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Abstract: Mediterranean grasslands provide different ecosystems and social and economic services to
the Mediterranean basin. Specifically, in Spain, pastures occupy more than 55% of the Spanish surface.
Farmers and policymakers need to estimate the Gross Primary Production (GPP) to make sustainable
management of these ecosystems and to study the role of grasslands acting as sinks or sources of
Carbon in the context of climate change. High-frequency satellites, such as Sentinel-2, have opened
the door to study GPP with a higher spatial and lower revisit time (10 m and 5 days). Therefore,
the overall objective of this research is to estimate an ecosystem light use efficiency (eLUE) GPP
model for a Mediterranean grassland in central Spain using Sentinel-2 NDVI Normalized Difference
Vegetation Index (NDVI), complemented with meteorological information at the field scale for a
relatively long period (from January 2018 to July 2020). The GPP models studied in this research were
the MODIS GPP product, as well as the four eLUE models built with MODIS or Sentinel-2 NDVI and
complemented by the inclusion of minimum temperature (Tmin) and soil water content (SWC). The
models were validated through the GPP obtained from an eddy-covariance flux tower located in the
study site (GPP_T). Results showed that the MODIS GPP product underestimated the GPP_T of the
grassland ecosystem. Besides this, the approach of the eLUE concept was valid for estimating GPP
in this Mediterranean grassland ecosystem. In addition, the models showed an improvement using
Sentinel-2 NDVI compared to MODIS GPP product and compared to the models that used MODIS
NDVI due to its higher spatial and temporal resolution. The inclusion of Tmin and SWC was also a
determinant in improving GPP models during winter and summer periods. This work also illustrates
how the main wind directions of the study area must be considered to appropriately estimate the
footprint of the eddy covariance flux tower. In conclusion, this study is the first step to efficiently
estimating the GPP of Mediterranean grasslands using the Sentinel-2 NDVI with complementary
meteorological field information to make the management of these ecosystems sustainable.

Keywords: ecosystem light use efficiency; MODIS; Sentinel-2; eddy covariance; meteorological
variables; footprint estimation; sustainable management
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1. Introduction

Mediterranean grasslands provide different ecosystem, social, and economic services
to the Mediterranean basin, occupying approximately 1.3 million km2 of the terrestrial
surface [1,2]. They help to maintain biodiversity, improve soil protection, and lead to
important water and climate interactions [3,4]. They are also determinants for livestock
production, especially sheep and cattle [5,6]. As an example, pastoral exploitation is
the first economic activity in the Spanish mountains, constituting the economic base of
the rural environment. As a whole, forest and agricultural pastures occupy more than
27 million hectares, i.e., more than 55% of the Spanish surface [7].

Mediterranean grassland dynamics are conditioned by the influence of the Mediter-
ranean climate, which results in large inter-annual and seasonal variability. This leads to a
complex pattern of CO2 exchange between the atmosphere and the ecosystem. On the one
hand, the assessment of CO2 balance dynamics through photosynthesis (Gross Primary
Production, GPP) and ecosystem respiration (Reco) has become a fundamental issue due
to the potential impact that it may have on climate change [8–10]. Thus, it is important
to estimate and model GPP to quantify whether Mediterranean grasslands act as sinks or
sources of CO2 over the years depending on the various factors that can interact with them,
such as climate, disturbing agents (plagues, fires, natural disasters. . .), and human factors,
among others [8,11]. Furthermore, in the Mediterranean environment, all the atmospheric
general circulation models predict an increase in the frequency and intensity of drought
periods as a consequence of climate change [12]. Hence, water stress in vegetation is
expected to increase, leading to changes in biomass production as well as in the structure
and spatial distribution of plant ecosystems [13–15]. On the other hand, estimating GPP is
essential for farmers to make sustainable management of ecosystems, especially grasslands,
combining social, economic, and environmental factors [16–18]. This motivates the study
of grasslands from a dynamic point of view, that is, analyzing its temporal evolution at
different spatial scales.

In this sense, remote sensing (RS) is accepted as the most powerful tool for studying
ecosystems at different spatial and temporal scales [19,20]. In the last two decades, several
research studies have assessed the use of RS to estimate GPP in different ecosystems [21–23].
Most RS models used to estimate GPP are based on the Light Use Efficiency concept
proposed by Monteith [24] (Equation (1)):

GPP = ε × APAR = ε × f PAR × PAR (1)

where ε is the light use efficiency conversion coefficient, and the Absorbed Photosyntheti-
cally Active Radiation (APAR) is the product of the Fraction of Photosynthetically Active
Radiation (fPAR) by the Photosynthetically Active Radiation (PAR).

On the other hand, several researchers have evidenced that GPP is related to spectral
vegetation indices. Ref. [25] proposed to multiply the chlorophyll content by PAR in the
Greenness and Radiation model, obtaining better results in estimating crops’ GPP. After
that, Peng et al. [26] applied this model using several spectral indices to estimate crops’
GPP, obtaining good results. Ma et al. [27] proposed the concept of ecosystem light use
efficiency (eLUE), that is, the product of fPAR by ε, which is related to spectral vegetation
indices (Equation (2)):

GPP = eLUE × PAR (2)

They proposed that eLUE was a function of the Enhanced Vegetation Index (EVI) and
that multiplying EVI by the PAR at the Top of the Atmosphere (PARTOA) was appropriate to
obtain a robust estimation of GPP in savannah ecosystems. In this research, we hypothesize
that this approach, along with the information from high-frequency satellites, could be
adequate for estimating GPP in Mediterranean grasslands.

High-frequency satellites, such as Sentinel-2, have opened the door to the study of
ecosystems with a high spatial and temporal resolution [28,29]. Although extensive re-
search exists about estimating GPP in grasslands with moderate-resolution sensors, such as
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MODIS [30–32], the estimation of GPP in this ecosystem using Sentinel-2 images is relatively
new. In this sense, Sakowska et al. [33] highlighted the potential of the Sentinel-2 satellite
to monitor biophysical parameters in a dynamic subalpine grassland ecosystem. More
recently, Misra et al. [34] reviewed the status of phenological research using Sentinel-2 data
in different ecosystems. They showed that Sentinel-2 data is useful for capturing the spatial
and temporal variations in grasslands due to management practices and climate. Besides,
Wang et al. [35] studied the aboveground biomass of two pastures in central Oklahoma
using Sentinel-1, Sentinel-2, and Landsat images, and they showed that the combination
of these data improved biomass estimation to improve management in this ecosystem.
Similarly, Sharma [36] developed the Dominant Species-Physiognomy-Ecological (DSPE)
classification system for differentiating plant ecological communities using high-spatial-
resolution Sentinel-2 images, demonstrating the effectiveness of Sentinel-2 in ecological
studies at a regional scale. However, only a few works have estimated GPP using Sentinel-2
data in Mediterranean environments. Chrysafis et al. [37] evaluated the use of Sentinel-2
data to estimate the growing stock volume of a Mediterranean forest, obtaining better
results than those obtained by Landsat imagery. Cerasoli et al. [38] achieved good esti-
mations of GPP of Mediterranean grasslands with hyperspectral measurements, which
were resampled to reproduce the spectral bands of both Sentinel-2 and Landsat 8. In
addition, Gómez-Giráldez et al. [39] used Sentinel-2 and MODIS data for estimating Net
Primary Production (NPP) at different scales of a holm oak Mediterranean forest, obtaining
promising results. Recently, Spinosa et al. [40] upscaled the GPP of a flux tower located
in a Mediterranean wetland using Sentinel-2 data. They showed that their GPP model
predictions improved those obtained from using the MODIS product. However, they used
only one year, and further research is needed to estimate GPP through longer periods. In
this sense, this study proposed using Sentinel-2 data to estimate the GPP of a Mediterranean
grassland for three growing seasons.

GPP derived from remote sensing data must be evaluated at the field scale using eddy
covariance (EC) measurements from flux towers. EC technique has allowed quantifying
more accurately the flux of CO2 between the atmosphere and ecosystems (Net Ecosystem
exchange, NEE) and deriving GPP and Reco through different techniques at different
spatial-temporal scales [41–43], as Equation (3) shows:

NEE = Reco − GPP (3)

The overall objective of this research is to estimate an ecosystem light use efficiency
GPP model for a Mediterranean grassland using Sentinel-2 NDVI and meteorological field
information. The specific objectives are the following:

(1) To validate the remote sensing model with measurements from an EC flux tower in
terms of quantity and seasonal and interannual dynamics.

(2) To compare the model at different spatial and temporal resolutions using Sentinel-2
and MODIS data.

2. Materials and Methods
2.1. Study Area

The Mediterranean grassland is located close to the Forest of La Herreria, in the village
of El Escorial in the province of Madrid (central Spain) at 40◦34′56′′ N and 4◦08′16′′ W
and at an altitude of 920 m.a.s.l. (Figure 1). The climate of this site corresponds to a
Mediterranean climate Csa according to Köppen climate classification [44] with hot and
dry summers and cold winters, with an average annual precipitation of around 500 mm
and an average annual temperature of 12.5 ◦C. The soil of the area is acid soil classified
as a Haplic Cambisol according to the World Reference Base of Soil Resources [45]. The
vegetation is composed of supra-Mediterranean mesophytic grasslands with some trees of
Fraxinus angustifolia Vahl. and some bushes of Rosa sp. and Rubus sp. [46]. The study area
is subject to cattle grazing throughout the year.
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Figure 1. Location of the eddy covariance flux tower in Spain (a), location (yellow star) of the
flux tower in the village of El Escorial in Madrid (central Spain) at 40◦34′56′′ N and 4◦08′16′′ W
(b) (images from © Google Earth (Landsat/Copernicus)), the eddy covariance flux tower (c) and
scheme of equipment of flux tower (d).

2.2. Flux Tower Data

In the study site, there is an eddy covariance flux tower that belongs to the Guadarrama
Meteorological Network [47–49].

The flux tower provides data from 2017 to the present at a frequency of 10 Hz of several
micrometeorological variables, including those for calculating CO2 flux (Net Ecosystem
exchange, NEE). This study collected and analyzed nearly three years of variables from Jan-
uary 2018 to July 2020 (Table 1). Firstly, raw files from the IRGASON (Campbell Scientific,
Inc., Logan, UT, USA) every three hours were obtained for the study period, and the raw
files were divided into 30-min files through the CardConvert 1.9 software (Campbell Scien-
tific, Logan, UT, USA; hereafter CSI). Secondly, these files were processed with EddyPro
7.0.9 software (Li-Cor, Inc., Lincoln, NE, USA) to obtain the CO2, water vapor, and sensible
heat fluxes every 30 min for the study period. Half-hourly averaged fluxes were excluded
when more than 10% of the raw data records were missing for any of the three compo-
nents of wind velocity, temperature, and/or CO2 concentration. To ensure the quality of
EC flux data, we utilized quality control flags 0 and 1 from the outputs of EddyPro [50].
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Data gaps were filled using the marginal distribution sampling technique described by
Reichstein et al. [51]. Flux partitioning into Ecosystem Respiration (Reco) and Gross Pri-
mary Production (GPP) was carried out according to the method by Lasslop et al. [52].
Finally, minimum air temperature (Tmin), soil water content at 4 cm depth (SWC), and
tower GPP (GPP_T) were averaged daily and then every 5 days to match the temporal
resolution of remote sensing images. GPP_T was then smoothed with a Savitzky-Golay
filter [53] to reduce noise using a second-order polynomial with a smoothing window of
seven and using the same filter as the MODIS and Sentinel-2 NDVI.

Table 1. Variables obtained for the study from January 2018 to July 2020 in the Mediterranean grass-
land: Gross Primary Production obtained from the flux tower (GPP_T). Minimum air temperature
(Tmin), Soil water content at 4 cm depth (SWC), Photosynthetically Active Radiation from the Top of
the Atmosphere (PARTOA), NDVI obtained from Sentinel-2 (Sentinel-2 NDVI), NDVI obtained from
MODIS (MODIS NDVI), Gross Primary Production derived from the MODIS product (MODIS_GPP).

Variable Source Frequency Daily
Average

5-Day
Average

8-Day
Average

GPP_T Flux tower 30 min Yes Yes Yes
Tmin Flux tower 30 min Yes Yes Yes
SWC Flux tower 30 min Yes Yes Yes

PARTOA Solar Radiation daily Yes Yes Yes
SENTINEL-2 NDVI Sentinel-2 5-day No Yes No

MODIS NDVI MODIS 8-day No No Yes
MODIS_GPP MODIS 8-day No No Yes

2.3. Photosynthetically Active Radiation from the Top of the Atmosphere (PARTOA)

The extraterrestrial solar radiation (Ra, [MJ m−2 day−1]) was obtained daily as follows [54],
Equation (4):

Ra =
24 ∗ 60

π
Gscdr[ωs sin(φ)sin(δ) + cos(φ)cos (δ) sin(ωs)] (4)

where:
Gsc is the solar constant = 0.0820 [MJ m−2 min−1], dr is the inverse relative distance

Earth-Sun [rad], ωs is the sunset hour angle [rad], φ is the latitude [rad] and δ is the solar
declination [rad].

The Photosynthetically Active Radiation from the Top of the Atmosphere (PARTOA)
was obtained as 40% of Ra [27,55]. Then, it was averaged every 5 days to match the temporal
resolution of the remote-sensing images.

2.4. Remote Sensing Data
2.4.1. MODIS

MODIS images for the product MOD09Q1 Version 6.1 were downloaded from
the NASA Land Processes Distributed Active Archive Center (LP DAAC) webpage
(https://lpdaac.usgs.gov/ accessed on 10 September 2023). This product provides an esti-
mate of the surface spectral reflectance for the Near Infrared (NIR) and Red (R) bands at
a spatial resolution of 250 m and a temporal resolution of eight days. These bands were
obtained for the calculation of the NDVI for the eddy covariance flux tower pixel from
January 2018 to July 2020 (117 images), following Equation (5):

NDVI =
(NIR − R)
(NIR + R)

(5)

Then, a Savitzky-Golay filter [53] was applied to reduce noise and smooth the time
series using a second-order polynomial with a smoothing window of seven.

https://lpdaac.usgs.gov/
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The product MOD17A2HGF Version 6.1 Gross Primary Productivity (GPP) product
is a cumulative 8-day composite of values with a 500-m pixel size [56]. This product was
downloaded for the pixel of the flux tower with the AppEEARS Tool [57].

2.4.2. Sentinel-2

Remote sensing images were obtained from the Sentinel-2 MultiSpectral Instrument for
the tile 30TVK from January 2018 to July 2020 (186 images). Level-2A images (atmospher-
ically corrected) were downloaded from (https://scihub.copernicus.eu/dhus/#/home
accessed on 10 September 2023). Sentinel-2 images with the highest spatial resolution
(10 m) and a temporal resolution of 5 days were used. The bands Red (R, b4: 646–685 nm)
and Near InfraRed (NIR, b8: 767–908 nm) were used for the calculation of the NDVI
following Equation (5).

Then, a Savitzky-Golay filter [53] was applied to reduce noise and smooth the time
series using a second-order polynomial with a smoothing window of 7. Sáenz et al. [58]
evidenced that this type of filter was adequate for smoothing Sentinel-2 NDVI in a variety
of croplands and natural ecosystems. Thus, this filter was also applied to the MODIS and
Sentinel-2 NDVI of the grassland ecosystem.

2.5. Model Construction

Models were built according to the ecosystem light use efficiency concept (eLUE)
(Equation (2)). The first model (Model 1) was similar to that proposed by Ma et al. [27],
but using the NDVI obtained from MODIS or Sentinel-2 instead of the MODIS EVI, as
Equation (6) shows:

GPP = f (NDVI)× PARTOA (6)

The second one (Model 2) was a new proposal based on a multiple linear regression model
with three parameters: (1) NDVI × PARTOA, (2) Tmin, and (3) SWC, as Equation (7) shows:

GPP = a0 + b × (NDVI × PARTOA) + c × Tmin + d × SWC (7)

2.6. Statistical Methods

The two models were built with data from the years 2018 and 2019 and validated with
the year 2020 through the comparison of the observed GPP from the flux tower data versus
the estimated GPP by the models using the coefficient of determination (R2).

The first type of model (Equation (5)) was built based on the relationship between the
ecosystem light use efficiency (eLUE) and the MODIS or Sentinel-2 NDVI (Equation (2)).

The multiple linear regression model (Model 2) was adjusted according to the least
square method and an analysis of variance (ANOVA) was performed to evaluate the
significance of the model using the F-statistic. The significance of the model’s coefficients
was evaluated by the T-statistic.

The coefficient of determination (R2) was used to measure the proportion of the
variance explained by the models. The Root Mean Square error (RMSE) is calculated for n
different observations as the square root of the mean of the squares of the deviations, as
Equation (8) shows:

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

where yi is the observed variable, ŷi is the estimated variable, and n is the number
of observations.

The statistical analyses were performed through Statgraphics Centurion XIX (StatPoint
Technologies Inc., Warrenton, VA, USA) and MATLAB (R2022b, MathWorks, Natick, MA, USA).

https://scihub.copernicus.eu/dhus/#/home
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3. Results
3.1. Dynamics of GPP_T in the Mediterranean Grassland

Figure 2 shows the dynamics of tower GPP (GPP_T) and of the soil water content
at 4 cm depth (SWC). As it is observed, GPP_T had a minimum during winter (around
2 g C m−2 day−1) due to minimum temperatures. Then, it increased during spring, having
a clear maximum in May–June (around 10–12 g C m−2 day−1). After that, during summer,
GPP_T shows another minimum (around 2 g C m−2 day−1) due to the lack of SWC. During
autumn, when SWC recovers, GPP_T shows a secondary growing season. According
to the classification of the Spanish State Meteorological Agency (AEMET), the year 2018
was classified as humid, while the year 2019 was classified as very dry from January
to October [59].
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Figure 2. Time series of tower Gross Primary Production (GPP_T) and Soil Water Content at 4 cm
depth (SWC) from January 2018 to July 2020 in the Mediterranean grassland of La Herrería.

3.2. MOD17A2HGF v 6.1 Gross Primary Productivity (GPP) Product (MODIS_GPP)

Figure 3 shows the MODIS_GPP with a spatial resolution of 500 m and a temporal
resolution of 8 days for the pixel of the tower versus the GPP_T. As observed, MODIS_GPP
underestimated GPP throughout the study period except for August and September in
2018 and 2019. However, MODIS_GPP was able to capture the seasonal and interan-
nual dynamics of GPP well. The R2 for all the time series was 0.80, and the RMSE was
2.24 g C m−2 day−1.



Agronomy 2024, 14, 1243 8 of 24Agronomy 2024, 14, 1243 8 of 26 
 

 

 

Figure 3. Time series obtained for MODIS Gross Primary Production product (MODIS_GPP) from 

January 2018 to July 2020 versus the tower Gross Primary Production (GPP_T) in the Mediterranean 

grassland of La Herrería. 

3.3. eLUE Models Using MODIS 

The MODIS models were built for the pixel of the tower with a spatial resolution of 

250 m and a temporal resolution of 8 days. 

The first model (GPP_M1) was based on the relationship between eLUE 

(GPP_T/PARTOA) and MODIS NDVI, as Figure 4 shows: 

Figure 3. Time series obtained for MODIS Gross Primary Production product (MODIS_GPP) from
January 2018 to July 2020 versus the tower Gross Primary Production (GPP_T) in the Mediterranean
grassland of La Herrería.

3.3. eLUE Models Using MODIS

The MODIS models were built for the pixel of the tower with a spatial resolution of
250 m and a temporal resolution of 8 days.

The first model (GPP_M1) was based on the relationship between eLUE (GPP_T/PARTOA)
and MODIS NDVI, as Figure 4 shows:
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Agronomy 2024, 14, 1243 9 of 24

The linear regression model (n = 92, R2 = 0.347, ANOVA p-value = 0.00) obtained is
shown in Equation (9):

eLUE = 1.152 × NDVI − 0.162 (9)

Therefore, the GPP_M1 model for obtaining GPP is shown in Equation (10):

GPP_M1 = (1.152 × (NDVI − Soilbg)− 0.162)× PARTOA (10)

Being Soilbg the soil background coefficient (Soilbg = 0.161) obtained from the linear
regression model between MODIS NDVI and GPP. The soil background coefficient was the
intercept of the line, that is, the value of NDVI when GPP was zero. Although the linear
regression model showed a poor adjustment, we believe that this coefficient was important
to compare the model proposed by Ma et al. [27].

The time series obtained for this model (GPP_M1) from January 2018 to July 2020
versus the tower GPP (GPP_T) is shown in Figure 5. As it is observed, the model un-
derestimated the GPP during the study period. The RMSE for the study period was
2.78 g C m−2 day−1.
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Figure 6. Values for the Gross Primary Production MODIS model 1 (GPP_M1) versus the tower Gross
Primary Production (GPP_T) for the year 2020 (January to July) in the Mediterranean grassland of
La Herrería (n = 25, R2 = 0.78, ANOVA p-value = 0.00).

The second model (GPP_M2) was a multiple linear regression model with three
parameters: (1) NDVI × PARTOA, (2) Tmin, and (3) SWC, as Equation (7) shows. The result
of the analysis of variance (ANOVA) is shown in Table 2.

Table 2. Analysis of variance (ANOVA) of the multiple regression model: GPP_M2 = a0 + b ×
(NDVI × PARTOA) + c× Tmin + d× SWC from January 2018 to December 2019 in the Mediterranean
grassland.

Source Sum of
Squares

Degrees of
Freedom Mean Square F-Statistic p-Value

Model 560.466 3 186.822 325.84 0
Residual 50.4555 88 0.573
TOTAL 610.921 91

Table 3 shows the estimated coefficients of the model and their significance according
to the T-statistic:

Table 3. Estimated coefficients of the multiple regression model: GPP_M2 = a0 +b× (NDVI × PARTOA)+

c× Tmin + d× SWC, standard error of the coefficients and T-statistic from January 2018 to December
2019 in the Mediterranean grassland.

Coefficient Estimation Standard Error T-Statistic p-Value

Constant (a0) −5.148 0.541 −9.522 0
NDVI × PARTOA (b) 1.214 0.047 25.951 0
Tmin (c) 0.091 0.025 3.609 0.001
SWC (d) 12.859 1.617 7.951 0
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Therefore, the GPP_M2 model for obtaining GPP with a significative coefficient of
determination (R2) of 0.91 is shown in Equation (11):

GPP_M2 = −5.148 + 1.214 × (NDVI × PARTOA) + 0.091 × Tmin + 12.859 × SWC (11)

The time series obtained for this model (GPP_M2) from January 2018 to August 2020
versus the tower GPP (GPP_T) is shown in Figure 7. As it is observed, the model slightly
underestimated the spring GPP maxima in 2018 but it slightly overestimated the maxima
in 2019 and 2020. In addition, the model overestimated the GPP minima during summer
and during winter showed similar values to the GPP_T. The RMSE for all the time series is
0.94 g C m−2 day−1.
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Figure 7. Time series obtained for the Gross Primary Production MODIS multiple linear regression
model (GPP_M2) from January 2018 to July 2020 versus the tower Gross Primary Production (GPP_T)
in the Mediterranean grassland of La Herrería.

The validation of the model was obtained using the year 2020 with an R2 = 0.75 and
a RMSE of 1.42 g C m−2 day−1. Figure 8 shows the values of GPP_M2 versus the values
of GPP_T:
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Figure 8. Values for model the Gross Primary Production MODIS multiple linear regression model
(GPP_M2) versus the tower Gross Primary Production (GPP_T) for the year 2020 (January to July) in
the Mediterranean grassland of La Herrería (n = 25, R2 = 0.75, ANOVA p-value = 0.00).

3.4. Footprint Estimation for Sentinel-2

Sentinel-2 overpassed our study area at 10:56 UTC, therefore, we have selected the
average of the footprint (x_peak according to Eddypro software) of all days at 11.00 UTC
(110 m) calculated by the EddyPro 7.0.9 software (Li-Cor, Inc., Lincoln, NE, USA) from
January 2018 to July 2020. A circle of 110 m was built centered in the tower. In addition,
the histogram of wind directions at 11.00 UTC was built from January 2018 to August 2020
to consider the main directions of the wind at this time (Figure 9). The wind rose during
the study period at 11.00 UTC as shown in Figure 10. As can be observed, the main
wind direction is from the southeast. Finally, the pixels inside the green area, which was
delimited by the main wind directions, were selected for calculating the spatial average of
NDVI (Figure 11).
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Figure 10. The wind rose for the period using the wind values at 11.00 UTC from January 2018 to
July 2020 in the Mediterranean grassland of La Herrería.
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which was delimited by the main wind direction in the Mediterranean grassland of La Herrería. A
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3.5. eLUE Models Using Sentinel-2

The models were built as the MODIS ones for the spatial average of the pixels men-
tioned above, which had a temporal resolution of 5 days. The first model was based on the
relationship between eLUE (GPP/PARTOA) and NDVI, as Figure 12 shows:
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Figure 12. Relationship between eLUE (GPP/PARTOA) and Sentinel-2 NDVI from January 2018 to
December 2019 in the Mediterranean grassland (n = 146, R2 = 0.51, ANOVA p-value = 0.00).

The linear regression model showed a higher R2 value (R2 = 0.51) than the MODIS
one, and it is shown in Equation (12):

eLUE = 0.886 × NDVI + 0.0395 (12)

Therefore, the GPP_S1 model for Sentinel-2 for obtaining GPP is shown in Equation (13):

GPP_S1 = (0.886 × (NDVI − Soilbg) + 0.0395)× PARTOA (13)

Being Soilbg the soil background coefficient (Soilbg = −0.05) obtained from the linear
regression model between Sentinel-2 NDVI and GPP. The soil background coefficient was
the intercept of the line, that is, the value of NDVI when GPP was zero.

The time series obtained for this model (GPP_S1) from January 2018 to July 2020
versus the tower GPP (GPP_T) is shown in Figure 13. As it is observed, this model adjusted
better than GPP_M, underestimating the spring GPP maxima and overestimating the GPP
minima during summer and winter. The RMSE for the study period was quite lower than
the MODIS model (GPP_M1), and it was 0.93 g C m−2 day−1.
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Figure 13. Time series obtained for the Gross Primary Production Sentinel model (GPP_S1) from
January 2018 to July 2020 versus the tower Gross Primary Production (GPP_T) in the Mediterranean
grassland of La Herrería.

The validation of the model was obtained using the year 2020, obtaining an R2 = 0.87
and a RMSE of 0.99 g C m−2 day−1. Figure 14 shows the values of GPP_S1 versus the
values of GPP_T:
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Figure 14. Values for the Gross Primary Production Sentinel-2 model 1 (GPP_S1) versus the tower
Gross Primary Production (GPP_T) for the year 2020 (January to July) in the Mediterranean grassland
of La Herrería (n = 40, R2 = 0.87, ANOVA p-value = 0.00).

The second model (GPP_S2) was a multiple linear regression model with three param-
eters as the second MODIS model (GPP_M2): (1) NDVI × PARTOA, (2) Tmin, and (3) SWC,
as Equation (14) shows. The result of the analysis of variance (ANOVA) is shown in Table 4.
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Table 4. Analysis of variance (ANOVA) of the multiple regression model: GPP_S2 = a0 + b ×
(NDVI × PARTOA) + c× Tmin + d× SWC from January 2018 to December 2019 in the Mediterranean
grassland.

Source Sum of
Squares

Degrees of
Freedom Mean Square F-Statistic p-Value

Model 901.512 3 300.504 476.88 0
Residual 89.4805 142 0.630145
TOTAL 990.992 145

Table 5 shows the estimated coefficients of the model and their significance according
to the T-statistic:

Table 5. Estimated coefficients of the multiple regression model: GPP = a0 + b× (NDVI × PARTOA)+ c×
Tmin + d× SWC, standard error of the coefficients and T-statistic from January 2018 to December 2019
in the Mediterranean grassland.

Coefficient Estimation Standard Error T-Statistic p-Value

Constant (a0) −2.160 0.413 −5.236 0
NDVI × PARTOA (b) 1.100 0.035 31.542 0

Tmin (c) 0.097 0.019 4.980 0
SWC (d) 3.846 1.314 2.926 0.004

Therefore, the second model for obtaining GPP with a coefficient of determination (R2)
of 0.91 is shown in Equation (14):

GPPS2 = −2.160 + 1.100 × (NDVI × PARTOA) + 0.097 × Tmin + 3.846 × SWC (14)

The time series obtained for this model (GPP_S2) from January 2018 to August 2020 ver-
sus the tower GPP (GPP_T) is shown in Figure 15. As observed, the model underestimated
the spring GPP maxima in 2018 and 2019. In addition, the GPP minima during summer and
winter are similar to the GPP_T. The RMSE for all the time series is 0.85 g C m−2 day−1.
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Figure 15. Time series obtained for the Gross Primary Production Sentinel-2 multiple linear regression
model (GPP_S2) from January 2018 to July 2020 versus the tower Gross Primary Production (GPP_T)
in a Mediterranean grassland.
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The validation of the model was obtained using the year 2020 with an R2 = 0.87 and a
RMSE of 1.06 g C m−2 day−1. Figure 16 shows the values of GPP_S2 versus the values of
GPP_T:
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Figure 16. Values for the Gross Primary Production Sentinel-2 multiple linear regression model
(GPP_S2) versus the tower Gross Primary Production (GPP_T) for the year 2020 (January to July) in
the Mediterranean grassland of La Herrería (n = 25, R2 = 0.87, ANOVA p-value = 0.00).

3.6. Summary of the Models

Table 6 summarizes the statistics of the five models studied in this research. The
R2 of the models were relatively high (above 0.7) both for the year 2020 and for all the
time series. In both cases, the highest RMSE occurred with the MODIS_GPP product and
with the GPP_M1, while the lowest RMSE occurred with the Sentinel-2 models (GPP_S1
and GPP_S2).

Table 6. Coefficient of determination (R2) and Root Mean Square Error (RMSE) of the five models
studied in the Mediterranean grassland for the year 2020 and for all the time series (TS).

Model R2 (2020) RMSE (2020) R2 (TS) RMSE (TS)

MODIS_GPP 0.81 2.49 0.80 2.24
GPP_M1 0.78 2.66 0.74 2.78
GPP_M2 0.75 1.42 0.87 0.94
GPP_S1 0.87 0.99 0.89 0.93
GPP_S2 0.87 1.06 0.90 0.85

4. Discussion
4.1. Overall Discussion

In this research, the assessment of the dynamics of GPP and the estimation of a GPP
model through remote sensing data for a Mediterranean grassland of Central Spain has
been carried out. The dynamics of the GPP from an eddy covariance flux tower have been
studied during three growing seasons (2018–2020). As it is observed (Figure 2), GPP_T
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depends strongly on SWC having two growing seasons during the year, the main growing
season during spring and a secondary growing season during autumn. On one hand, the
length and the maximum of the spring season depend on the SWC [60,61]. In fact, during
2018, the growing season was the maximum, and it was extended until mid-June due to the
precipitation in May, which entailed an increase in SWC. On the other hand, the maximum
of autumn also depends on the recovery of SWC, and the extension depends on the arrival
of the minimum temperatures at the end of autumn [31,62].

Results showed that MODIS_GPP underestimated GPP throughout the study period
except for the minima of summer periods in 2018 and 2019. However, MODIS_GPP was
able to capture the seasonal and interannual dynamics of GPP well. Although the MODIS
GPP product has been improved in recent years, the sources of error of this product could
be the spatial resolution that is not enough to assess finer ecosystem processes [63,64] or
the parameters used in MODIS GPP [65].

The proposed models were based on the eLUE approach proposed by Ma et al. [27] for
different savannah ecosystems in Australia, using NDVI instead of EVI. Huete et al. [66]
concluded that NDVI showed problems of saturation and a lower dynamic range over the
more humid forested sites. On the other hand, they showed that NDVI could present a
higher range in values over the semiarid sites, as in the case of our study area. In fact, we
obtained the Sentinel-2 EVI time series for our pixels, and it presented more noise than the
time series of NDVI. Therefore, the use of NDVI instead of EVI was justified in our case.
However, EVI should be considered in other ecosystems due to its higher sensitivity to
canopy structural variations and improved resistance to atmospheric conditions [66,67].
Further research is needed to evaluate the use of other indices in the models, such as the
Normalized Difference Water Index (NDWI) [68] or Spectral Shape Indices (SSI) [69].

PARTOA was used to compare the same model proposed by Ma et al. [27] in Australian
savannahs in Mediterranean grasslands. This research has already discussed the use
of PARTOA instead of the Photosynthetic Active Radiation from the top of the canopy
(PARTOC), and they have obtained better results with PARTOA. Therefore, the use of
PARTOA in this research was justified mainly for two reasons: (1) To apply and compare
the same model as Ma et al. [27] in our Mediterranean grassland, (2) we do not have the
measure of PARTOC in our site.

In this work, the eLUE approach is valid for a Mediterranean grassland ecosystem.
Firstly, in Mediterranean ecosystems, the light use efficiency conversion coefficient (ε)
shows a strong seasonality [31,70] as in savannahs. Therefore, it seems that, in Mediter-
ranean grasslands, the hypothesis that FAPAR and ε are synchronized and related both
with spectral indices, in our case NDVI, is also fulfilled. This fact is due to the patterns of
Mediterranean grasslands that are conditioned by the dynamics of the Leaf Area Index,
which depends on environmental variables, such as SWC [71,72]. However, in this research,
the correlation between eLUE and MODIS NDVI was much lower (R2 = 0.35) than the one
obtained by Ma et al. [27] between eLUE and MODIS EVI in savannahs (R2 = 0.81). The
reason was probably due to the different ecosystems that have been compared. In fact, in
one type of semi-arid Savanna (Acacia woodland) studied by Ma et al. [27], this relation-
ship was also lower. The Acacia semi-arid woodland is more similar to our Mediterranean
grassland ecosystem with small bushes, trees, and herb species than the other types of
studied savannahs. In this type of savannah, the eLUE model failed to capture the maxima
and the minima of the GPP, but in our eLUE MODIS model 1, the model infra-estimated
the values during all the study period (GPP_M1, Figure 4). The model improved clearly
(with a lower RMSE) when SWC and Tmin were considered (GPP_M2, Figure 6). Pasture
phenology was linked to the dynamics of soil water availability, water being the main
limiting factor during the growing cycle. Thus, during summer, annual herb species died,
and only green trees and bushes could contribute to GPP due to their longer roots that
could absorb water from deeper layers of the soil [73,74]. This fact was the reason for a
value greater than 0 g C m−2 day−1 during this season. Therefore, the inclusion of SWC in
the model helped to capture the minima during summer. This factor was also relevant in
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the savannahs of Australia, especially in the semi-arid ones [27,75]. In the Mediterranean
climate, it is known that SWC is an essential parameter of GPP (Figure 2) [72,76]. On the
other hand, temperature is only a limiting factor during winter [31,77], although some
species could be active during this season [61], but the inclusion of this factor in the model
contributed to capturing the GPP minima during winter. In addition, both factors affected
the capture of the maximum GPP during spring.

The ability of Sentinel-2 indices to model the GPP of grasslands has been demonstrated.
Lin et al. [78] also concluded that several Sentinel-2 vegetation indices, especially those
based on red-edge data, followed the phenological variations of two grasslands in Australia.
The higher temporal (5 days) and spatial resolution (10 m) of Sentinel-2 have served to
improve the model results. In fact, only by increasing these resolutions did the GPP_S1
adjust better than the MODIS GPP_M1. In this sense, Wang et al. [35] showed that the
combination of high spatial and temporal resolution sensors, such as Sentinel-2, improved
biomass estimation in grassland ecosystems. Besides, Misra et al. [34] also showed the
potential of Sentinel-2 compared with other remote sensing data to assess the phenology of
ecosystems. In addition, Phiri et al. [79] showed that Sentinel-2 has a positive impact on
land cover/use monitoring due to its higher temporal and spatial resolution.

In this work, the main wind directions of the satellite’s overpassed time were taken
into account when selecting the pixels for the study. This footprint estimation approach
was done due to the location of the flux tower, which is influenced by mesoscale thermally
driven flows (mountain breezes) due to the presence of the Guadarrama Mountains, located
quite close to the station [48,49]. According to these studies, the dynamics of the planetary
boundary layer and these breezes influenced the CO2 mixing ratio of the study area.
Therefore, it was important to consider the main direction of wind when selecting the
Sentinel-2 pixels that would influence the observed and estimated GPP. In this sense,
Aguirre-García et al. [80] followed a similar strategy; they also considered the wind direction
and the satellite overpassed time to calculate the footprint of the eddy covariance tower for
modeling evapotranspiration in a Mediterranean olive orchard.

The validation of the Sentinel-2 models for the year 2020 showed that both models
showed very similar R2 and RMSE values. This fact is due to the model having only been
validated until mid-July 2020, and the inclusion of the meteorological parameters would
have more weight during all the summer and winter periods.

4.2. Study Limitations and Further Research

The GPP obtained from the eddy covariance method has been considered a ground-
truth measurement. This method might have some limitations due to assumptions, physical
phenomena, instrument problems, and specifics of terrain and setup [43]. Anyway, eddy
covariance estimations are generally considered in the literature as the best data to validate
models [81].

Although Sentinel-2 models showed good performance over almost three years, future
research is needed to obtain a longer time series of GPP to make these site-specific models
more robust due to the inter-annual variations of the Mediterranean climate. This fact is
especially important to obtain accurate models under different climate change scenarios.
In addition, adjustments in the model are necessary to better capture maxima values in
spring and minima values in summer and winter, which could be crucial for ecological
and economic grassland management. In this sense, it could be very useful to obtain a
GPP model based only on remote sensing data to avoid dependence on site field variables.
Further research is needed to try new complex models, such as machine learning techniques,
to achieve a better adjustment. In addition, with longer time series, statistical methods
such as time series analysis could be applied for also assessing the temporal evolution of
variables through years, i.e., inter-annual variation and their dynamics [82,83], and this fact
could enhance GPP forecasting.

The models studied here are valid for a single study area. In order to test the models,
they must be applied to other grasslands with similar climatic conditions. Secondly, to
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upscale the model, they must be applied to other Mediterranean grasslands with different
ecological and climatic characteristics. In this sense, the main limitation will be the existence
of numerous flux towers to make a robust validation. Therefore, the Fluxnet [84] and
ICOS [85] communities offer an excellent opportunity to try this model in other grassland
sites with an Eddy Covariance flux tower.

Finally, it is essential to transfer these models to farmers and policymakers. It would
be important to make an application for mobile devices that could indicate the status of the
grassland in real time by remote sensing images and the development of robust models
that could estimate and forecast the Net Primary Production and the yield of the pasture.
However, this fact should require training in aspects such as remote sensing techniques
and information management by these stakeholders.

5. Conclusions

This research has studied the dynamics of Gross Primary Production (GPP) obtained
from an eddy covariance flux tower of a Mediterranean grassland in central Spain for
almost three years. While minimum temperature was limiting for growth during winter,
the soil water content was the limiting factor during the rest of the year, especially in
summer. It must be noted that the presence of a secondary growing season during autumn
in the Mediterranean grasslands is associated with the recovery of soil water content after
summer and its extension limited by the arrival of low temperatures.

In this work, the estimation of the GPP of this grassland through remote sensing data
and meteorological information has been carried out through the approach of the eLUE
proposed by Ma et al. [27]. This approach, which was originally applied to Australian
savannahs, has been demonstrated to be valid for this Mediterranean grassland ecosystem.
This model was initially constructed with MODIS data. In this research, MODIS data were
used to compare results with those of other studies. However, the approach has been ex-
tended to the higher spatial and temporal resolution of Sentinel-2, demonstrating the ability
of this satellite to improve the GPP site-specific models over Mediterranean grasslands.

The NDVI has been used instead of the EVI due to it could present a higher range
in values over this Mediterranean site. The inclusion of site meteorological variables
(minimum temperature and soil water content) has improved the model, especially in
the summer and winter periods when these factors were constraining GPP. In addition,
the main wind directions must be considered when estimating the footprint of the eddy
covariance tower and selecting the appropriate Sentinel-2 pixels to build the model.

This study is the first step toward a model for the GPP of Mediterranean grasslands
with Sentinel-2 data to make the management of these ecosystems sustainable. It would be
essential to transfer these models to farmers and policymakers of these ecosystems by the
calculation of the Net Primary Production and the yield of the pasture.
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