scholar]
- Sáenz, C.; Cicuéndez, V.; Recuero, L.; Wiese, K.; Palacios-Orueta, A.; Litago, J. Analysis and Modeling of Rainfed Crops Dynamics Based on NDVI Time Series in Central Spain. In Time Series Analysis—Recent Advances, New Perspectives and Applications [Working Title]; IntechOpen: London, UK, 2023. [Google Scholar]
- Recuero, L.; Wiese, K.; Huesca, M.; Cicuéndez, V.; Litago, J.; Tarquis, A.M.; Palacios-Orueta, A. Fallowing Temporal Patterns Assessment in Rainfed Agricultural Areas Based on NDVI Time Series Autocorrelation Values. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101890. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.-W.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 Dataset and the ONEFlux Processing Pipeline for Eddy Covariance Data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- ICOS Team. Available online: https://icos-spain.aemet.es/es (accessed on 20 May 2024).
Variable | Source | Frequency | Daily Average | 5-Day Average | 8-Day Average |
---|---|---|---|---|---|
GPP_T | Flux tower | 30 min | Yes | Yes | Yes |
Tmin | Flux tower | 30 min | Yes | Yes | Yes |
SWC | Flux tower | 30 min | Yes | Yes | Yes |
PARTOA | Solar Radiation | daily | Yes | Yes | Yes |
SENTINEL-2 NDVI | Sentinel-2 | 5-day | No | Yes | No |
MODIS NDVI | MODIS | 8-day | No | No | Yes |
MODIS_GPP | MODIS | 8-day | No | No | Yes |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Statistic | p-Value |
---|---|---|---|---|---|
Model | 560.466 | 3 | 186.822 | 325.84 | 0 |
Residual | 50.4555 | 88 | 0.573 | ||
TOTAL | 610.921 | 91 |
Coefficient | Estimation | Standard Error | T-Statistic | p-Value |
---|---|---|---|---|
Constant (a0) | −5.148 | 0.541 | −9.522 | 0 |
NDVI × PARTOA (b) | 1.214 | 0.047 | 25.951 | 0 |
Tmin (c) | 0.091 | 0.025 | 3.609 | 0.001 |
SWC (d) | 12.859 | 1.617 | 7.951 | 0 |
Source | Sum of Squares | Degrees of Freedom | Mean Square | F-Statistic | p-Value |
---|---|---|---|---|---|
Model | 901.512 | 3 | 300.504 | 476.88 | 0 |
Residual | 89.4805 | 142 | 0.630145 | ||
TOTAL | 990.992 | 145 |
Coefficient | Estimation | Standard Error | T-Statistic | p-Value |
---|---|---|---|---|
Constant (a0) | −2.160 | 0.413 | −5.236 | 0 |
NDVI × PARTOA (b) | 1.100 | 0.035 | 31.542 | 0 |
Tmin (c) | 0.097 | 0.019 | 4.980 | 0 |
SWC (d) | 3.846 | 1.314 | 2.926 | 0.004 |
Model | R2 (2020) | RMSE (2020) | R2 (TS) | RMSE (TS) |
---|---|---|---|---|
MODIS_GPP | 0.81 | 2.49 | 0.80 | 2.24 |
GPP_M1 | 0.78 | 2.66 | 0.74 | 2.78 |
GPP_M2 | 0.75 | 1.42 | 0.87 | 0.94 |
GPP_S1 | 0.87 | 0.99 | 0.89 | 0.93 |
GPP_S2 | 0.87 | 1.06 | 0.90 | 0.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicuéndez, V.; Inclán, R.; Sánchez-Cañete, E.P.; Román-Cascón, C.; Sáenz, C.; Yagüe, C. Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy 2024, 14, 1243. https://doi.org/10.3390/agronomy14061243
Cicuéndez V, Inclán R, Sánchez-Cañete EP, Román-Cascón C, Sáenz C, Yagüe C. Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy. 2024; 14(6):1243. https://doi.org/10.3390/agronomy14061243
Chicago/Turabian StyleCicuéndez, Víctor, Rosa Inclán, Enrique P. Sánchez-Cañete, Carlos Román-Cascón, César Sáenz, and Carlos Yagüe. 2024. "Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information" Agronomy 14, no. 6: 1243. https://doi.org/10.3390/agronomy14061243
APA StyleCicuéndez, V., Inclán, R., Sánchez-Cañete, E. P., Román-Cascón, C., Sáenz, C., & Yagüe, C. (2024). Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy, 14(6), 1243. https://doi.org/10.3390/agronomy14061243