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Abstract: Intercropping, a well-established agroecological technique designed to bolster ecological
stability, has been shown to have a significant impact on soil health. However, the specific effects
of tea/Trachelospermum jasminoides intercropping on the physicochemical properties and functional
microbial community structure in practical cultivation have not been thoroughly investigated. In this
study, we utilized high-throughput sequencing technology on the 16S/ITS rDNA genes to assess the
impact of tea intercropping with T. jasminoides on the composition, diversity, and potential functions
of the soil microbial community in tea gardens. The results indicated that the tea/T. jasminoides inter-
cropping system significantly increased pH levels, soil organic matter, available nitrogen, phosphorus,
potassium, and enzyme activity, ultimately augmenting soil nutrient levels. Furthermore, an in-depth
analysis of the bacterial co-occurrence network and topological structure portrayed a more intricate
and interconnected soil bacterial community in tea gardens. Remarkably, the abundance of beneficial
genera, including Burkholderia, Mesorhizobium, Penicillium, and Trichoderma, underwent a substantial
increase, whereas the relative abundance of pathogenic fungi such as Aspergillus, Fusarium, and
Curvularia experienced a marked decline. Functional predictions also indicated a notable enhance-
ment in the abundance of microorganisms associated with nitrogen and carbon cycling processes. In
summary, the intercropping of tea and T. jasminoides holds the potential to enrich soil nutrient content,
reshape the microbial community structure, bolster the abundance of functional microorganisms,
and mitigate the prevalence of pathogenic fungi. Consequently, this intercropping system offers a
promising solution for sustainable tea garden management, overcoming the limitations of traditional
cultivation methods and providing valuable insights for sustainable agriculture practices.

Keywords: intercropping; Trachelospermum jasminoides; physicochemical properties; microbial com-
munity structure; functional prediction

1. Introduction

The tea plant (Camellia sinensis (L.) O. Ktze.), globally revered as a beloved beverage [1],
is cultivated extensively in tropical and subtropical regions [2], with China boasting a stag-
gering 3.17 million hectares dedicated to tea gardens in 2020 [3]. However, in the context
of intensified agriculture, tea gardens are predominantly cultivated by using monoculture
practices [4]. This prolonged monoculture has led to a reduction in the resilience of tea
gardens to natural disasters, affecting factors such as water availability, temperature regula-
tion, and biodiversity, ultimately leading to a decline in productivity [4]. The soil microbial
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community plays a fundamental role in soil biology, sustaining soil functions and influencing
soil productivity and crop yields [5]. Extensive studies have revealed that the widespread
monoculture of teas disrupts the soil microbial community’s structure, leading to an increase
in pathogenic microorganisms and a decrease in microbial diversity [6,7]. Microorganisms
play a crucial role in stabilizing and decomposing organic matter, thereby affecting soil
nutrient turnover and enzyme activity. Prolonged monoculture of teas has been proven to
adversely impact soil bacterial diversity [4]. Li et al. [8] highlighted that long-term cultivation
for 10 and 20 years significantly altered the soil bacterial community, resulting in a decrease
in the relative abundance of several beneficial genera, including Pseudomonas, Rhodanobacter,
Bradyrhizobium, Mycobacterium, and Sphingomonas. This poses significant challenges for the
sustainable development of tea crops under monoculture practices.

Intercropping is a sustainable agricultural practice involving the simultaneous cultiva-
tion of two or more crops [9]. Numerous researchers have demonstrated that intercropping
plays a crucial role in promoting sustainable agriculture by influencing soil microbial
communities to enhance microbial diversity, carbon assimilation, nitrogen input, nutrient
cycling, and pest reduction, ultimately resulting in increased crop yields and optimized
quality [10,11]. Research specifically focused on the intercropping of teas has found that
different intercropping patterns have a significant impact on soil ecology. For example,
intercropping rubber trees in tea gardens could reduce soil water loss, while intercropping
with chestnuts and fruit trees (such as loquats, raspberries, and citrus) can lower envi-
ronmental and soil temperatures, ultimately increasing air and soil humidity within tea
plantations [12]. Other woody plants, such as persimmon, when intercropped with teas,
not only protect teas from summer glare stress but also improve soil nutrient availability,
soil enzyme activity, and the quantity and quality of the tea produced [13,14]. Moreover,
the diversity of soil bacteria in the rhizosphere plays a pivotal role in these processes [15,16].
For instance, intercropping soybeans with teas increased the relative abundance of ben-
eficial bacteria such as Acidobacteriaceae, Burkholderaceae, Rhodanobacteraceae, and
Sphingomonadaceae, which are known as organic matter decomposers or Plant Growth-
Promoting Rhizobacteria (PGPR) [17]. Huang et al. [18] found that soybean–tea intercrop-
ping significantly increased the absolute abundance of Bacillus, a type of PGPR associated
with promoting crop production [19]. These findings indicate that the choice of plant
species and the intercropping patterns have a significant influence on tea soil properties
and microbial communities. The complex and dynamic interactions between plants and
microbes have thus become a crucial area of agricultural research [20]. However, in moun-
tainous tea plantations with steep terrain, there may be limited options for alternative
intercrops. Common intercrop choices, such as legumes and fruit trees, may hinder tea
ventilation and pose challenges for cultivation management, which can result in higher
costs [21].

Trachelospermum jasminoides, commonly known as star jasmine, is an evergreen woody
vine that exhibits tolerance to both cold and heat. It has undemanding soil requirements,
rapid growth, strong stress resistance, and a small footprint and provides extensive cover-
age, making it a popular choice for ecological slope protection. The combination of tea and
T. jasminoides intercropping has proven to be particularly effective for slope protection in tea
gardens, especially those cultivated in terraced fields (personal observation, unpublished
data). However, there is currently a lack of research on the impact of tea and T. jasminoides
intercropping on the soil microbial community structure in tea gardens. Therefore, this
study aimed to utilize high-throughput sequencing technology on the 16S/ITS rDNA
to investigate the impacts of T. jasminoides intercropping on the diversity, structure, and
function of the soil microbial community in tea gardens. The primary objectives of this
research are as follows: (1) explore the influence of tea and T. jasminoides intercropping
on soil properties; (2) compare the responses of bacterial and fungal communities, as well
as key genera, between the intercropping model and the tea cultivation-only model; and
(3) further explore the interaction relationship between the key bacteria and plants and
the changes in soil microecology in the tea garden under the T. jasminoides intercropping
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model and provide a more comprehensive theoretical basis for the promotion of this
intercropping model.

2. Materials and Methods
2.1. Overview of Study Area

The experimental site was situated at National Soil and Water Conservation Park of
Wuyi University in Wuyishan City, Fujian Province (117.99◦ E, 27.72◦ N), at an altitude of
239 m (Figure S1). This region experiences a subtropical monsoon climate with abundant
rainfall, and the soil is classified as red acidic soil. The teas used in the experiment were
five-year-old Rougui cultivars of tea trees, and the tea garden covered a total area of
12 hectares and was laid out on a terrace with a row spacing of 1.5 m. Every October, a total
of 700 kg/ha of compound fertilizer is applied, with a composition of N:P:K = 21:8:16. Two
treatments were established: intercropping (TI) and monoculture (TM). Each treatment
consisted of four randomly selected plots, each measuring 10 m × 10 m. T. jasminoides
was planted on the terraces and slopes of the intercropping plots in March 2022, with a
minimum distance of 0.3 m from the teas and a planting spacing of 0.18 m × 0.18 m. The
cultivation management practices were consistent across different tea gardens.

2.2. Soil Sample Collection

The soil sampling method was based on the study by Zhong et al. [22]. In September
2023, soil samples were collected from the intercropping (TI) area, which was located at
the midpoint between the tea trees and T. jasminoides, at a depth of 3–13 cm, referred to
as intercropping soil. The sampling locations and depths in the monoculture (TM) area
were consistent with those in the intercropping area. Each treatment consisted of four
plots, and 15 samples were randomly collected from each plot, resulting in a total of four
replicates. After collection, the soil samples were preserved in ice bags and transported
to the laboratory. In the laboratory, a 100-mesh sieve was employed to remove gravel and
visible impurities from the samples. The soil samples were then stored separately in freezers
at temperatures of −80 ◦C and 4 ◦C for subsequent analysis, which included soil DNA
extraction, determination of soil enzyme activity, and measurement of soil nutrient content.

2.3. Determination of Soil Physicochemical Properties and Enzyme Activities

Available nitrogen (AN) was determined by using the alkaline diffusion method, avail-
able phosphorus (AP) by the 0.5 mol·L−1 sodium bicarbonate leaching method, available
potassium (AK) by NH4OAc leaching flame spectrophotometry. The organic matter content
in the soil was measured by using the potassium dichromate titration method [23], and pH
was determined by the potential method.

Soil catalase activity (CAT) was determined by the pyrogallol colorimetric method,
urease (UE) by the sodium hypochlorite colorimetric method, and polyphenol oxidase
(PPO) by the pyrogallol colorimetric method. Acid protease (ACPT) was determined by
the colorimetric method with ninhydrin. Soil cellulase activity (CE) was determined by
using the anthrone colorimetric method, while soil sucrose activity (IE) was determined by
using the 3,5-dinitrosalicylic acid method [23,24].

2.4. Soil Total DNA Extraction

Soil total DNA was extracted by using the BioFast Soil Genomic DNA Extraction Kit
(BioFlux, Hangzhou, China). The purity of the extracted DNA was assessed through 1%
agarose gel electrophoresis. Subsequently, the DNA concentration was determined by
using a NanoDrop2000C Spectrophotometer (Thermo Scientific, Waltham, MA, USA). Only
DNA samples with satisfactory quality were employed for high-throughput sequencing
analysis of the microbial community.
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2.5. High-Throughput Sequencing Analysis of 16S/ITS rDNA

The 16S rDNA and ITS rDNA of soil samples were amplified. See Table S1 for details
on primers and thermal cycling procedures. PCR instrument: ABI GeneAmp® Type 9700
(Perkin Elmer, Waltham, MA, USA); Then, the soil microorganisms were sequenced by
the Illumina Hiseq sequencing method. Sequencing data were processed on the Qiime
platform (http://qiime.org/scripts/assign_taxonomy.html (accessed on 4 June 2024)) to
remove low-quality sequences with an average quality score less than 20 (Q < 20) and
sequences shorter than 100 base pair [25]. By using Uparse to cluster all the Effective Tags
of all samples, OTUs were clustered at 97% sequence consistency by default [26,27]. The
OTUs sequences were further annotated with the blast method in Qiime and the Unit (v7.2)
database to obtain the microbial abundance at different taxonomic levels.

2.6. Data Analysis

Significant analysis was conducted by using IBM SPSS software (version 26; New
York, NY, USA), employing ANOVA with the LSD test (p < 0.05), and the boxplots were
computed by using the “ggplot” package in R software (version 4.3.1; Fort Worth, TX, USA).
After normalizing the soil microbial community data, α-diversity and PCoA analyses were
performed by using the Bray–Curtis algorithm. Diversity index plots were generated by
using GraphPad Prism (version 9.5; San Diego, CA, USA). The co-occurrence network
was computed by using the “igraph” package in R software (version 4.3.1; Fort Worth,
TX, USA) with Spearman correlation, requiring a correlation coefficient greater than 0.7
and a significant level of p < 0.05. Subsequently, Gephi (version 0.9.7; Paris, France) and
Cytoscape (version 3.9.1; San Diego, CA, USA) were utilized to visualize the co-occurrence
network. Linear discriminant analysis (LDA) effect size (LEfSe) analysis was used to
estimate the relative abundance of species, with a logarithmic LDA score threshold of
3.5 [28]. LEfSe analysis was performed to identify significant differences from phylum to
genus levels among the three treatment groups and to determine the characteristics most
likely to explain the differences among the categories [29]. The vegan software package
(version 2.5.6) was used to rank microbial and soil properties by redundancy analysis
(RDA) [30]. Random forest analysis was conducted with the “RandomForest” package
to identify the proportion of microorganisms. Functional predictions for bacterial and
fungal communities in the soil microbiota were performed based on the FAPROTAX and
FUNGuild databases, respectively. The data were analyzed by using IBM SPSS Amos
(version 28) software to construct a Structural Equation Model (SEM) in order to examine
the significance of the relationships between different variables under intercropping.

3. Results
3.1. Impacts of Intercropping on Soil Physicochemical Properties and Enzyme Activities

The intercropping of tea with T. jasminoides significantly altered the soil nutrient status.
As depicted in Figure 1, the integration with T. jasminoides in the intercropping system led
to a marked increase in the levels of pH, AN, AP, AK, and SOM beneath the tea plants
compared with their monoculture counterparts (p < 0.05). Furthermore, the intercropping
approach was also observed to significantly boost various enzyme activities, including CE,
ACPT, POD, and IE, compared with monoculture (p < 0.05). However, the activities of UE
and PPO were notably lower in the intercropping system. These findings clearly indicate
that the intercropping of teas with T. jasminoides significantly affects the soil environment,
enhancing the nutrient availability and augmenting diverse enzyme activities.

http://qiime.org/scripts/assign_taxonomy.html
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microbial community’s diversity. As depicted in Figure 2A,B, the boxplots reveal 
significant increases in both the Chao1 and Shannon diversity indices (Shannon and 
Chao1) for the bacterial community when tea was intercropped with T. jasminoides (p < 
0.05). In contrast, the fungal community exhibited a marked increase in diversity indices. 
A Principal Coordinates Analysis (PCoA) conducted at the OTU level further explored the 
similarities and dissimilarities in microbial community structure composition under the 
different treatments. Figure 2C,D displays a distinct separation between the microbial 
communities of TM and TI. In conclusion, the intercropping of tea with T. jasminoides 
exerts a substantial impact on soil microbial diversity and community structure. 

 

Figure 1. Comparison of soil physicochemical properties and enzyme activity between intercropping
(TI) and monoculture (TM). AN: available nitrogen; AP: available phosphorus; AK: available potassium;
SOM: organic matter; UE: urease; PPO: polyphenol oxidase; ACPT: acid phosphatase; CE: cellulase;
POD: peroxidase; IE: sucrose. Asterisks indicate significant differences (* p < 0.05, ** p < 0.01, and
*** p < 0.001, NS: no significant difference).

3.2. Effects of Intercropping on α-Diversity and β-Diversity of Soil Microorganisms

The intercropping of tea with T. jasminoides profoundly influenced the rhizosphere
microbial community’s diversity. As depicted in Figure 2A,B, the boxplots reveal significant
increases in both the Chao1 and Shannon diversity indices (Shannon and Chao1) for
the bacterial community when tea was intercropped with T. jasminoides (p < 0.05). In
contrast, the fungal community exhibited a marked increase in diversity indices. A Principal
Coordinates Analysis (PCoA) conducted at the OTU level further explored the similarities
and dissimilarities in microbial community structure composition under the different
treatments. Figure 2C,D displays a distinct separation between the microbial communities
of TM and TI. In conclusion, the intercropping of tea with T. jasminoides exerts a substantial
impact on soil microbial diversity and community structure.
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3.3. Impact of Intercropping on Soil Microbial Co-Occurrence Networks

Given the intricate interconnectedness of soil microbial turnover, we conducted a
genus-level co-occurrence network analysis to delve deeper into how microbial interactions
were affected by tea/T. jasminoides intercropping (Table S2). The results show that the
bacterial networks in the monoculture treatment comprised 122 nodes and 454 edges,
whereas the intercropping treatment boasted 136 nodes and 585 edges (Figure 3A). This
finding suggests that the bacterial co-occurrence network under intercropping was more
intricate and interconnected. Conversely, the fungal network exhibited a slight decline, with
the number of nodes and edges decreased from 131 to 90 and from 708 to 389, respectively,
when comparing monoculture to intercropping (Figure 3A). Meanwhile, the topological
analysis of the co-occurrence network revealed that the intercropping treatment led to
lower Betweenness centrality, Closeness centrality, and Node degree compared with the
corresponding monoculture network (Figure 3C). In conclusion, intercropping tea with
T. jasminoides fostered bacterial aggregation in tea plantations, evidenced by a higher
number of nodes and edges in the bacterial co-occurrence network (3.72:4.3). However, this
aggregation was accompanied by a decrease in the centrality and connectivity of individual
bacterial nodes.
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Figure 3. Soil microbial co-occurrence networks and their characteristics under different treatments.
(A) Comparison of bacterial and fungal co-occurrence networks in soil under monoculture and
intercropping systems in tea plantations. The networks were constructed based on the relative
abundance correlation analysis among microbial genera. The color of each node corresponds to a
specific microbial module. Connections between nodes indicate significant correlations, determined
through a Spearman rank correlation test, with a significance level of p < 0.05 and a correlation
coefficient greater than 0.70. Panels (B,C) depict the topological characteristics of the bacterial
and fungal networks, respectively. These characteristics include Betweenness centrality, Closeness
centrality, and Node degree.
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3.4. Impact of Intercropping on Soil Microbial Community Structure

This study utilized Manhattan analysis to assess variations in the relative abundance of
operational taxonomic units (OTUs) and to examine the influence of intercropping patterns
on the soil microbial community in tea plantations (Figure 4A,D, Table S3). The results
show substantial disparities in bacterial and fungal OTUs between intercropping areas and
monoculture. Specifically, for bacteria, intercropping exhibited 410 significantly different
OTUs compared with monoculture (p < 0.05). These OTUs were primarily distributed in
the phyla Acidobacteria, Chloroflexi, and Proteobacteria. Notably, Acidobacteria exhibited
a major downregulation of differentially abundant OTUs, accounting for 59.73% of the
total significant differences. In Chloroflexi, the ratio of upregulated-to-downregulated
OTUs was 42.72% to 36.98%, respectively. Conversely, Proteobacteria were dominated
by upregulated OTUs, comprising 62.5% of the total significant differences. In the fungal
realm, intercropping showed 250 significantly different OTUs compared with monoculture
(p < 0.05). These OTUs were primarily distributed across the phyla Ascomycota and
Basidiomycota. Within Ascomycota, the upregulated OTUs constituted 37.08% of the total
OTUs, whereas the downregulated OTUs accounted for 43.26%. In Basidiomycota, the
upregulated OTUs comprised 33.33% of the total OTUs, and the downregulated OTUs
accounted for 50.88%.

The LEfSe (linear discriminant analysis effect size) analysis revealed a significant
impact of intercropping teas and T. jasminoides on the soil microbial community (LDA > 3.5).
Specifically, under the intercropping conditions, several key bacterial genera were enriched
in the soil (Figure 4C,D). These included Sinonmonas, Acidothermus, and Actinospica from the
phylum Actinobacteria; Mesorhizobium, Nitrosospira, Burkholderia, and Sphingomonas from
the phylum Proteobacteria; Granulicella from the phylum Acidobacteria; and Gemmatimonas
from the phylum Gemmatimonadetes. Notably, intercropping significantly boosted the
abundance of these bacterial genera in the soil. Furthermore, in the fungal community, inter-
cropping led to the enrichment in Penicillium and Trichoderma from the phylum Ascomycota.
In contrast, compared with the monoculture (TM) treatment, the abundance of Curvularia,
Sagenomella, Purpureocillium, Aspergillus, and Fusarium was significantly diminished.
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Figure 4. Classification characteristics of different bacterial taxa among the soil microbial communities
under TI and TM treatments. The differential abundance of OTUs in the soil microbial communities
under different treatments is displayed in Manhattan plots. Panels (A,B) depict enriched or depleted
OTUs in the soil microbial communities of the samples. Each circle or triangle represents an OTU,
with solid triangles indicating enrichment and empty triangles indicating depletion. OTUs with no
significant change are represented by solid circles (p > 0.05). Panels (C,D) show the key differential
bacterial (C) and fungal (D) genera in the microbial communities, with an LDA (linear discriminant
analysis) score greater than 3.5.
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3.5. Impact of Intercropping on Soil Bacterial Functions and Fungal Nutrient Modes

The FAPROTAX database, which relies on the current literature regarding cultured
strains, serves as a tool for predicting ecological-related functions associated with prokary-
otic branches such as genus or species [31,32]. By applying this database to functionally
annotate soil bacteria across different treatments, we uncovered statistically significant
variations in bacterial functions associated with material degradation (p < 0.05) (Table S4).
Notably, these findings indicate predictive significance for all OTUs analyzed. In particular,
the analysis revealed significant alterations in material degradation functions in bacteria ex-
posed to intercropping treatments (Figure 5A). Specifically, there was a significant increase
in the proportion of functions such as xylanolysis, methylotrophy, cellulolysis, hydrocarbon
degradation, methanol oxidation, aliphatic non-methane hydrocarbon degradation, and
aromatic hydrocarbon degradation. Furthermore, intercropping significantly enhanced
functions related to nitrogen cycling, encompassing nitrogen fixation, nitrification, ureoly-
sis, and nitrate reduction.

Based on data from the FUNGuild database, functional predictions were generated
for the fungal community in the soil samples (Figure 5B, Table S5). These predictions
encompassed the identification of various trophic modes among fungi, including sym-
biotrophs, saprotrophs, and pathogens. A notable trend emerged in the fungal community
of intercropped soil, exhibiting a significant increase in the proportion of symbiotrophs
and saprotrophs compared with their monoculture counterparts, while the proportion of
pathogens was significantly lower (p < 0.05). Further analysis of the major fungal trophic
modes revealed that intercropping had a substantial positive impact on the abundance of
several fungal groups, such as lichenized fungi, epiphytic fungi, endophytic fungi, ecto-
mycorrhizal fungi, plant saprotrophs, and soil saprotrophs. Conversely, the proportion of
plant pathogens significantly decreased as a result of intercropping.

In summary, the intercropping practice of teas with T. jasminoides had a profound
impact on the functional microorganisms present in the soil. Specifically, this practice sig-
nificantly augmented the bacterial community’s proficiency in executing crucial processes
like material degradation and nitrogen cycling. Furthermore, intercropping led to a notable
increase in the prevalence of co-occurrence functions among the fungal community, while
simultaneously reducing the abundance of functions related to plant pathogens, compared
with monoculture.
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3.6. Impact of Intercropping on Soil Environmental Variables and Microbial Correlations

Using redundancy analysis (RDA), we demonstrated the influence of soil environ-
mental variables on bacterial and fungal communities. Specifically, RDA1 and RDA2
collectively accounted for 96.7% of the variation in the bacterial community and 98.9%
of the variation in the fungal community, as depicted in Figure 6A. Except for AN and
AK, all other soil environmental variables exerted a significant impact on soil microbial
communities. Notably, factors such as pH, CE, IE, ACPT, AP, and POD showed a signifi-
cantly positive correlation with each other and exerted a more significant impact on the
bacterial and fungal communities in the intercropping treatment. In contrast, the bacterial
and fungal communities in monoculture soil were more influenced by UE and PPO.
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To further elucidate the relationships between key differential genera and soil envi-
ronmental variables, we performed a Spearman correlation analysis (Figure 6B). Notably,
only significant correlations with |r| > 0.7 and p < 0.05 were included for clarity. Among
the bacterial genera, Sinonmonas, Actinospica, Mesorhizobium, and Nitrosospira exhibited a
notable negative correlation with UE and PPO (p < 0.05), while displaying a significant
positive correlation with other environmental factors. Similarly, most of the other key
differential bacterial genera demonstrated a significant positive correlation with SOM, IE,
AN, and other environmental factors. However, in the tea/T. jasminoides intercropping
system, the majority of the differential fungal genera, except for Trichoderma, showed a
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negative correlation with soil physicochemical factors. In contrast, Trichoderma displayed a
significant positive correlation with IE and AP.

To assess the key environmental factors in the soil ecosystem under intercropping
patterns, a random forest regression model was implemented, and the significance of each
factor was determined by the magnitude of Mean Squared Error (MSE) values. As depicted
in Figure 6C, the analysis revealed that the plant pathogens and the carbon element emerged
as the most significant factors. Meanwhile, nutrients and enzymes, bacterial diversity, the
nitrogen element, and fungal diversity exhibited relatively comparable weights.

By using the Structural Equation Model (SEM), we inferred the direct and indirect
effects of microbial diversity and key functional microbial groups on environmental factors
within the intercropping pattern. As displayed in Figure 6D, the intercropping pattern ex-
erted a direct positive impact (λ = 0.718) on soil nutrients and enzyme activity. Additionally,
it had direct positive effects on bacterial diversity (λ = 0.827), nitrogen cycle (λ = 0.794), and
carbon cycle (λ = 0.916). Bacterial diversity, in turn, exhibited direct positive impacts on
nitrogen cycle (λ = 0.49), carbon cycle (λ = 0.579), and soil nutrients (λ = 0.621). Furthermore,
nitrogen cycle (λ = 0.594) and carbon cycle (λ = 0.496) showed varying degrees of direct
positive effects on soil nutrients. In contrast, the intercropping pattern had a direct negative
impact (λ = −0.6) on plant pathogens, which subsequently exerted a direct negative impact
on soil nutrients (λ = −0.533).

4. Discussion
4.1. Intercropping Significantly Influences the Microbial Community Structure in Tea Soil

The plant microbiome, often labeled as the second genome of plants, plays a crucial
role in regulating growth, development, and overall vitality in host plants [33,34]. In recent
years, there has been growing recognition that the advantages of intercropping are not solely
determined by ecological niche diversity and nutrient absorption complementarity; rather,
they are profoundly influenced by soil microbes and plant secretions. Particularly, the
indirect yet pivotal role of soil biological interactions and plant–soil feedback mechanisms
cannot be overstated [35,36]. As intercropping remains an essential agricultural practice for
current and future agricultural progress, it is imperative to conduct a thorough investigation
into the dynamic changes in soil microbial community structure and functionality under
intercropping cultivation.

In this study, two cropping patterns were implemented: tea monoculture and tea
intercropped with T. jasminoides. By utilizing high-throughput sequencing technology, we
analyzed the soil microbial community structure under these different cropping patterns.
The results revealed that intercropping with T. jasminoides fostered a distinct microbial
community structure in tea soil (Figure 2). Soil serves as a habitat for microorganisms, with
intricate relationships flourishing [37]. Previous studies have proposed that increasing the
diversity of soil bacterial communities enhances the association of soil microbial species,
thus improving soil ecological stability [38–40]. Consistent with these findings, we observed
a significant increase in bacterial community diversity and richness under intercropping
(Figure 2A). Furthermore, the topological analysis of the co-occurrence network revealed
that Betweenness centrality, Closeness centrality, and Node degree were higher in the
intercropping network compared with the monoculture co-occurrence network (Figure 3B).
These results indicate that intercropping tea with T. jasminoides enhances the stability of
correlations between bacterial species and enriches key microbial groups. However, the
fungal diversity index showed a slight decrease. Similar trends have been observed in other
studies, where intercropping with various legume green manures did not lead to significant
changes in the Shannon index of root fungal and archaeal communities [41]. Additionally,
a study on wheat/watermelon intercropping showed that microbial community diversity
did not increase [42]. Notably, research has suggested that soil ecosystem functions are
more dependent on functional diversity rather than taxonomic diversity [43]. Therefore, it
is plausible to speculate that there is no direct relationship between the establishment of
intercropping dominance and changes in fungal diversity.
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4.2. Intercropping Cultivation Improves Soil Nutrient Levels by Promoting Soil C and N Cycling

In this study, a significant increase in SOM was observed after the implementation
of the intercropping treatment, compared with the tea monoculture treatment (Figure 1).
Additionally, several soil nutrient indicators, including AK, AP, ACPT, EC, and POD, all
exhibited significantly enhancement under the intercropping treatment. These findings
indicated that intercropping tea with T. jasminoides improved soil nutrient levels, which is
consistent with previous research results [44]. Therefore, the tea/T. jasminoides intercrop-
ping system serves as an effective means to promote soil fertility nutrient availability.

Soil microorganisms play a crucial role in the transformation and cycling of soil organic
matter, as they facilitate the breakdown of insoluble organic compounds into soluble
ones [45]. Cellulase, mainly derived from soil microorganisms, is involved in releasing
and supplying available nutrients within the soil ecosystem [46]. Preceding investigations
have highlighted that intercropping systems, such as soybean and corn, can significantly
increase soil organic matter and pH [36]. In line with these findings, our study observed
a marked increase in pH, soil enzyme activity, and organic matter content, suggesting a
potential link with microbial–organic matter cycling under T. jasminoides intercropping.
The conditions fostered by intercropping, including root secretions and the accumulation
of litter, have a significant impact on specific functional microbial groups within the
soil. Our study revealed that there were significant impacts on the taxonomic structures
of bacteria (Proteobacteria, Chloroflexi, and Acidobacteria) and fungi (Ascomycota and
Basidiomycota) (Figure 4). It is well established that soil carbon cycling is primarily
driven by soil microorganisms [47]. Proteobacteria, for instance, is crucial to degrading
organic compounds, including xenobiotic, recalcitrant aromatic compounds, and complex
pollutants [10,48,49]. Ascomycetes and basidiomycetes, as primary decomposers among
soil fungi [50,51], contribute significantly to the degradation of organic matter, such as
lignocellulose, with basidiomycetes playing an important role [52,53].

Further analysis showed a significant increase in the abundance of nine key bacte-
rial taxa under intercropping treatment. These taxa included Sinonmonas, Acidothermus,
Actinospica, Mesorhizobium, Nitrosospira, Burkholderia, Sphingomonas, Granulicella, and Gem-
matimonas (Figure 4C,D). Among them, Acidothermus and Sinonmonas, both belonging to the
phylum Acidobacteria, are beneficial genera capable of efficiently degrading glucose and
cellulose, thus promoting plant growth through organic nutrient utilization. Actinospica,
commonly present in soils, has the potential to produce natural antibiotics [54]. Sphin-
gomonas, a strictly aerobic bacterial genus, exhibits remarkable degradation capabilities for
aromatic compounds [55]. The enrichment in these bacterial taxa under intercropping con-
ditions indicated enhanced degradation of multi-level organic substances in the soil carbon
cycle, leading to soil enrichment with fixed carbon sources and providing more abundant
nutritional supply for tea growth. Notably, Burkholderia is recognized as a plant growth
bacterium that typically harbors the nifH gene, crucial to plant nitrogen fixation [56,57].
Mesorhizobium, well known for its nitrogen-fixing abilities, is commonly found in root
nodules, forming a highly synergistic relationship with plant roots [58]. Additionally,
Gemmatimonas has been shown in numerous studies to possess significant capabilities
in nitrogen transformation and fixation [59,60]. With regards to nitrogen cycling-related
microorganisms, this study also observed an increase in the abundance of Nitrosospira
under intercropping conditions. Nitrosospira itself is an important genus involved in soil
nitrification [61]. The alterations in the abundance of these key bacterial taxa suggest
that intercropping tea with T. jasminoides can enhance soil nitrogen fixation functions by
enriching specific, vital microbial groups.

The functional predictions of the soil microbial community further confirmed the posi-
tive effect of intercropping on soil carbon (C) and nitrogen (N) cycling. The study revealed
a marked enhancement in various soil carbon cycle functions related to organic matter
degradation, such as xylanolysis, methylotrophy, and cellulolysis. Additionally, N cycling
functions such as nitrification, denitrification, and nitrogen fixation were significantly
augmented under intercropping compared with monoculture (Figure 5B). The functional
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predictions for the fungal community also demonstrated the beneficial effect of intercrop-
ping on the C cycle. The proportions of saprotrophic fungi, including litter saprotrophs,
plant saprotrophs, soil saprotrophs, and ectomycorrhizal fungi, significantly increased in
the fungal community. This increase in saprotrophic fungi indicated an enhancement in the
soil fungal community’s ability to degrade organic matter and self-toxic compounds [62].
Among the enriched fungal taxa under intercropping, Penicillium and Trichoderma stand out,
having been extensively studied for their roles in decomposing and utilizing organic matter,
thereby promoting ecological balance [63,64]. This finding may be closely related to the
observed improvement in microbial functions in the carbon cycle. Both correlation analysis
(Figure 6B) and Structural Equation Model (SEM) analysis (Figure 6D) further confirmed
the close relationship between the abundance of these fungal genera and the growth of
most soil physicochemical factors. Overall, the intercropping pattern exerts a significant
influence on bacterial diversity, fostering the N and C cycles in the soil, ultimately exerting
a positive impact on soil nutrients and enzyme activity [65,66]. The increased root exudates
and litter input into the soil, resulting from tea/T. jasminoides intercropping, provided
ample substrate for microbial activity, significantly affecting soil substance and nutrient
cycling. In conclusion, by enriching specific functional microbial groups, tea/T. jasminoides
intercropping accelerated the release and recycling of soil nutrients.

4.3. Intercropping Cultivation Suppresses Soil Pathogenic Fungi

Previous studies have reported the rhizosphere effect of crop intercropping of sup-
pressing soil pathogenic fungi. For instance, Pseudomonas fluorescens ZL22 possesses a
well-established degradation pathway, efficiently breaking down high concentrations of
PHBA and PA, thereby mitigating the self-toxicity effect on tea plants [7]. Similarly, in
soybean/corn intercropping, corn root exudates effectively hindered the growth of Cylin-
drocladium parasiticum, the causative agent of soybean red crown rot, thereby enhancing
soybean resistance to the disease [66]. The current study reveals a significant change in the
abundance of pathogenic fungi in the fungal community, with a notable decrease in the
abundance of Curvularia, Purpureocillium, Aspergillus, and Fusarium (Figure 4D) under tea/T.
jasminoides intercropping. Numerous studies have demonstrated that Curvularia can infect
various plants, resulting in diseases such as root rot, flower decay, and leaf blight [67,68].
Aspergillus is widely distributed in nature and can cause various forms of mold decay,
posing a serious threat to plants [68]. Fusarium, as a globally distributed pathogenic fun-
gus, commonly exists in the soil and can infect various plants, significantly affecting crop
yield and quality [68,69]. Furthermore, several genera with biocontrol functions, such
as Purpureocillium, Penicillium, Talaromyces, and Trichoderma, showed a marked increase
in abundance under intercropping conditions [70,71]. A more thorough examination of
the predicted functions of the fungal community revealed a significant reduction in the
proportion of plant pathogens under intercropping conditions compared with monocul-
ture (Figure 5D). Moreover, both the random forest regression model and the Structural
Equation Model highlighted plant pathogens as the most crucial factor under different treat-
ments (Figure 6C). Additionally, the intercropping model exhibited a significant negative
impact on plant pathogens (Figure 6D). Consequently, tea and T. jasminoides intercrop-
ping can induce significant changes in the composition of plant pathogens within the soil
microbial community, potentially suppressing pathogenic microbes and enhancing plant
disease resistance. The inhibitory effect of tea/T. jasminoides on pests and diseases could
be achieved by altering root exudates to modulate the soil microbial community. Tea/T.
jasminoides intercropping not only influences the composition of root exudates but also
enhances beneficial microorganisms and suppresses pathogenic fungi. It is worth noting,
however, that the experimental tea garden in this study is representative of the southern
mountain tea gardens, and variations in land types can significantly impact plant growth.
In addition, the intricate interplay among plants, root secretions, and microbes necessitates
a deeper investigation. Consequently, future research should further explore the mediating
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role of different land types and root exudates in plant–soil microecology, so as to more
comprehensively reveal the interaction mechanisms in tea/T. jasminoides intercropping.

5. Conclusions

The intercropping of tea with T. jasminoides significantly enhanced the nutrient cycles
of nitrogen (N) and carbon (C) in the soil, leading to improved soil nutrient conditions. This
intercropping practice induced significant changes in the functional microbial structure
within the tea plantation soil, particularly among the functional genera responsible for
substance degradation and soil nitrogen cycling. Notably, bacteria such as Burkholderia,
Mesorhizobium, and Gemamatimonas, which are associated with nitrogen cycling, underwent
significant enrichment. In contrast, pathogenic fungi, like Aspergillus, Fusarium, and Curvu-
laria, displayed a notable decrease in abundance. Functional predictions indicate that tea/T.
jasminoides intercropping increased the proportion of nitrogen and carbon cycling functions
mediated by N and C nutrients in the soil. Moreover, the reduction in plant pathogens,
representing plant pathogenic fungi, significantly enhances ecological stability in tea/T.
jasminoides intercropping systems. Consequently, the intercropping of T. jasminoides with
teas in tea plantations serves as a sustainable cultivation model and an effective strategy
for preserving soil health and promoting sustainable production.
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