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Abstract: Traditional deep learning models for fruit and vegetable classification are usually imple-
mented via training on an unchanged dataset. However, changing fruit and vegetable categories is a
very common occurrence in the context of real agricultural sales. When dealing with changes related
to variety, deep learning models need to be retrained on the entire updated dataset. The retraining
process is time-consuming and inefficient, and it may even cause the ‘catastrophic forgetting’ prob-
lem. In response to this challenge, the Adversarial Domain Adaptation Class Incremental Learning
(ADA-CIL) method is introduced. This approach employs adversarial domain adaptation techniques
combined with core-set selection strategies to effectively extract and integrate cross-domain features.
We utilize the ResNet34 architecture as the backbone for feature extraction due to its deep resid-
ual learning framework, which is robust in handling the complexities of large and varied image
datasets. It achieves a dynamic balance in learning between new and existing categories, significantly
enhancing the model’s generalization capabilities and information retention efficiency. The FruVeg
dataset, composed of three sub-datasets, includes over 120,000 color images, covering more than
100 different categories of fruits and vegetables collected from various domains and backgrounds.
The experimental results on the FruVeg dataset show that the ADA-CIL method achieves an average
accuracy of 96.30%, a forgetting rate of 2.96%, a cumulative accuracy of 96.26%, and a current accuracy
of 98.60%. The ADA-CIL method improves the average accuracy by 1.65% and 1.82% compared to
iCaRL and BiC, respectively, and it reduces the forgetting rate by 2.69% and 2.76%. These performance
metrics demonstrate the ADA-CIL method’s impressive ability to handle incremental category and
domain changes, highlighting its capability to effectively maintain the intra-class stability and exhibit
exceptional adaptability in dynamic learning environments.

Keywords: dynamic dataset; adversarial domain adaptation; domain shifts; memory efficiency

1. Introduction

The classification of fruits and vegetables by their variety is an important part of
the agricultural marketing process [1–4]. This classification contributes to improving the
efficiency of the economic transformation of agricultural products, optimizing the use of
resources, reducing waste, providing a more efficient shopping experience for consumers,
and improving human health [4,5]. Automated classification techniques [6–8] are necessary
because such tasks are traditionally performed manually, with no guarantee of efficiency or
accuracy [9].

Computer vision technology [10–16] provides an efficient solution to this problem.
Bolle et al. [17] achieved, for the first time, the classification and recognition of multiple
types of randomly placed fruit and vegetable produce by extracting the color and texture
features of the image, and they developed the Veggie Vision intelligent fruit and vegetable
recognition system. In recent years, reports [18,19] have illustrated that deep learning
techniques can play an important role in the classification of fruits and vegetables at
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supermarket self-checkout counters. In the context of our research, especially within retail
environments, such as those in China, fruits and vegetables are typically weighed and
priced together during the checkout process. As a result, we have adopted a unified
classification approach for both fruits and vegetables in our study. This classification
strategy not only simplifies the checkout procedure but also enhances the efficiency and
applicability of self-checkout systems. Rojas et al. [20] utilized lightweight convolutional
neural networks (CNNs) to automate the image classification of fruits and vegetables,
thereby speeding up the checkout process in retail stores. Each fruit has a unique RGB
code, which is considered as a feature vector along with the RGB histogram and K-means
center point. Accuracy can reach up to 95%. Zhenbo Li et al. [21] proposed an improved
VGG network model that achieved a 96.5% classification and recognition accuracy in their
vegetable image dataset. Bazame et al. [22] introduced a practical fruit recognition expert
system built using the EfficientNet and MixNet deep neural network series, enhancing the
accuracy and speed of fruit identification. Hameed et al. [23] proposed a class distribution-
aware adaptive margin method with clustering embedding, which achieved significant
improvements in clustering and classification. Gulzar [24] developed TL-MobileNetV2, an
enhanced MobileNetV2 model with customized headers and transfer learning, achieving
99% precision, recall, and F1 scores for fruit classification. Gao et al. [25] addressed the
challenge of classifying fruits and vegetables with similar shapes but differing nutritional
values by employing data augmentation and feature enhancement in conjunction with
Vision Transformer (ViT) technology [26]. Alkanan et al. [27] successfully implemented an
efficient classification system for corn diseases using an enhanced MobileNetV2 model,
demonstrating excellent performance in terms of precision, recall, and F1 scores.

These classification methods have contributed significantly to the automation of fruit
and vegetable classification. However, in an actual shopping center, supermarket, or
retail shop, it is commonplace to add, delete, or change fruit or vegetable categories. This
ongoing need to accommodate these new varieties necessitates the retraining of deep
learning models on entire datasets, which is not only time-consuming but also fraught with
inefficiencies. More importantly, this retraining often leads to “catastrophic forgetting [28]”,
where previous knowledge is lost when new information is added. Consequently, there
is a pressing need to develop advanced classification methods that can quickly adapt to
new and existing varieties without the need for extensive retraining. This study focuses
on overcoming these challenges through incremental learning techniques [29–32], which
update the model using only new data, thus preserving existing knowledge and ensuring
stable and accurate classification across variable conditions, such as changes in season,
climate, and geographic location.

To address the challenges of dynamic real-world scenarios, this study focuses on ex-
ploring the generalized class incremental learning problem. Within this problem framework,
we introduce and reinforce the concept of domain labels, expanding to “class + domain”
incrementality. This implies that, in a continuous data stream, both the categories and
domain distribution of fruits and vegetables change over time and across locations. This
study proposes the Adversarial Domain Adaptation Class Incremental Learning (ADA-
CIL) method, aimed at optimizing the classification process of fruits and vegetables. This
method employs a domain adaptive adversarial neural network structure, effectively reduc-
ing domain drift issues [33]. By combining knowledge distillation strategies and core-set
selection, this method not only mitigates the “catastrophic forgetting” problem but also
facilitates effective retrospective learning by preserving high-quality samples. Further-
more, an online sample generation strategy based on mix-up is introduced, which not only
increases the diversity of the sample set but also avoids the limitations of the memory
pool size, effectively alleviating data imbalance issues. Our main contributions can be
summarized as follows.

• The ADA-CIL method is developed, combining adversarial domain adaptation and
core-set selection to address dynamic changes in fruit and vegetable classification.
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• The ResNet34 architecture is employed for robust feature extraction, optimizing the
performance on diverse image datasets within the incremental learning framework.

• A dynamic balance between learning new categories and retaining existing ones
enhances the model’s generalization and reduces catastrophic forgetting.

• The ADA-CIL method demonstrates proven adaptability and stability across various
domains, being effective in real-world agricultural settings with frequent category and
domain changes.

2. Materials and Methods
2.1. Dataset

This study utilizes a comprehensive dataset named FruVeg, which consists of three
sub-datasets from different domains, comprising over 120,000 color images that cover more
than 100 types of fruits and vegetables. Example images from this dataset are displayed in
Figure 1. Each sub-dataset was collected in unique backgrounds and locations, covering a
wide range of external conditions, such as lighting, shooting angles, and obstructions, to
ensure the comprehensiveness and practical applicability of the dataset. Notably, the images
from domains 1 and 2 were captured with the same high-dynamic-range infrared-enhanced
wide-angle camera, while those from domain 3 were collected with a different camera. The
images were captured at the fruit and vegetable weighing stations in supermarkets across
China, at a rate of one frame per second. The data underwent rigorous manual selection to
ensure image quality (Table 1).
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Table 1. Camera specifications. Camera 1 and camera 2 were source from Xi’an, China.

Parameter Camera 1 Camera 2

Model HDR-IR Wide-Angle Camera HDR-IR Standard Camera

Resolution 1920 × 1080 pixels 1920 × 1080 pixels

Dynamic Range 120 dB 100 dB

Lens 16 mm wide-angle lens 35 mm standard lens

Infrared Capability With IR cut filter No IR capability

Frame Rate 30 frames per second 15 frames per second

In terms of category composition, the FruVeg dataset shows significant intersections
and differences across the three domains. Domain 1 contains 90 categories, each with
500 to 1500 images; domain 2 comprises 45 categories, each with 300 to 500 images; and
domain 3 includes 15 categories, each with 50 to 100 images. Notably, there are 35 over-
lapping categories between these domains, such as 35 shared between domains 1 and 2;
9 shared between domains 1 and 3; and 4 overlapping categories between domains 2 and 3.
Additionally, 3 categories are present across all domains.

To ensure accuracy and convenience in data processing, the FruVeg dataset employs a
unique labeling strategy. The same category, when present in different domains, is assigned
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different labels to reflect its unique attributes in different environments. For example,
tomatoes are labeled as 131, 132, and 133 in domains 1, 2, and 3, respectively, to distinguish
the features of different domains. However, for simplification in experimental processing
and analysis, these labels are uniformly mapped back to the original labels of domain 1,
i.e., 131, during category mapping calculations. This approach maintains the distinctiveness
between the different domains while facilitating consistent analyses.

2.2. Problem Definition

Our study defines a generalized class incremental learning problem. Let us assume
a series of potential data streams D = {D1,D2, · · · ,DT}, where each data stream DT
contains a set of data samples

(
Xi

t, Yi
t , Zi

t
)
, representing the data samples, corresponding

class labels, and domain labels of the i-th category in data stream DT , respectively. This
study assumes that each category has multiple domains, representing different variations,
such as changes in the background or style. Furthermore, each data stream DT is defined
as the union of two sets Dt = Dc ∪Dd. Dc represents the data of entirely new categories,
while Dd represents the data of existing categories.

The model Mt is defined as a feature extraction network G f (·; θ), where θ represents
the parameters. The category classifier is denoted as Gy, and the domain classifier is
represented by Gd. After learning from data Dt, the model is updated from Mt−1 to Mt.
The sample set is defined as Pt = Pt−1 ∪ Dt, where P1 = D1. Before the start of incremental
learning, the initial model is defined as M0M_0M0. Additionally, the incremental learning
process is defined as a series of operations Q = {Q1,Q2, · · · ,QT}:

Qt :
〈

G f (·; θ), Kt−1

〉
→
〈

G f (·; θ), Kt

〉
, (1)

where K represents the maximum storage space used to retain old samples or other useful
data. Each phase QT describes the process of updating the model from the previous round’s
state

〈
G f (·; θ), Kt−1

〉
to the current round’s state

〈
G f (·; θ), Kt

〉
.

2.3. Architecture of ADA-CIL

In response to the complex task of incremental learning for fruit and vegetable clas-
sification, the ADA-CIL method proposed in this study aims to address the combined
challenge of class and domain incrementation.

The ADA-CIL method employs an end-to-end training framework, as illustrated in
Figure 2. This framework consists of four key components: the construction of the sample
set, model training, sample management, and memory updating. This comprehensive
framework offers a holistic and efficient solution for handling incremental learning tasks.
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Figure 2. End-to-end training framework of ADA-CIL. The blue dots represent new samples, while
the grey dots represent old samples.

The network architecture used during the ADA-CIL training process is shown in
Figure 3. In this framework, the old model’s main role is to maintain the existing knowledge,
while the new model focuses on learning the newly introduced categories. To ensure the
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continuity and consistency of the knowledge, knowledge distillation techniques are utilized.
This involves comparing the intermediate and output features of the new model with the
corresponding features of the old model, ensuring that the original learning achievements
are not lost while integrating new information. Additionally, to facilitate the model’s
generalization across different domains, the output features of the new model establish an
adversarial relationship with the domain classifier via a gradient reversal layer.
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2.4. Adversarial Domain Adaptation

In addressing the “class + domain” incremental learning task, particularly in the
complex context of fruit and vegetable classification, this study draws on the core concept
of domain adaptation [34] and adopts an adversarial learning strategy [35] to address
the challenge. In designing the ADA-CIL network structure, we skillfully integrated the
objectives of category recognition and domain adaptation. The aim is to enhance the
model’s generalization ability in classifying fruits and vegetables across different domains
through adversarial training.

During the model learning process, the feature extractor is responsible for extracting
data features and passing them to the domain classifier. The domain classifier is tasked with
identifying the source domain of the information and calculating the domain classification
loss. Through the gradient reversal layer, this loss causes a reversal in the direction
of the gradients for the feature extractor during backpropagation. This design strategy
creates an adversarial relationship between the feature extractor and the domain classifier:
the domain classifier tries to categorize information into the correct domain, while the
feature extractor strives to extract common features across domains, making it difficult
for the domain classifier to accurately determine the source of information. When the
domain classifier fails to correctly identify the domain labels, it indicates that the feature
extractor has successfully mapped samples from different domains to the same feature
space. Meanwhile, the role of the category classifier is to ensure that the network effectively
completes the final classification task.

Summarizing the above, we define the loss function for our adversarial domain
adaptation network component as follows:

E
(

θ f , θy, θd

)
= ∑

i=1,··· ,Nt

Lcls

(
Gy

(
G f

(
xi; θ f

)
; θy

)
, yi

)
−β ∑

i=1,··· ,Nt

Ldomain

(
Gy

(
G f

(
xi; θ f

)
; θd

)
, zi

)
,

(2)

where Lcls and Ldomain represent the category classification loss and domain classification
loss, respectively. The category classification loss Lcls is defined as

Lcls = − 1
Nt

Nt

∑
j=1

log
(

Gy

(
G f (yi|xi)

))
, (3)
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The domain classification loss Ldomain is defined as

Ldomain = − 1
Nt

∑Nt
j=1

[
yi log

(
Gd

(
G f (xi)

)]
− 1

Nt

Nt
∑

j=1

[
(1 − yi)log

(
1 − Gd

(
G f

(
x .

i

)))]
,

(4)

βp, as a dynamic parameter, is defined as

βp =
2

1 + exp(−γ·p) − 1, (5)

where γ is a constant of 10, and p represents the relative iteration process, i.e., the ratio of
the current iteration number to the total number of iterations.

2.5. Distillation and Core-Set Selection

To effectively preserve the knowledge of previously learned samples, this study
concurrently applies knowledge distillation and core-set selection strategies in the ADA-
CIL model. Through knowledge distillation, the model can capture and retain the important
features and decision boundaries of the old model, which is crucial in maintaining the
accurate recognition of previously learned categories. In the stages of feature extraction
and classification, we use multi-level information constraints to distill old knowledge.

Specifically, we treat the model from the previous round (t − 1) as the teacher network
and the model initialized in the current round (t) as the student model. In this framework,
the teacher network generates soft labels to provide indirect guidance for the student model,
thereby helping it to learn and adapt to new data while retaining knowledge of the old
data.

The classification distillation loss Ldis1 is defined as

Ldis1 = −
Nt

∑
j

p(yi, T) ∗ log(q(yi, T)), (6)

where p(yi, T) represents the soft labels generated by the teacher network, and q(y i, T)
represents the predictive output of the student model. These concepts are further defined as

p(yi, T) =
exp(

yi
T )

∑j exp
( yj

T

) ,

q(yi, T) =
exp

(
y′i
T

)
∑j exp

(
y′j
T

) ,
(7)

This approach allows the student model to more effectively capture and retain existing
knowledge by imitating the output of the teacher network, rather than learning directly
from hard labels.

Additionally, we incorporate constraints on the output feature maps of the intermedi-
ate layers in both the new and old models during the distillation process to further ensure
stability when processing old samples. Specifically, we use the feature map outputs of
the intermediate layer of the old model as a guiding layer to guide the learning of the
intermediate layer feature maps and logit outputs of the new model. The distillation loss
Ldis2 is defined as follows:

Ldis2 = LF(Φt( ft(x)), Φs( fs(x)))

= ∑N
i=1 Φt( ft(x))×Φs( fs(x))√

∑N
i=1 Φt( ft(x))2×

√
∑N

i=1 Φs( fs(x))2
, (8)
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where ft(x) and fs(x) represent the feature map outputs of the intermediate layer in
the teacher and student networks, respectively, and Φt and Φs are the corresponding
transformation functions. LF is a metric function that calculates the similarity between the
feature maps of the teacher and student networks, namely the cosine similarity.

Parallel to knowledge distillation, another key strategy is core-set selection, which
plays an indispensable role in our ADA-CIL model. To maximize the preservation of old
sample knowledge, we adopt a core-set selection strategy combining sample representa-
tiveness and uncertainty to build data storage after each round of training.

For the selection of representative samples, we employ the K-medoids clustering
algorithm [36] to cluster the samples of each category in the feature space, identifying the
most representative samples. These samples are selected by minimizing the total sum of
the distances from all samples in this category to their nearest representative sample point.

Then, for the selection of uncertain samples, we consider the boundaries of the cate-
gories and domains. As our study’s task scenario involves both category incrementation
and domain adaptation, we use the margin sample method [37] to select uncertain samples
near the category boundaries. The category uncertainty score Su(x) and domain uncer-
tainty score Sd(x) are defined as the difference between the posterior probabilities of the
most likely and second most likely categories predicted by the model. We assess all samples
based on these scores and select those with the highest uncertainty to join the memory
pool. To balance the impact of representativeness and uncertainty on sample selection, we
determine the number of representative and uncertain samples based on the number of
incremental training rounds and the number of samples retained per category, ensuring
the effective use of the limited storage resources.

2.6. Online Sample Generation

In this study, to address the issue of the limited data sample volume and to increase
the sample diversity, we adopt an online sample generation strategy based on the mix-up
technique. Mix-up is a data augmentation technique that blends two randomly chosen
samples through linear interpolation, thereby generating new samples. Specifically, this
process is achieved via the following Formula (9):

∼
x = λxi + (1 − λ)xj,
∼
y = λyi + (1 − λ)yj,

(9)

where xi and xj are the selected original samples, yi and yj are their corresponding labels,
and λ is a random mixing coefficient within the range [0, 1].

2.7. Experimental Setup

All experiments in this study were conducted on a Xubuntu 16.04 LTS 64-bit operating
system equipped with dual Titan XP GPUs, manufactured by NVIDIA Corporation in Santa
Clara, CA, USA. The experimental setup was configured with Python 3.7 in conjunction
with the torch 1.7.0 framework.

In the FruVeg dataset, we randomly divided the data into training, testing, and valida-
tion sets at a ratio of 7:2:1. For all images in the FruVeg dataset, we performed standardiza-
tion processes, including resizing the images to a uniform resolution of 224 × 224 pixels
and carrying out normalization. To enhance the model’s generalization, we implemented
data augmentation strategies such as random flipping and rotation of the images during
the training phase. It is noted that these preprocessing steps were not applied during the
testing phase.

The ADA-CIL experiments began with 50 categories, with 10 new categories added
in each round of incremental training, amounting to 10 rounds of incremental learning in
total. Prior to initiating incremental learning training, we conducted a series of preliminary
experiments on the domain 1 dataset. These experiments encompassed classic image
classification networks such as the VGG [38] and ResNet [39] series, as well as lightweight
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networks including MobileNet [40] and ShuffleNet [41]. After carefully considering factors
such as training time, model size, average accuracy, and portability, we ultimately selected
ResNet34 as the backbone network for our incremental learning framework. The model
was trained using the SGD optimizer for 200 epochs, with an initial learning rate of 0.1,
momentum of 0.9, and a weight decay parameter of 0.0002. The learning rate was reduced
to 10% of its original value at the 80th, 120th, and 170th epochs. The batch size of the model
was set to 128, and the size of the memory pool was set to 1000 samples to ensure the
uniform distribution of old samples in the memory.

For comparison, this study selected joint training, iCaRL [42], and BiC [43] as baseline
methods. Joint training encompasses all current and previous data, serving as the theo-
retical upper limit for incremental learning performance. The iCaRL method employs a
novel exemplar-based strategy to manage the retention of old classes alongside new ones,
aiming to maintain the model’s accuracy over sequential learning tasks. Meanwhile, BiC
focuses on mitigating the bias towards newly added classes by adjusting the final classifier
layers during the training of incremental batches, addressing the common challenge of
catastrophic forgetting in incremental learning setups.

3. Results and Discussion
3.1. Evaluation Methods

In this study, to comprehensively evaluate the model’s performance in an incremental
learning environment, we adopted four key metrics: the average accuracy, forgetting, cu-
mulative accuracy, and current accuracy. These metrics were used to collectively assess the
model’s ability to avoid forgetting old knowledge and its capacity to learn new knowledge.

The average accuracy reflects the model’s overall performance across all incremental
learning tasks. It is calculated as follows:

Average Accuracy(Ai) =
1
i

i

∑
j=1

ai,j, (10)

where ai,j represents the average accuracy of all tasks after the i-th incremental learning
task completed. This metric is an important standard in measuring the model’s overall
performance.

Forgetting measures the extent to which the model forgets old tasks after learning new
ones. It is defined as

Average Forgetting(Fi) =
1

i − 1

i−1

∑
j=1

fi,j, (11)

where fk,j = max
lϵ1,··· ,k−1

(
ai,j
)
− ak,j, ∀j < k. This metric focuses on the model’s ability to retain

previously learned content throughout the continuous learning process.
The cumulative accuracy measures the model’s overall recognition ability for all data

that it has learned so far, while the current accuracy focuses on the model’s performance on
the most recent learning task, i.e., the recognition accuracy of newly added categories after
the latest round of incremental learning.

3.2. Results Based on the FruVeg Dataset

A series of incremental learning experiments were conducted on the fruit and vegetable
categories within the FruVeg dataset in this study, aiming to evaluate the performance of
various methods in handling such complex classification tasks. In Table 2, the experimental
results based on the FruVeg dataset are displayed.
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Table 2. Experimental results based on the FruVeg dataset (%).

Method Acc Forget Cumul Cur

joint 97.00 5.41 94.37 99.93
iCaRL 94.65 5.65 94.15 99.95

BiC 94.48 5.72 93.97 99.28
ADA-CIL 96.30 2.96 96.26 98.60

The results reveal that joint training, as a reference under ideal conditions, achieved an
average accuracy of 97.0%. However, given its limitations in real-world application scenarios,
developing incremental learning methods more suited to practical situations is particularly
important. For instance, the BiC method, despite its excellent performance in terms of current
accuracy (99.28%), exhibited poorer performance in terms of average accuracy and average
forgetting, highlighting its inadequacy in handling both new and old knowledge.

Among the incremental learning methods compared, iCaRL and BiC both demon-
strated relatively balanced performance but still had room for improvement. The ADA-CIL
method proposed in this study excelled in multiple metrics, with an average accuracy
of 96.30%, significantly surpassing the compared methods. More importantly, ADA-CIL
achieved a remarkably low average forgetting rate of only 2.96%, effectively proving its
significant advantage in retaining old knowledge. Additionally, it demonstrated efficiency
and robustness in terms of its cumulative accuracy and current accuracy, achieving 96.26%
and 98.60%, respectively.

The comparative analysis clearly showed that ADA-CIL consistently outperformed
iCaRL and BiC across various metrics. While iCaRL manages the retention of old knowledge
effectively through exemplar storage, ADA-CIL reduces the reliance on large memory
footprints, maintaining high accuracy with fewer stored examples. Unlike BiC, which
primarily targets the correction of biases towards newly introduced classes, ADA-CIL
adopts a more balanced strategy, ensuring fair performance across all classes without the
need for extensive bias adjustments. This finding not only highlights ADA-CIL’s robustness
but also illustrates its adaptability to real-world scenarios, where data variability is a
significant challenge.

These results not only validate the effectiveness of ADA-CIL in balancing the learning
and retention of new and old knowledge but also showcase its potential in handling the
challenging task of classifying fruits and vegetables in the FruVeg dataset.

3.3. Ablation Experiment

In this study, we conducted two sets of ablation experiments to extensively analyze
the specific impact of key components of the ADA-CIL model on performance. The first
set of experiments (Table 3) focused on the impact of the adversarial domain adaptation
(Ldomain) and knowledge distillation strategies (Ldis + Ldis2), while the second set (Table 4)
focused on the role of core-set selection and the mix-up strategy.

Table 3. Ablation experiment results for adversarial domain adaptation and knowledge distillation
strategies (%).

Method Acc Forget Cumul Cur

Lcls 90.32 9.03 89.31 99.86
Lcls + Ldomain 90.85 8.79 89.83 99.88

Lcls + Ldomain + Ldis2 93.48 8.88 90.74 99.85
Lcls + Ldomain + Ldis + Ldis2 95.33 4.94 94.83 99.87
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Table 4. Ablation experiment results for core-set selection and mix-up (%).

Method Acc Forget Cumul Cur

Baseline 95.33 4.94 94.83 99.87
Core-Set Selection 95.53 4.87 94.72 99.90

Mix-up 94.74 3.37 94.70 99.90
Core-Set Selection + Mix-up 96.30 2.96 96.26 98.60

In the ablation experiments focusing on adversarial domain adaptation and knowl-
edge distillation, we found that the baseline model relying only on the category loss
function (Lcls) performed poorly in terms of average accuracy and forgetting. The results
showed that adding the adversarial domain adaptation strategy (Ldomain) slightly improved
the model’s average classification accuracy from 90.32% to 90.85%, and the forgetting
rate decreased from 9.53% to 8.79%. Further integrating the knowledge distillation strat-
egy (Ldis + Ldis2) significantly enhanced the model’s performance, raising the accuracy to
93.48%, emphasizing the crucial role of knowledge distillation in enhancing stability. No-
tably, when both the adversarial domain adaptation and knowledge distillation strategies
were applied simultaneously, the model achieved a significant improvement in average
classification accuracy to 95.33% and a substantial reduction in forgetting to 4.94%, further
confirming the significant optimization effect of these two strategies in synergy on the
model performance.

In the second set of ablation experiments, we focused on core-set selection and the
mix-up strategy, exploring their explicit impacts on the model’s overall performance. The
core-set selection strategy effectively improved the model’s accuracy, raising it from the
baseline of 95.33% to 95.53%, and reduced the forgetting rate to 4.87%. The mix-up strategy
showed excellent performance in reducing forgetting to 3.37%, but it had a slightly negative
impact on the accuracy, reducing it to 94.74%. Notably, when these two strategies were
combined, the model’s accuracy was further improved to 96.30% and its forgetting was
reduced to 2.96%, achieving the best performance in terms of both accuracy and forgetting.

In summary, these two sets of ablation experiments revealed that in incremental
learning tasks, especially in the complex classification scenario of fruits and vegetables, the
integration of knowledge distillation, adversarial domain adaptation, core-set selection,
and the mix-up strategy is key to optimizing model performance. These strategies not only
improve model performance when applied individually but also produce synergistic effects
when used in combination, further optimizing the model’s accuracy and forgetting rate.
This has important implications for the design of efficient incremental learning models.

3.4. Effects of Number of Incremental Categories

To gain a deeper understanding of how class increments of different scales affect the
algorithm’s performance, this study established two experimental scenarios, introducing
10 and 20 new categories in each round of incremental learning, respectively.

From Table 5, it can be observed that when the number of incremental categories is set
to 10, ADA-CIL shows an improvement of 1.65% and 1.82% in the average classification
accuracy compared to iCaRL and BiC, respectively. When the number of incremental
categories is increased to 20, the improvement in the average classification accuracy of
ADA-CIL compared to the other algorithms is 1.61% and 3.42%, respectively. Notably,
ADA-CIL even surpasses the theoretical maximum value of joint training in terms of
the classification accuracy for old samples. This finding indicates that ADA-CIL has a
significant advantage in the replay memory of old data, especially in scenarios involving a
larger influx of new data.
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Table 5. Impact of incremental category numbers on experimental results (%).

10 20

Number Acc Forget Cumul Cur Acc Forget Cumul Cur

joint 97.00 5.41 94.37 99.93 94.47 6.53 93.27 99.94
iCaRL 94.65 5.65 94.15 99.95 94.76 6.9 92.89 99.93

BiC 94.48 5.72 93.97 99.28 92.95 8.04 91.53 98.84
ADA-CIL 96.30 2.96 96.26 98.60 96.37 2.92 95.64 98.85

However, it is worth noting that both ADA-CIL and the other algorithms show a
decline in the cumulative accuracy when the number of incremental categories increases
from 10 to 20. This trend reveals a critical challenge: the algorithms’ ability to retain
their memory of old data is impacted when faced with a large amount of new data. This
highlights the importance of developing strategies within incremental learning algorithms
that can effectively manage larger increments of new categories while maintaining a high
accuracy on previously learned categories.

3.5. Memory Size Variability

To systematically assess the impact of the memory replay pool size on the model
performance, we used two different memory sizes, 800 and 1000, in our experiments.

From the results in Table 6, it can be observed that when the memory size is 800,
ADA-CIL’s average classification accuracy is lower than that of the iCaRL algorithm.
This phenomenon might be due to the reduced proportion of representative samples and
increased proportion of uncertain samples in the core set during incremental training, which
impacts the model’s ability to remember old samples. In the later stages of training, there
could be situations in which there are very few or even no representative samples. However,
when the memory size is increased to 1000, ADA-CIL outperforms iCaRL and BiC by 1.65%
and 1.82% in terms of the average classification accuracy, respectively. This suggests that
with a larger memory space, the combination of strategies of sample uncertainty and
representativeness serves to more effectively maintain the memory of old samples, thereby
enhancing the overall model performance.

Table 6. Impact of memory size on experimental results (%).

800 1000

Number Acc Forget Cumul Cur Acc Forget Cumul Cur

joint 97.0 5.41 94.36 99.93 97.0 5.41 94.37 99.93
iCaRL 91.03 8.31 91.26 99.84 94.65 5.65 94.15 99.95

BiC 80.84 20.56 78.76 98.43 94.48 5.72 93.97 99.28
ADA-CIL 88.19 6.88 91.94 99.89 96.30 2.96 96.26 98.60

3.6. Influence of Sample Generation Proportion

From the results in Table 7, it can be seen that as the proportion of online sample
generation increases, the overall performance of the model improves, especially in terms of
its resistance to forgetting. When the sample generation proportion is 1, meaning that all
old samples are involved in online generation, the model exhibits the strongest resistance to
forgetting and the highest cumulative accuracy. This finding indicates that using a higher
proportion of old samples for online generation is an effective strategy that can significantly
enhance the model’s performance in incremental learning scenarios.
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Table 7. Impact of sample generation proportion on experimental results (%).

Rate Acc Forget Cumul Cur

0.0 95.53 4.87 94.72 99.90
0.2 96.22 5.06 95.79 98.23
0.5 95.79 4.03 95.34 98.78
1.0 96.30 2.96 96.26 98.60

Although mix-up is a relatively simple method for sample generation, its time cost
in incremental learning problems still needs to be considered. Particularly in scenarios
requiring frequent training, mix-up may lead to additional computational costs. However,
the experimental results suggest a good balance between this additional cost and the
improvement in model performance.

4. Conclusions

This study introduces a method utilizing Adversarial Domain Adaptation Class Incre-
mental Learning (ADA-CIL) as a classification engine for fruits and vegetables. ADA-CIL
is well suited to the dynamic domain of fruit and vegetable varieties. The main con-
tribution of this research lies in its employment of incremental learning combined with
adversarial domain adaptation and core-set selection strategies, enabling the model to
extract cross-domain general features and effectively retain key information with limited
storage resources. The experimental results in the dynamic data environment of the FruVeg
dataset demonstrate significant improvements in the average classification accuracy and
memory retention capabilities compared to traditional benchmark models.

Regarding fruit and vegetable classification, considering that existing incremental
learning methods mostly focus on fully supervised problem settings, while the data encoun-
tered in real scenarios are more likely to be unlabeled and may include common categories
between new and old data, there is a gap between existing incremental learning methods
and practical application scenarios. This challenge necessitates the exploration of incremen-
tal learning in semi-supervised or unsupervised settings to bridge this gap and enhance
the model’s applicability to real-world data. Therefore, our future research will focus on
incremental learning problems under semi-supervised or unsupervised settings. Moreover,
the experiments revealed that the limit on the number of samples determines the upper
limit of the memory settings. In practical applications, due to factors such as labeling, the
number of samples for new categories may be small, leading to the small-sample problem
and the resulting data imbalance issue, which requires further research. Addressing these
challenges will require the development of strategies that improve data efficiency and
sample diversity. At the same time, given the potential application of incremental learn-
ing on lightweight devices, exploring lightweight incremental learning methods suitable
for food classification has become a valuable research direction. This approach is crucial
for practical deployments, where computational resources and energy consumption are
limited. This research direction is significant not only in terms of improving the efficiency
and accuracy of fruit and vegetable classification systems; it could also have a profound
impact in terms of advancing precision agriculture technology, contributing to sustainable
agricultural practices and enhanced food production systems (Supplementary Materials).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agronomy14061275/s1, Figure S1. Experimental results for each
training phase of ADA-CIL on the FruVeg dataset; Table S1. Detailed Information of FruVeg Dataset,
Including the Number of Images per Category.
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