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Abstract: Fast and accurate counting and positioning of flowers is the foundation of automated
flower cultivation production. However, it remains a challenge to complete the counting and
positioning of high-density flowers against a complex background. Therefore, this paper proposes
a lightweight flower counting and positioning model, Light-FC-YOLO, based on YOLOv8s. By
integrating lightweight convolution, the model is more portable and deployable. At the same time, a
new efficient detection head, Efficient head, and the integration of the LSKA large kernel attention
mechanism are proposed to enhance the model’s feature detail extraction capability and change
the weight ratio of the shallow edge and key point information in the network. Finally, the SIoU
loss function with target angle deviation calculation is introduced to improve the model’s detection
accuracy and target positioning ability. Experimental results show that Light-FC-YOLO, with a model
size reduction of 27.2% and a parameter reduction of 39.0%, has a Mean Average Precision (mAP)
and recall that are 0.8% and 1.4% higher than YOLOv8s, respectively. In the counting comparison
experiment, the coefficient of determination (R2) and Root Mean Squared Error (RMSE) of Light-FC-
YOLO reached 0.9577 and 8.69, respectively, both superior to lightweight models such as YOLOv8s.
The lightweight flower detection method proposed in this paper can efficiently complete flower
positioning and counting tasks, providing technical support and reference solutions for automated
flower production management.

Keywords: deep learning; target detection; multi-objective flower counting; yield estimation; lightweighting

1. Introduction

Flowers, as crops with ornamental, edible, and medicinal value, are widely loved
by the public [1]. These values make flowers one of the most important economic crops
in the world. According to statistics from the China Flower Association [2], China has
become the largest flower production base in the world, and the market size of China’s
flower industry reached a retail scale of CNY 229.1 billion in 2022. To meet the demand
of the flower market, the scale of flower cultivation is gradually expanding. Therefore,
the traditional manual cultivation management mode can no longer meet the production
needs of large-scale flower cultivation bases. In actual horticultural cultivation, real-time
monitoring of the specific flowering conditions of flowers in the nursery, intelligent quantity
statistics, and positioning can better obtain information on flower yield, distribution, and
growth conditions, and thereby lead to taking corresponding management measures to
improve agricultural planting quality and production efficiency [3].
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In recent years, with the improvement of agricultural machinery technology and the
promotion of agricultural automation operations, target detection has gradually become
a focus in crop counting [4]. In the field of flower counting, target detection methods
based on machine learning have begun to be applied to flower counting research. Prabira
Kumar Sethy et al. [5] used the transformation of HSV color blocks and the Circular Hough
Transform (CHT) method to accurately locate and count the flowers of marigolds. Chao
Li et al. [6] applied SVM to the segmentation of lily cut flower images, and in response
to the problems of flower bud adhesion and leaf occlusion, they adopted the method of
ellipse fitting to more accurately locate the lily buds. Although traditional target detection
techniques based on machine learning can complete detection and counting tasks, they
have poor generalization capabilities in the face of more complex detection environments
and cannot meet the needs of multi-class variety recognition and other integrated functions.

With the significant improvement in computer computational performance, target
detection algorithms based on deep learning, characterized by high generalization and
robustness, have gradually replaced traditional target detection algorithms and are widely
used in the field of detection counting [7]. Li Sun et al. [8] proposed an improved peach
blossom counting model based on YOLOv5s [9], adding a combination of a CAM [10]
module and FSM [11] module to enhance the model’s ability to locate small targets, and
introduced K-means++ [12] to regenerate suitable candidate box sizes. P. Lin et al. [13] pro-
posed an automatic strawberry flower detection system in the field for outdoor strawberry
yield estimation, using Faster R-CNN [14] to detect strawberry flowers in the field, and
adopted an improved VGG19 [15] structure for extracting multi-scale features of strawberry
flower images. Daniel Petti et al. [16] used a weakly supervised method based on a CNN
network to automatically complete the counting task of cotton flowers on images collected
by drones, and adopted the Multi-Instance Learning (MIL) [17] method to train the model,
improving the model’s processing performance and recognition accuracy. Although deep
learning methods have achieved higher detection accuracy and efficiency in flower count-
ing and positioning than traditional image processing algorithms, their deeper networks
bring higher computational costs and network scales, which are not conducive to their
deployment on mobile and embedded devices. Therefore, lightweight detection algorithms
are needed, which are conducive to the deployment of algorithms on devices for practical
flower counting and positioning.

In practical applications, due to the deployment needs of detection algorithms on
mobile and embedded devices, the development of lightweight and high-precision de-
tection networks has gradually become a research focus. Niraj Tamrakar et al. [18] pro-
posed a lightweight strawberry detection and counting algorithm YOLOv5s-CGhostnet
based on YOLOv5s. By combining the Ghost module [19] with CBS and C3 modules,
the model size and computation are significantly reduced, and the CBAM [20] attention
mechanism is introduced to enhance the model’s ability to extract strawberry features.
Li Shuo et al. [21] in response to the slow recognition speed of high-density bayberries
under complex backgrounds, designed a lightweight bayberry counting model YOLOv7-CS
based on YOLOv7 [22]. They proposed the CNxP module to replace the E-Elan module in
the backbone, achieving model lightweight while improving the model’s detection accuracy
and positioning ability. In combination with the Wise-IoU loss function [23], the model’s
ability to recognize occluded objects is enhanced. Jie Chen et al. [24] used FasterNet [25] as
the basic feature extraction network and designed a lightweight wheat counting model,
Wheat-FasterYOLO, significantly reducing the model’s parameter quantity. They intro-
duced deformable convolution [26] and a dynamic sparse attention mechanism [27] in the
network, enhancing the model’s ability to extract wheat features and improving the accu-
racy of wheat ear counting. The YOLO single-stage algorithm, due to its fast positioning,
high precision, and small size, is widely used in crop counting.

Existing lightweight YOLO deep neural networks have shown good performance
in the field of multi-object counting. However, these studies mainly focus on the detec-
tion of flowers and fruits of crops, primarily applied to crop yield prediction. Guy Far-
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jon et al. [28] have constructed an apple flower detection system based on Faster-RCNN,
which counts the number of open apple flowers, but there is still room for improvement
in its detection accuracy. Yifan Bai et al. [29] have improved the YOLOv7 network to
count strawberry flowers and fruits separately, but the targets in their detection images are
relatively scattered, and the target features are significant. Due to the high-density growth
of flowers in the natural environment, there are various factors such as mutual occlusion,
leaf occlusion, and a large proportion of background area, which cause a certain degree of
detection difficulty for the model. Therefore, this paper proposes a lightweight model for
the accurate detection and counting of flowers in actual environments and selects five rep-
resentative common flowers to explore a new lightweight multi-target flower counting
method under complex backgrounds. The main contributions of this paper are as follows:

(1) A method proposed for accurately counting high-density flowers in complex backgrounds.
(2) The integration of the C2f module with the Ghost module has resulted in a reduction

in both the parameter and the size of the model. This combination has effectively
streamlined the model, making it more efficient for practical applications.

(3) A new efficient detection head has been proposed, which enhances the model’s ability
to express complex functions and improves the feature extraction capabilities for the
target. This advancement contributes to the overall performance and accuracy of
the model.

(4) The introduction of the LSKA attention mechanism in the feature extraction module
has amplified the role of shallow shape encoding information of the target within
the network. This enhancement facilitates the fusion of spatial information across
different scales, thereby improving the model’s adaptability and performance.

(5) The incorporation of the SIoU loss function has enhanced the detection performance of
the model and accelerated the convergence speed during training. This improvement
has made the model more efficient and effective in its operations.

2. Materials and Methods
2.1. Flower Datasets
2.1.1. Data Acquisition

To enhance the robustness of the model, this study utilized three datasets throughout
the entire experimental process. Two public datasets were respectively sourced from the
flower recognition dataset [30] provided by the Kaggle website and the Oxford 102 flower
dataset [31], provided by the University of Oxford. After image filtering, the flower recog-
nition dataset ultimately yielded 2701 flower images, encompassing a total of 7653 flower
targets. Similarly, after image filtering, the Oxford 102 flower dataset resulted in 517 usable
images, containing 1464 flower targets.

The custom dataset used in this study, the East Lake Flower Dataset, was collected
from the East Lake Campus of Zhejiang A&F University in Lin’an District, Hangzhou City,
Zhejiang Province, China. The university is located in the western part of Hangzhou, with
geographical coordinates ranging from 118◦51′ E to 119◦52′ E and 29◦56′ N to 30◦23′ N.
Flower image collection was conducted in March and June 2022. Due to the quality of image
collection being affected by the intensity of light, the field collection tasks were scheduled
between 9:00 and 11:00 and 14:00 and 16:00. In different image collection areas, collection
points were randomly selected for image collection work. The image collection device for
the East Lake Flower Dataset was an iPhone 13, with a main camera parameter of 12 million
pixels, an aperture of f/1.6, and shooting angles mostly forward horizontal, with a slight
downward tilt of 20–30◦. The resolution of the collected images was 4032 × 3024 pixels,
and a total of 432 original flower images were collected from different collection points,
containing 1224 flower targets.

The flower density of the aforementioned three datasets varies significantly. Therefore,
this paper categorizes them into different scenarios based on flower density to enhance
the generalization capability of the model. As shown in Figure 1, according to the density
of flowers, they are divided into three density levels: low-density, medium-density, and
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high-density. The division of flower density levels mainly refers to the severity of the
obstruction between flowers. In the flower images, if there are only a few targets and no
stacking or adhesion, it is classified as low-density. If there are more than 10 targets, and
only some stacking and adhesion occur, and the area of obstruction between flowers is
10–30%, it is classified as medium-density; if there are many targets, and the stacking and
adhesion between targets are severe, and the area of obstruction between flowers is more
than 30%, it is classified as high-density. These images clearly show that compared with
the scene of low-density flowers, the counting task in dense scenes is more challenging.
The reasons include the adhesion between flowers, the obstruction of branches and leaves,
the complexity of the background, and the scale changes of different targets, etc. These
factors will affect the model’s ability to extract deep flower features, thereby reducing the
recognition accuracy of the model. All details of the datasets can be seen in Table 1.
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Table 1. Flower dataset information.

Dataset Flower Type Number of
Images

Number of Flower Images with Different
Levels of Densities Total

Images
Total Number

of TargetsLow
Density Medium Density High

Density

Flowers
Recognition

Daisy 541

805 1007 889 2701 7653
Dandelion 544

Rose 503
Sunflower 632

Tulip 481

Oxford 102

Daisy 120

160 201 156 517 1464
Dandelion 117

Rose 171
Sunflower 63

Tulip 46

Donghu
flower

Daisy 103

121 151 160 432 1224
Dandelion 40

Rose 105
Sunflower 44

Tulip 140

2.1.2. Data Labeling

This study used LabelImg 1.8.6 to annotate 3218 images in the three datasets. After
the datasets were divided, LabelImg was used manually to annotate each flower target in
the images with a bounding rectangle, as shown in Figure 2. Depending on the different
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types of flowers, a corresponding label content was set, and finally, the format for saving
annotated images was set to YOLO. The YOLO annotation format file mainly contains the
following information: the category number of each target in the image; the center position
(X, Y) information of each annotated target object in the image; and the width and height
(W, H) information of each target object.
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2.1.3. Data Augmentation

To avoid overfitting due to the scarcity and high similarity of sample data, this study
employs a series of data augmentation operations on the original data. As shown in
Figure 3, this study adopts data augmentation methods such as flipping, rotating, random
cropping, brightness adjustment, blurring, and noise addition to process the flower images.
These augmentation operations expand the volume of the training set to twice that of the
original training set. A total of 5942 images, including augmented images and original
images, are used in this study’s experiments. These images are divided into a training set
(5286 images), a validation set (325 images), and a test set (331 images) at a ratio of 8:1:1.
The test set only selects original images that have not undergone augmentation processing.
The original images are more suitable for validating and explaining the performance of the
model in this study, and for evaluating the detection effect of the model and the accuracy
of flower counting.
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2.2. Light-FC-YOLO

This paper improves and applies the Light-FC-YOLO lightweight model based on
YOLOv8s for accurate flower counting (as shown in Figure 4), providing technical support
for the deployment of the model on embedded devices. The specific improvements are
as follows: (1) A new efficient module is proposed, which replaces the 3 × 3 convolution
layer in the original detection head, improving the deep feature extraction ability of the
detection head. (2) The lightweight LSKA attention mechanism is embedded in the SPPF
module, enhancing the model’s ability to extract spatial information at different scales.
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(3) In response to the problem that CIoU lacks consideration for the impact of target angles
on the results, the SIoU loss function is introduced, improving the detection accuracy and
training speed of the model.
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2.3. C2f_GhostNet

In convolutional neural networks, the redundancy of feature maps is considered
an important characteristic of the network. In previous convolutional neural networks,
after network feature extraction, many similar feature maps are generated. Moreover,
for redundant feature maps, multiple convolution operations are often used to generate
redundant feature maps one by one, which consumes a large amount of floating-point
computation and parameters. The Ghost module generates more similar feature maps
through linear transformation, avoiding the need to perform convolution operations on the
redundant feature maps generated during the feature extraction process, thereby reducing
computational cost and consumption. The Ghost module is shown in Figure 5.
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In GhostNet, the Ghost BottleNeck is composed of Ghost modules. Ghost Bottle-
Neck employs a structure similar to the basic residual block in the Residual Network
(ResNet) [32], as shown in Figure 6. When the stride is 1, Ghost BottleNeck continuously
stacks two Ghost modules. The first Ghost module expands the number of channels, and
the second Ghost module reduces the dimensionality of the features, reduces the number
of channels, and performs feature matching. When the stride is 2, a depthwise separable
convolution (Deptwise Conv) with a stride of 2 is added between the two Ghost modules
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to compress the size of the feature map. Finally, an add alignment operation is performed
on the input features and the processed features to obtain the output result.
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Depthwise separable convolution, as an important component of GhostNet, is char-
acterized by dividing the complete convolution calculation into two steps, as shown in
Figure 7. Therefore, it can be mainly divided into two parts: Depthwise Conv and Pointwise
Conv. Depthwise primarily performs per-channel convolution operations on each channel
of the input feature map, does not change the original number of channels, and does not
share feature information. Pointwise is a 1 × 1 convolution layer, which can change the
number of output channels and perform channel fusion operations on the feature map
output by Depthwise Conv.
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The GhostNet primarily consists of a series of Ghost BottleNecks with varying strides,
overall following the architecture as shown in MobileNetv3 [33]. The first layer is composed
of 16 filters, followed by a series of Ghost BottleNecks, which are divided into different
stages based on the size of their input feature maps. The stride of the last Ghost BottleNeck
in each stage is 2, while the stride of the remaining Ghost BottleNecks is 1. Subsequently,
global average pooling and a 1 × 1 convolution layer are used to increase the dimensionality
of the feature map to 1280. Finally, a fully connected layer is used to perform feature
transformation and classification operations.

Therefore, this study utilizes the efficient GhostBottleNeck module to replace the
BottleNeck module in the C2f module, constructing a new module, C2f_Ghost. This allows
the model to maintain detection accuracy and speed while having less computational load.
The C2f_Ghost module is shown in Figure 8.
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2.4. Efficient Detection Head

In target detection, the head structure is generally classified into two types. One
is the fully connected head (FC-head), where in the fully connected layer network, the
features extracted from each node are connected, making the fully connected head more
spatially sensitive, but also leading to a generally higher parameter volume than the
convolution head. The other is the convolution head (Conv-head), which has a simpler
network structure and less computation compared to the fully connected head. Among
them, the fully connected head performs better in classification tasks, while the convolution
head is more suitable for positioning tasks [34]. Although the connection head may perform
slightly better than the convolution head in terms of detection accuracy, it is not conducive
to model lightweighting. The detection head part of YOLOv8s [35] adopts the convolution
head, outputting classification and regression information. As can be seen from Figure 9, the
original detection head adopts the decoupled head [36] structure and uses a parallel branch
method, allowing the features to first pass through two 3 × 3 convolution layers, and then
a standard convolution calculates the bounding box loss value and classification loss value,
respectively. However, due to the need for lightweighting, the number of network layers in
the backbone has been greatly reduced. Although this saves a lot of computational cost
and consumption, the decline in detection accuracy is inevitable. Therefore, it is necessary
to redesign the detection head part to obtain better feature detail extraction capability.
Therefore, this paper proposes an efficient module to replace the 3 × 3 convolution layer in
the detection head part of the original YOLOv8s model.
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The improved efficient detection head still adopts the decoupled head structure and
uses a parallel branch feature processing method. However, in each branch, two efficient
modules are stacked to replace the two 3 × 3 convolution layers in the original detection
head, and finally, the output is calculated by the standard convolution layer. The efficient
module consists of two 3 × 3 convolution layers. Due to the small computational burden
of 3 × 3 convolution, it can also enhance non-linearity, improving the model’s expressive-
ness for complex functions. Therefore, on the premise of slightly increasing the network
computation, it can extract deeper and richer image features, retain more image spatial
information, and thus significantly improve the model’s detection performance.

2.5. SPPF_LSKA Module

The multi-scale feature extraction module is an important part of the YOLO series of
algorithms, typically located at the end of the backbone network, with a fixed output size.
SPPF redesigns the structure based on the SPP module [37]. Its output purpose remains
unchanged, but every time a feature passes through a pooling layer, the result is retained.
After the feature undergoes three maximum pooling processes, all the results obtained will
be concatenated. The advantage of this method is that it greatly reduces the computational
load and parameter volume brought by the multi-scale feature extraction module, and
greatly improves the running speed and efficiency of the model. However, its disadvantage
is that its ability to extract spatial information at different scales is not as good as the
SPP module. Therefore, this paper integrates the LSKA lightweight attention mechanism
module into the SPPF module, and under the premise of almost no increase in model
computation and parameter volume, improves its ability to extract spatial information at
different scales.

Large Kernel Attention (LSA) serves as the prototype for the LSKA [38] module,
and its performance has been validated in the Visual Attention Network. This is shown
in Figure 10. The innovation of LSKA lies in decomposing the 2D convolution kernel∣∣∣ k

d
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∣∣∣× 1), enabling it to adaptively capture long-range relationships. At the
same time, it maintains a performance comparable to that before the improvement while
consuming less computation and memory.
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The improved SPPF module is shown in Figure 11, with the LSKA attention module
embedded at the end of the module. After all feature mappings have completed the
concatenation operation, they are re-input into the LSKA attention module. Based on the
context-dependent relationship, the feature weights are adaptively recalibrated, which aids
the SPPF module in enhancing its ability to extract multi-scale features.
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2.6. SIoU Loss Function

Given that multi-object flower counting constitutes a dense-object detection task, the
loss function for model detection and localization must consider not only overlap area,
aspect ratio, and center point distance, but also incorporate occlusion relationship loss
and scale loss. The Complete Intersection over Union (CIoU) loss function [39] utilized in
YOLOv8s overly depends on bounding box regression metrics during target localization,
neglecting the direction of mismatch between the prediction and ground truth boxes. The
Smoothed Intersection over Union (SIoU) loss function [40] redefines the penalty measure,
enabling the prediction box to move more rapidly towards the nearest axis during training.
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Furthermore, it takes into account the vector angle between the prediction and ground
truth boxes, thereby accelerating the convergence speed during the model training phase.

When calculating CIoU, not only the overlapping area and the distance between the
two center points are considered, but also the aspect ratio is taken into account. Its formula
is as follows:

CIoU = IoU −
ρ2(q, qgt)

C2 − αv (1)

Herein, q represents the center point of the predicted box, and qgt represents the center
point of the actual box. ρ2(q, qgt) is the square of the Euclidean distance between the two
center points. C represents the length of the diagonal of the minimum bounding region
(the smallest rectangular box area that can contain both the predicted box and the actual
box). α is a trade-off parameter, and v is used to measure the aspect ratio. The formulas for
α and v are as follows:

α =
v

1 − IoU + v
(2)

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)

2

(3)

However, in the CIoU loss function, the aspect ratio is only used as an influencing
factor. If the center points of the detection box and the prediction box are consistent with
the original image, a situation may occur where the aspect ratios are the same but the
values are different. The regression result obtained after CIoU calculation does not match
the actual situation.

SIoU addresses this issue by incorporating the consideration of bounding box angle
into the calculation of CIoU loss, making the penalty loss positively correlated with the
angle cost, as shown in Figure 12. It also redefines the formula for center point distance
cost based on the measurement of angle loss:

∆ = ∑t=x,y

(
1 − e−γρt

)
(4)
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Its shape cost, i.e., the aspect ratio, calculates the difference in width between the
predicted box and the actual box and the ratio of the width between the two boxes, so it is
defined as:

Ω = ∑
t=w,h

(
1 − e−wt

)θ (5)
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The final definition of the SIoU formula is as follows:

Lbox = 1 − IoU +
∆ + Ω

2
(6)

2.7. Evaluation Metrics

This study uses a series of evaluation metrics to verify the performance and effective-
ness of the FC-YOLO model. These metrics include Precision, Recall, Average Precision
(AP), and Mean Average Precision (mAP). Precision refers to the probability of true positive
results among all samples. Recall refers to the probability that actual positive samples are
correctly predicted as positive, representing the prediction accuracy among all positive
samples. Their calculation methods are as follows:

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

AP =
∫ 1

0
p(r)dr (9)

mAP =
1
c

c

∑
i=1

APi (10)

MAE, MAPE, RMSE, and R2 are used as evaluation metrics to assess the model’s
specific performance in flower counting. MAE reflects the average difference between the
actual number of flowers and the number predicted by the model. The smaller the MAPE
value, the smaller the error between the result and the actual value. RMSE is based on MSE
to measure the square deviation between the actual value and the predicted value, and it is
often used as a performance evaluation metric in regression tasks. The closer the R2 value
is to 1, the better the model’s performance. Their calculation formulas are as follows:

MAE ==
1
n

n

∑
i=1

|(ŷi − yi)| (11)

MAPE ==
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣× 100% (12)

RMSE ==

√
1
n

n

∑
i=1

(ŷi − yi)
2 (13)

R2 = 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (14)

where yi, ŷi and yi represent the number of flowers in the i-th image in the file to be
detected, the average actual flower count, and the predicted count of the i-th flower image,
respectively. n is the total number of images to be detected.

3. Results
3.1. Implementation Details

The model proposed in this paper and the models used for comparison were all trained
on a local GPU. Table 2 shows the specific configuration details. In the experiments of this
chapter, all target detection algorithms used the SGD optimizer to optimize the learning
rate during training, with the momentum parameter set to 0.937. The initial learning rate
was set to 0.001, and the weight decay was 0.0005. At the beginning of training, a Warmup
strategy was adopted, setting the warm-up Epoch to three. An EarlyStopping strategy was
also adopted, automatically stopping model training to prevent overfitting when the loss
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of the test set no longer decreases. Throughout the overall training process, the batch_size
for training was set to 16, and the number of training rounds was 200.

Table 2. Experimental hardware and software configuration information.

Project Detail

CPU AMD Ryzen 7800H (AMD, Santa Clara, CA, USA)
GPU GeForce RTX 3060 6G (NVIDIA, Santa Clara, CA, USA)
RAM 16 GB

Operating system 64-bit Windows 11
PyTorch 1.11.0
CUDA CUDA 11.3
Python 3.9

3.2. Analysis of Lightweighting Results

In this paper, based on YOLOv8s, various lightweighting improvement methods were
attempted, including replacing its native backbone network with lightweight backbone
networks such as Fasternet, EfficientVIT [41], and HGNetV2 [42], using SlimNeck [43]
to replace the neck network of YOLOv8s, and using the Ghost Bottleneck module in
Ghostnet to replace the Bottleneck module in the C2f module. Performance analysis
was conducted on the models that incorporated different improvement methods, and
appropriate lightweighting improvement strategies were selected to make the algorithm
more easily portable to mobile or embedded devices.

Upon completion of the training of the improved model, it was validated on the
Donghu Flower Dataset. The performance and complexity comparisons are shown in
Tables 3 and 4. As indicated in the tables, Slimneck_YOLOv8s, after lightweight im-
provement, possesses higher accuracy than the original model. However, the rest of
the lightweight models, mAP50 and mAP50–95, all show a decline compared to the orig-
inal model. Ghost_YOLOv8s has a Recall value that is 1.0% higher than the original
model. All models, after being made lightweight, do not perform as well as the original
model in terms of frame rate, with HGNetV2_YOLOv8s having the FPS value closest to
YOLOv8s. The lightweight backbone networks of EfficientVIT and HGNetV2, based on
the Transformer architecture, when combined with YOLOv8s, show a significant decline in
detection performance.

Table 3. Comparison of detection performance of different models.

Models Recall/% mAP/% mAP50:95% FPS

YOLOv8s 81.1% 87.0% 73.7% 90.2
EfficientVIT_YOLOv8s 76.9% 85.2% 71.0% 33.2

FasterNet_YOLOv8s 81.5% 85.9% 71.4% 75.2
Ghost_YOLOv8s 82.1% 86.2% 73.5% 76.8

HGNetV2_YOLOv8s 76.9% 86.2% 72.9% 86.8
Slimneck_YOLOv8s 80.6% 87.2% 74.3% 75.3

Table 4. Comparison of complexity of different models.

Models GFLOPS Parameters/M Model Size/MB

YOLOv8s 28.4 11.13 22.5
EfficientVIT_YOLOv8s 20.4 8.38 17.5

FasterNet_YOLOv8s 21.7 8.61 17.5
Ghost_YOLOv8s 16.1 5.92 12.2

HGNetV2_YOLOv8s 23.3 8.47 17.3
Slimneck_YOLOv8s 25.1 10.27 20.9



Agronomy 2024, 14, 1285 14 of 19

From the perspective of model complexity, the YOLOv8s models that have undergone
lightweight improvements all perform better than the original YOLOv8s. Among them,
the GFLOPs, parameter quantity, and model size of Ghost_YOLOv8s are 16.1, 5.92, and
12.2, respectively, which are 43.3%, 46.8%, and 45.8% lower than YOLOv8s, making it the
most significantly lightweight model among all. Although Slimneck_YOLOv8s slightly
outperforms YOLOv8s in terms of detection accuracy, its model complexity is closest to
YOLOv8s, and the degree of lightweighting is not significant.

Considering the comprehensive comparison of model performance and complexity,
Ghost_YOLOv8s is the optimal choice. Although its mAP50 and mAP50–95 values differ
from YOLOv8s by 0.8% and 0.2%, respectively, its Recall is 1.0% higher than YOLOv8s,
and it has the highest degree of lightweighting. The comparison of the training mAP of
all models is shown in Figure 13. As can be seen from the figure, due to the presence
of the early stopping mechanism, the convergence speed of EfficientVIT_YOLOv8s and
Ghost_YOLOv8s models is slower than YOLOv8s, with YOLOv8s, triggering the early stop-
ping mechanism and completing training around the 180th round. The FasterNet_YOLOv8s
model has the fastest convergence speed, converging around the 110th round. The dif-
ference in mAP values among all models is not significant, but there is a large span in
convergence speed.
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3.3. Analysis of Detection and Counting Results
3.3.1. Ablation Experiments

This paper has designed ablation experiments for the Light-FC-YOLO model to
verify the effectiveness of the improvements. The ablation experiments are shown in
Tables 5 and 6.

Table 5. The detection performance ablation experiments of Light-FC-YOLO model.

Improvement Points
Recall/% mAP50% mAP50:95% FPS

Efficient Head SPPF_LSKA SIoU

82.1% 86.2% 73.5% 76.8
✓ 82.0% 86.5% 73.8% 94.7

✓ 78.9% 86.6% 73.9% 86.3
✓ 79.8% 86.3% 73.5% 84.3

✓ ✓ ✓ 82.5% 87.8% 73.6% 93.1
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Table 6. The complexity ablation experiments of Light-FC-YOLO model.

Improvement Points
GFLOPs Parameters/M Model Size/MB

Efficient Head SPPF_LSKA SIoU

16.1 5.92 12.2
✓ 17.5 9.06 16.5

✓ 16.9 6.99 14.4
✓ 16.4 5.92 12.2

✓ ✓ ✓ 17.3 10.1 16.6

As can be seen from the table, by improving the detection head, the mAP50 and
mAP50–95 values increase by 0.3% and 0.3%, respectively, and the FPS increases from 76.8
to 94.7, indicating that the 3 × 3 convolution layer can effectively enhance the non-linear
expression of features. However, the Efficient module slightly increases the complexity of
the model, with the Parameters increasing from 5.92 to 10.1. In the SPPF feature extraction
module, the lightweight attention LSKA was introduced, and the mAP50 and mAP50–95
values increased by 0.4% and 0.4%, respectively. The decomposition operation of depthwise
separable convolution effectively improves the model’s ability to extract spatial information.
The introduction of the loss function adds the calculation of angle loss for the target, which
increases the mAP50 by 0.1%. Compared with Ghost-YOLOv8s, the model complexity
of Light-FC-YOLO slightly increases, but the model performance significantly improves,
with the mAP50, mAP50–95, Recall, and FPS values increasing by 1.6%, 0.1%, 0.4%, and
21.2%, respectively.

3.3.2. Comparison of Detection Performance of Lightweight Models

Given that the YOLO series of algorithms simultaneously take into account detection
speed and accuracy, they are relatively balanced in terms of speed and accuracy. This section
of the experiment compares the performance of different lightweight YOLO algorithms
and Light-FC-YOLO on the Donghu Flower Dataset. The experimental results are shown
in Table 7.

Table 7. Comparison of detection performance of different lightweighting models.

Model Recall/% mAP50% FPS GFLOPs Parameters/M Model Size/MB

YOLOv4-tiny 80.3% 85.1% 61.2 8.7 7.14 14.2
Ghost-YOLOv5s 82.3% 85.8% 67.5 10.1 5.92 12.7

YOLOv5s 80.5% 86.3% 82.7 23.7 9.11 18.5
YOLOv7-tiny 81.9% 86.0% 74.6 13.2 6.02 11.3

YOLOv8s 81.1% 87.0% 85.9 28.4 11.1 22.8
Light-FC-YOLO 82.5% 87.8% 93.1 17.3 10.1 16.6

According to the experimental results, the Light-FC-YOLO model outperforms other
models used for comparison in terms of Recall, mAP50, and FPS. This indicates that the
Light-FC-YOLO model has the best performance in detection, and runs at the fastest speed.
From the perspective of model complexity, the GFLOPs, parameters, and model size of
Light-FC-YOLO are 17.3, 10.1 M, and 16.6 MB, respectively, showing a better lightweight
effect than YOLOv5s and YOLOv8s. Although the model complexity of Light-FC-YOLO
is slightly higher than YOLOv4-tiny [44], Ghost-YOLOv5s, and YOLOv7-tiny, the latter
perform poorly in detection accuracy, especially in Recall, which directly relates to the
counting performance of the lightweight model.

3.3.3. Comparison of Counting Performance of Lightweight Models

In this section, trained lightweight models were selected for a counting experiment on
the Donghu Flower Dataset. Table 8 shows the counting metrics of different models. As
can be seen from the table, all the lightweight models used for comparison experiments do
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not show significant differences in counting metrics. Among them, the R2 of the YOLOv8s
model reached 0.9490, while the R2 of Light-FC-YOLO was 0.9577. Compared with the
YOLOv8s model, the MAE, MAPE, and RMSE of Light-FC-YOLO decreased by 0.8, 1.25%,
and 0.13, respectively. Light-FC-YOLO has higher counting accuracy in counting multiple
target flowers, which validates the effectiveness of the improvement strategies proposed in
this chapter. In addition, Ghost-YOLOv5s, due to its good Recall in detection performance,
has the smallest difference in counting performance compared to the method proposed in
this chapter.

Table 8. Comparison of counting performance of different models.

Model R2 MAE MAPE RMSE

YOLOv4-tiny 0.9389 5.97 13.05% 11.43
Ghost-YOLOv5s 0.9508 4.81 10.78% 8.82

YOLOv5s 0.9482 5.54 12.57% 10.93
YOLOv7-tiny 0.9447 5.64 12.25% 10.71

YOLOv8s 0.9490 5.33 11.97% 9.82
Light-FC-YOLO 0.9577 4.53 10.62% 8.69

The performance of different lightweight models in flower counting is shown in
Figure 14. As can be seen from the figure, although YOLOv7-tiny has an advantage in terms
of lightweighting, its counting performance is not satisfactory. The counting performance of
Ghost-YOLOv5s shows a good combination of detection speed and accuracy, and it can also
have a good counting performance while being lightweight. Light-FC-YOLO’s counting
performance in all flower categories is superior to other lightweight models. Although
there are slight omissions, there are almost no false detections. It successfully identifies
most of the targets in the multi-target flower images and has the best counting performance.
Compared with YOLOv8s, Light-FC-YOLO achieves higher counting accuracy under
the premise of being more lightweight. In addition, due to the introduction of the LSKA
attention mechanism, the shape encoding information of the target is more focused on in the
network. In this group of tulip, sunflower, and rose test images, there are many areas with
poor lighting conditions and slight reflections on the target surface, but Light-FC-YOLO
can overcome the impact in the counting operation and complete the recognition well.
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4. Discussion

Traditional manual flower counting methods suffer from low efficiency, difficulty in
ensuring accuracy, and over-reliance on subjective judgment. The density of flowers, as
well as their shape, texture, and color, are key factors affecting the high-precision detection
and accurate localization of the model. Therefore, rapid and accurate counting of multiple
target flowers in natural scenes remains a challenge. In practical applications, due to
situations such as dense flower growth, mutual occlusion between flowers, and a large
proportion of background area, the feature information of the target is easily partially
lost during the feature extraction process. To address this detection difficulty, this paper
introduces a lightweight flower counting method based on multi-scale feature fusion.
The Light-FC-YOLO model outperforms other lightweight models in multi-target flower
counting under complex backgrounds. While achieving the purpose of model lightweight
and improving deployment efficiency, it also improves counting accuracy to a certain extent,
reduces the error rate, and provides a theoretical reference for the intelligent counting and
positioning of flowers. Currently, research on lightweight detection of ornamental flowers
is still very limited. Xie et al. [45] based on the improved YOLOv4 lightweight model,
recognized multi-target flower images, achieving 79.63% mAP on the Oxford 102 and
flower recognition datasets, but its detection performance was not as good as the method
proposed in this paper.

The lightweight counting method used in this paper can meet the current demand
for flower counting in flower quantity prediction, but there are still counting errors, and
its detection accuracy and localization capabilities still have room for improvement. In
the future, we will consider adding more multi-target flower images under more complex
conditions and improving the model to further enhance accuracy. In order to delve deeper
into the technical details influencing decision-making, we will employ interpretable artifi-
cial intelligence methods to further analyze the interactive features and learning patterns
that Light-FC-YOLO has acquired. At present, this paper only uses some common types
of flowers as research objects. In practical applications, it may be necessary to collect
images of more types of flowers, study the impact of their differences on model detection,
and make the model more adaptable to the detection of different types of flowers. The
collection methods and shooting equipment for multi-target flower images also have room
for improvement, further optimizing the shooting angle and using polarizers to reduce the
impact of reflection on detection accuracy.

5. Conclusions

With the construction and development of smart agriculture, the estimation of flower
quantity is transitioning from traditional manual evaluation methods to intelligent detection
methods. To improve the model’s ability to extract and locate flower features under
high-density flower cultivation, this paper proposes a lightweight multi-objective flower
counting model, Light-FC-YOLO, based on the YOLO framework. In this model, the
C2f_Ghost module helps the model achieve its lightweight purpose. By utilizing the
SPPF_LSKA module and Efficient head, the model’s feature extraction ability is enhanced,
strengthening the role of shallow shape encoding information in the network. Through a
deeper fusion of deep and shallow flower features, the model can more accurately detect
and locate targets. The introduction of the SIoU loss function, by considering the angle loss
of the target, accelerates the convergence speed during model training. Overall, the method
proposed in this paper improves the multi-objective flower detection situation in actual
environments, while also enhancing its localization ability. The mAP, Recall, R2, MAE,
MAPE, and RMSE of Light-FC-YOLO reached 87.8%, 82.5%, 89.2%, 0.9577, 4.53, 10.62%,
and 8.69, respectively, achieving a balance between detection speed and accuracy, providing
a theoretical basis and technical support for the deployment of the model on mobile or
embedded devices. The focus of future research in this paper is to further improve the
model’s robustness to environmental interference factors such as changes in illumination,
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accelerate the integration of computer vision technology with actual application scenarios,
and further improve the efficiency and quality of automated agricultural production.
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