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Abstract: The low solubility and enhanced fixation of zinc (Zn) in semi-arid and dry climates limits
Zn uptake in plants. Zn deficiency in soil impairs crop production and human health, necessitating
agricultural biofortification. A pot experiment was conducted to evaluate the effect of Zn and various
types of manure on the Zn biofortification of lentils. The treatments, consisting of a control (Con),
normal manure (NM), composted manure (CM), and acidified manure (AM), were applied under
saline soil (EC 8.00 dS m~') and non-saline soil (EC 1.48 dS m~') conditions along with two levels of
Zn, including Zn at 0 kg ha~! (native soil Zn = 2.2 mg kg_l) and Zn at 25 kg ha=—1 (622 mg Zn kg_1
soil was achieved). The AM was prepared by adding sulfur and sulfur-oxidizing bacteria to the
composted manure. All the manures were applied at 1% (w/w), and ZnSOy (33% Zn) was used as a Zn
source. Lentil variety Masoor 2021 was cultivated as a test crop in five replications of each treatment
arranged in a completely randomized design. Applying AM with Zn considerably increased the
lentils” growth, yield, and Zn content under saline and non-saline conditions. Under non-saline
soils, the treatment of AM + Zn significantly promoted the Zn content in the root (132.5%), shoot
(91.7%), grain (49.1%), root length (79.7%), plant height (33.7%), and SPAD value (29.9%). Under
saline conditions, application of AM + Zn promoted uptake of Zn in the root (218.5%), Zn content in
the shoot (175.7%), Zn accumulation in the grain (107.7%), root length (109.7%), plant height (37.8%),
and SPAD value (52.8%) compared to the control. According to the results, lentils should be grown
with AM and Zn to increase their growth, yield, and Zn content significantly. This is a cost-effective
and sustainable way to combat Zn deficiency in lentils.

Keywords: animal manure; biofortification; soil pH; salt stress; lentil; nutrient absorption

1. Introduction

The ever-increasing global population has resulted in a massive increase in land-based
resource use, converting agricultural land into agricultural determinations that farmers
cannot access [1]. As a result, producers are under pressure to produce more food to
feed the world’s growing population, and the goal of agriculture has shifted from human
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health and nutrition to producer profitability [2]. Because of this, more than half of the
world’s population is deficient in zinc (Zn), iron (Fe), iodine (I), and selenium (Se) [3].
Zinc malnutrition affects 50% of the world’s population [2,4,5], including nearly a third of
Pakistan’s population [6,7].

Zinc is a micronutrient vital for human, animal, and plant life cycles [8]. Its deficiency
has detrimental effects on cell growth, the reproductive system, and the immune system,
and causes around 800,000 deaths every year in the world’s poor population [3]. Zinc
shortages in plants result in tiny chlorotic leaves and reduced photosynthetic activity.
Pakistan’s soils are inherently alkaline and calcareous, with low organic matter and a high
pH, resulting in lower plant Zn accessibility. Zinc precipitation occurs in calcareous soils,
rendering it inaccessible to plants [9]. Its deficiency is the most limiting factor after nitrogen
(N) and phosphorus (P) in soils of high pH, like alkaline calcareous soils [10,11]. High
calcium carbonate (CaCOj3) and low organic matter are the main reasons for Zn deficiency
in arid and semi-arid regions [12]. Other reasons for low Zn in soil are parent material with
less Zn concentration [13,14], high pH of the soil [15], more P in soil [11], salt content [16],
low manure application [17], and the formation of complexes with the soil [18].

Food legumes are vital and diverse in farming systems and poor people’s diets world-
wide. They are perfect crops for attaining three developmental goals in a specific community
simultaneously: poverty reduction, improved human health and nutrition, and increased
environmental resilience [19]. Compared to other staple foods, lentils are considered a
relatively inexpensive source of whole foods, with a high protein and mineral content in
food and feed [20]. Despite varying climatic conditions, lentils are the most widely culti-
vated legumes in many developing countries [21]. This crop is primarily used as a low-cost,
high-quality protein component in the anthropological diet [22]. Thus, bio-fortifying lentils
with Zn can be a valuable tactic to counteract human Zn insufficiency while increasing
profits. This crop can be a Zn biofortification competitor, helping alleviate Zn deficiency
in developed and developing countries. Thus, it is crucial to solve this issue, which influ-
ences every third offspring in Pakistan. Various procedures such as breeding and modern
biotechnology (to provide micronutrients in crops) [23], the addition of micronutrients
to food sources, toppings, or drinks [24], administering micronutrients through tablets
and syrups [25], and the utilization of micronutrient-containing fertilizers [26] are being
investigated. Still, practical solutions are limited due to financial constraints and the nature
of Pakistan soil (which has more CaCOj, i.e., >3%, less organic matter, and a high pH).

Biofortification or increasing inanimate Zn in pulse grains through organic amendments
is a new, effective, and cost-efficient technique for treating Zn insufficiency [17]. Combining or-
ganic and inorganic amendments or nutrient sources to increase mineral nutrient concentration
has recently gained prominence in agriculture [27]. It is also helpful in overcoming the problem
of Zn insufficiency in developing countries. It acts as a substitute for synthetic chelates, and
using natural chelates rather than artificial chelates is a long-term approach. The application of
Zn ameliorated salinity by promoting plant photosynthetic capacity and antioxidant enzymes,
as well as promoting the phytoavailability of Zn for plant uptake. Many researchers have
studied the effect of organic amendments on plant growth, development, yield, and the bio-
fortification of zinc [28,29]. However, little has been observed on the impact of different types
of processed animal manure on Zn biofortification. We hypothesized that processed manure
and Zn application could promote plant growth, yield, and Zn biofortification in lentils under
saline and non-saline conditions. The current study aimed to investigate the effect of processed
manures and Zn on lentil growth, physiology, and yield, and to biofortify Zn in lentil grains
under saline and non-saline conditions.

2. Materials and Methods
2.1. Experimental Site and Soil Analysis

A pot study was conducted in October 2020 in the net house of the Institute of Soil
and Environmental Sciences (ISES), University of Agriculture, Faisalabad (UAF), Pakistan.
A composite sample of the prepared soil was subjected to several physiochemical analyses
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before the experiment. Almost 250 g of prepared soil sample was used to make a saturated
soil paste to measure soil pH, electrical conductivity (EC), and saturation percentage. After
preparing the saturated paste, the pH was determined using a digital pH meter. After
calibrating the EC meter with a 0.01 N solution of potassium chloride (KCl), the EC of
the extract was determined with an EC meter (Jenway, London, UK) in dSm~!. The soil
saturation percentage was measured after measuring the oven-dried weight of the paste
and the china dish. For the soil texture analysis, the Bouyoucos hydrometer technique was
used. The Walkley and Black technique was used to measure the organic carbon content in
the soil [30]. To extract the zinc (Zn), a solution of AB-DTPA (20 mL) was poured into 10 g of
soil and shaken for fifteen minutes. The filtrate was collected using Whatman No. 42 filter
paper. Following the method of [31], the extract was analyzed using an atomic absorption
spectrophotometer. Total nitrogen (N) from the experimental soil sample was determined
following the standard Kjeldahl process [32]. Extractable potassium (K) determination was
carried out through a flame photometer, and phosphorus (P) was measured by a sodium
bicarbonate solution, which is called Olsen P [33] (see Table 1).

Table 1. Characteristics of the experimental soil and normal, composted, and acidified manures.

Parameters Soil FM CM AM
pH 7.7 7.5 6.8 2.2
ECe (normal soil) 1.48dSm™! - - -

ECe (saline soil) 8.00dSm™! - - -

Soil Texture Sandy clay loam (plaggic) - - -

CEC 12.1 c molc kg~ ! - - -
Organic matter 7.20 g kg™! - - -
Saturation percentage  38% - - -
Carbon 2.37% 46.30% 24.60% 56.30%
Nitrogen 0.31 mg kg~ ! 0.47% 0.52% 0.49%
Potassium 87 mg kg~ ! 0.25% 0.27% 0.26%
Phosphorus 3.64 mg kg ! 0.56% 0.60% 0.69%
Zinc 2-25mgkg~! 40mg kg~! 43mgkg™! 47mgkg!

Ece: electrical conductivity of soil extract; CEC: cation change capacity of soil; FM: fresh manure; CM: composted
manure; AM: animal manure.

2.2. Preparation of Processed/Acidified Animal Manure and Composts

Animal manure was taken from the Directorate of Farms of the University of Agriculture,
Faisalabad. It was divided into three parts, i.e., one part was processed to prepare acidified
manure (AM) by treating the collected animal manure with elemental sulfur and microbes
(bioaugmentation) to lower the pH to 2.0-2.5; the second part of the animal manure was
processed for composting (composted manure; CM); the remaining third part of the animal
manure was used without processing (fresh manure: FM). Sulfur-oxidizing bacterial (SOB)
Acidithiobacillus thiooxidan, was previously isolated and evaluated for lowering the pH of
composted manure. For the SOB A. thicoxidan purification, the isolate was inoculated into
a thiosulphate agar medium. The SOB A. thiooxidan was cultivated, and the results of the
sulfate concentration tests were compared, revealing the presence of sulfur-oxidizing bacteria.
Sulfate concentrations of 12-80 mmol/L were detected in the A. thiooxidan cultures after
7-23 days of incubation (final pH 1.5-2.5) using the barium sulfate precipitation method, with
up to 424 mmol/L after 45 days (final pH 1.5). Then, acidified manure was prepared using
bioaugmentation of elemental sulpher (5°) and adding cow dung with sulfur-oxidizing bacteria.
Different amounts of S° were blended with the cow manure, and after an incubation period,
the formulation with the lowest pH result was chosen for further research. On the 15th day
of incubation, an amendment of 2-2.5 pH was achieved at 25 °C temperature, 60-65 percent
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moisture, and 0.40 percent molasses in the presence of effective SOB A. thiooxidan. Then, under
pot conditions, the acidified manure (AM) was chosen for further investigation to improve
lentil growth, yield, and biofortification with zinc.

For the compost preparation, this study used a self-heating composter, due to the
breakdown of the cow manure, in which the temperature was regulated. The composter
was a rectangular container 15 cm long, 15 cm wide, and 30 cm high. Natural ventilation
was achieved by perforating the container with two holes (0.5 cm) on the side of the
insulating wall. Urea was employed as the N source to modify the C/N ratio. To adapt
the C/N ratio to 20:1-30:1, fresh manure and urea were mixed at a 300:1 (w/w) ratio. In
the composter, fifteen kilograms (15 kg) of mixed material was placed. Adding tap water
adjusted the initial moisture level to roughly 60%. The moisture content of the compost
was uncontrolled during the composting process. In the first 18 days, the mixture was
physically turned twice a week, then once a week until the end. Composting was judged
complete when the temperature of the composters reached room temperature for more
than 15 days. Samples were taken once after the composting process was completed to
evaluate the pH. After blending, 20 g of moist sample was collected from the container at
three points. The sample was tested for pH (1:2.5) on a dilution base.

2.3. Experimental Design and Treatments

The pot experiment was conducted during the 2020-2021 lentil cropping season in the
ISES, UAF warehouse. The soil was collected in a bulk quantity, then dried and ground.
After grinding the soil, it was passed through a 2 mm sieve. The experimental treatment
comprised the control, fresh manure (FM), composted manure (CM), and acidified manure
(AM) and was applied along with ZnSO, 25 kg ha~! and without Zn application (native soil
Zn). The application of 25 kg Zn ha~! was selected using recommendations for Pakistan
soil [34]. In total, 96 pots were used, including 48 each for the non-saline and saline soils.
One group of 48 pots was filled with eight kilograms of soil from a field with saline soil,
and eight kilograms of regular soil was used in the other 48 pots for the experiment. Before
sowing, urea for nitrogen (N), di-ammonium phosphate (DAP) for phosphorous (P), and
sulfate of potash (SOP) for potassium (K) were mixed in the soil as per recommended dose
(32:57:59 kg ha—1). Lentil variety Masoor 2021 seeds were taken from the Pulses Section of
the Ayub Agriculture Research Institute in Faisalabad. Six seeds were planted in each pot.
Tap water was applied for irrigation. The pots were arranged in a completely randomized
design (CRD) with six replicates of each treatment. When planting, water was filled in the
pots up to each pot’s maximum capacity. After this, irrigation was applied at appropriate
intervals until the crop’s maturity, depending upon the plant’s requirement. For plant
protection, all possible measures were considered when needed. No weedicide was applied;
the weeds were removed manually instead of spraying the weeds.

2.4. Agronomic and Physiological Attributes

The data linked to the yield and growth of the lentil crop was observed at maturity
and after harvesting the crop. Root length, shoot length, and pod length were measured
after being separated from the lentil plant using a meter rod. The fresh weight of the lentil
shoot, root, and pod was measured using a digital weighing balance after harvesting. For
the shoot and root dry weight, shoots and roots were cut into small pieces using scissors
and put into paper bags with labels. Afterward, they were placed under the sun to dry
for 3—4 days. Then, these bags were put in the oven at 65 °C until achieving their constant
weight. The pods were shaded and sun-dried for three days before being dried in an oven
for 24 h at 65 °C to determine their dry weight. After oven-drying, the samples were
weighed using a weighing balance. Grains were separated from the pods by manually
threshing each replication separately after drying. The number of grains per pod from each
treatment was counted. After removing the grains, the husk weight was calculated. One
hundred grains of each replication were calculated, and their weight was measured using a
weighing balance. After harvesting the plants, the shoots, leaves, and pods were weighed
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together to determine bio-yield. At the vegetative stage, three of the six replications were
harvested to count the number of nodules in the lentil crop.

An infrared gas analyzer (IRGA) was used to note and determine the physiological
parameters of the lentils at the flowering stage of the crop. The conductance of stomata,
internal CO, of sub-stomata, and rate of transpiration, evaporation, photosynthesis, and
respiration were measured using the IRGA in the presence of sunlight. The chlorophyll
content was measured by taking the SPAD value using a chlorophyll meter. Samples of
0.5 g of leaves from each treatment were homogenized with 80 percent acetone (v/v) and
filtered through a filter paper for chlorophyll pigments. A spectrophotometer was used to
measure the absorbance of the resultant solution at 663, 645, and 480 nm for chlorophyll
a, b, and carotenoids, respectively [35]. The relative water content was determined by
adopting the method reported by Teulat et al. [36].

Electrolyte leakage was determined using the method of Lutts et al. [37], which
involves cutting uniform leaf discs from each treatment plant using a sharp cork borer.
The leaf discs were inserted into a test tube with 5 mL of distilled water separately for
each treatment replication. By inserting the conductivity meter’s probe into the solution,
the conductivity of the solution was determined. The ion leakage from the leaf discs was
shown in this way (Readingl). The leaf disc-containing solution was autoclaved. The
conductivity of the solution was measured after the liquid had cooled down, and the total
ion concentration in the leaf discs was determined (Reading 2). Ion leakage was calculated
as a proportion of total ions leaked (Readingl/Reading2 x 100).

2.5. Grain Quality Assessment

The protein content of the grains was measured from the nitrogen content of the grains [38].
Abrahém et al.’s [39] method was adopted to determine the free proline content. One gram
of leaves was homogenized in 3% sulfosalicylic acid and filtered through Whatman filter
paper No. 2. The mixture was heated in a water bath at 100 °C for one hour after adding acid
ninhydrin and glacial acetic acid, and the process was stopped with an ice bath. The absorbance
of the filtrate was measured at 520 nm after extraction with toluene. The concentration of
proline was calculated using a standard curve and represented as a percentage (%). Standard
procedures were followed to determine NPK and Zn in the grains, husks, shoots, and roots.
Samples of plant shoots, roots, husks, and grains were prepared for digestion after sun drying,
followed by oven drying at 65 °C, and grinding each treatment replication. The lentil husks
from the grains were separated manually and also subjected to chemical analysis. For the
determination of Zn, P, and K in the different plant parts, the Wolf [40] digestion procedure
was followed. These three nutrients can be determined from the same digest. To determine
nitrogen (N) in different plant parts, the samples were digested using concentrated sulfuric
acid and hydrogen peroxide (2:1).

Zinc (Zn) analysis from the grains, husks, shoots, and roots was carried out using an
atomic absorption spectrophotometer (AAS). The Olsen and Sommers [33] method was
used to determine the amount of phosphorus (P) in the grains, husks, shoots, and roots.
Potassium analysis from grains, husks, shoots, and roots was performed through a flame
photometer. The nitrogen content of the grains, husks, shoots, and roots was measured
using the digested samples in the Kjeldahl apparatus [32].

2.6. Statistical Analysis

Statistix 8.1 software was used for statistical analysis. The principal component analy-
sis (PCA) was conducted using XLSTAT software version 2018, and the correlation graph
was created using R-studio-2023. For a complete randomized design, the data in the experi-
ment were analyzed using a two-factor ANOVA approach. At p < 0.05, Fisher’s protected
least significant difference (LSD) was used to separate the means [41]. Microsoft Excel
2013 was used to create the graphs and determine standard errors (Microsoft, Redmond,
WA, USA). The response of Zn concentration in the root, shoot, husk, and grain to soil Zn
treatment and organic amendments was evaluated using general linear models.
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3. Results

The characteristics of the three types of tested manures, including FM, CM, and AM,
are given in Table 1. Among the tested manures, the lowest pH of 2.2 was shown by the
AM, and the FM showed a pH of 7.5. The AM manure had the highest carbon of 56.30%,
phosphorus of 0.69%, and zinc of 47 mg kg~!. The CM manure reported higher nitrogen
contents of 0.52% and potassium contents of 0.27%.

3.1. Agronomic Attributes of Crop

Zn significantly influenced the shoot and root length in non-saline and saline soils
compared to the control (Figure 1). In non-saline soil, all the Zn treatments considerably
increased shoot and root lengths compared to the control, with a 45% increase in shoot
length and a 115.5% increase in root length found in the AM with Zn treatment compared
to the control (without Zn). In saline soil, a similar trend was observed, with a 45% increase
in shoot length and a 110% increase in root length, respectively (Figure 1). In the same
way, the highest increases in shoot length (25%, 40.5%) and root length (81%, 85%) were
reported without Zn treatment in both non-saline and saline soils compared to their control.
The CM with Zn also substantially influenced the pod number and the number of branches
compared to the control and the NM in both non-saline and saline soils (Figure 1). When
compared to the control (without Zn), adding CM with Zn resulted in a considerable
increase in the number of pods and branches in both non-saline and saline soils, with
the most significant increase in the number of pods (84.9%, 76.1%) and branches (138.9%,
128.6%). In the treatment where the CM without Zn was employed, the most considerable
values of the number of pods (60.19%, 59.26%) and the number of branches (72.22%, 64.27%)
were seen in both non-saline and saline soils, when compared to the control.
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W 62.2mgZnkg-1
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15) 7 ]
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Figure 1. Effects of using different organic amendments with zinc (Zn) application on husks
weight (A), pods weight (B), No. of pods/plant (C), No. of branches/plant (D), root length (E), and
shoot length (F) under saline and non-saline soil conditions. At the 5% probability level, means with
different letters are significantly different according to LSD. (Con: control; NM: normal manure; CM:
compost manure; AM: acidified manure).
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3.2. Physiological Attributes of Crop

The relative water contents, stomatal conductance, sub-stomatal conductance, pho-
tosynthetic rate, and transpiration rate were much higher in the condition in which AM
with Zn was applied than in the control and all the other treatments in both non-saline
and saline soils (Figure 2). The relative water content (50%, 49.5%), stomatal conductance
(160%, 138%), sub-stomatal conductance (95.5%, 88%), photosynthesis rate (199%, 193%),
and transpiration rate (138%, 129.5%) were all significantly increased in both the non-saline
and saline soils, compared to the control (without Zn), when AM with Zn was applied.
In the treatment when AM without Zn was used, the maximum values of relative water
content (33%, 31%), stomatal conductance (119%, 83%), sub-stomatal conductance (75.5%,
58%), photosynthetic rate (160%, 98%), and transpiration rate (134%, 85%) were found in
non-saline and saline soils, when compared to the control.

IS
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M62.2 mg Zn kg-1

pb

N w

-
o

o
o bk e w b e n
P S S W S S S R S

Photosynthetic rate (4 mol m-2 s-1)
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Con NM CM AM

Saline Soil

Figure 2. Effects of using different organic amendments and zinc (Zn) application on SPAD value (A),
photosynthesis rate (B), transpiration rate (C), stomatal conductance (D), sub-stomatal conductance (E),
chlorophyll value, electrolyte leakage (F), and relative water content (G) under saline and non-saline
soil conditions. At the 5% probability level, the means with different letters are significantly different
according to LSD. (Con: control; NM: normal manure; CM: compost manure; AM: acidified manure).

There was a significant increase in the SPAD value in both non-saline and saline soils
in the AM with Zn treatment compared to the control and all the other treatments with and
without Zn, and a maximum increase in the SPAD value (50%) was found in the non-saline
soil (Figure 2) when compared to the control. Similarly, in the saline soil, the maximum SPAD
value (49.31%) was seen in the treatment where AM without Zn was applied compared to the
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control. Introducing AM with Zn in non-saline soil decreased the electrolyte leakage content
(45.46%). In contrast, saline soil reduced electrolyte leakage content (34.18%) compared to the
control. When AM without Zn was applied to non-saline and saline soils, the lowest value of
electrolyte leakage content (34.46%, 25.77%) was observed when compared to the control.

3.3. Grain Quality and Nutrient Analyses

In both non-saline and saline soils, applying NM with and without Zn to the soil signifi-
cantly decreased the N, P, K, and Zn content in the roots, shoots, husks, and pods compared
to all the other treatments except the control (Figures 3 and 4). In non-saline soil, adding
AM with Zn increased the N, P, K, and Zn content compared to the control and all the other
treatments with and without Zn, with maximum values of 162.4%, 127.8%, 177.1%, and 151.6%,
respectively, in the grain when compared to the control, whereas in saline soil, the AM with Zn
increased the N, P, K and Zn content compared to the control, with maximum values of 86.4%,
81.5%, 161.5%, and 115.8%, respectively, in the grain. Adding Zn to the treatments affects the
N, P, K, and Zn content in the roots, shoots, husks, and pods. While in both non-saline and
saline soils, the CM with Zn increased the N, P, K, and Zn content by 88.1% and 74.08%, 93.4%
and 45.3%, 121.9% and 118.9%, 110.9% and 60.52% in the grain, respectively.
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Figure 3. Effects of different organic amendments and zinc (Zn) on N content in roots (A), shoots (B),
seeds (C), and husks (D); P content in roots (E), shoots (F), seeds (G), and husks (H); and K content in
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roots (I), shoots (J), seeds (K), and husks (L) under saline and non-saline soil conditions. At the
5% probability level, means with different letters are significantly different according to LSD; (Con:
control; NM: normal manure; CM: compost manure; AM: acidified manure).

140 7 A m2.2 mgZnkg-1
120 | M 62.2mgZnkg-1

=
A OO ®© O
o o o o

Znin root (mg Kg1)
Znin shoot (mg Kg™)

[
o o

Con NM CM AM|[Con NM CM AM

Non-saline Soil Saline Soil

Zn in seed (mg Kg!)
— (5] w By W [N
(=) [} (=} S e S S

Con NM CM AM|Con NM CM AM Con NM CM AM|Con NM CM AM

Non-saline Soil Saline Soil
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Figure 4. Effects of different organic amendments with and without zinc (Zn) as well as their control
on the Zn in roots (A), shoots (B), seeds (C), and husks (D) under saline and non-saline soil conditions.
At the 5% probability level, means with different letters are significantly different according to LSD;
(Con: control; NM: normal manure; CM: compost manure; AM: acidified manure).

3.4. Results from PCA and Correlation

Agronomic (biological yield, plant height, root length, number of nodules, husk weight,
pod weight, shoot fresh weight, root fresh weight, and 100-grain weight), physiological
(photosynthesis rate, transpiration rate, stomatal conductance, relative water content,
electrolyte leakage, and SPAD index), biochemical (protein and proline), and chemical
parameters (nitrogen, phosphorus, potash, and zinc in the grain) were found to have
substantial positive and negative correlations (Figure 5). The score and loading plots of
the principal component analysis are shown in the Figure (PCA). Within the dataset, the
first two PCA components revealed the highest variance (95.5%) of all the parameters
studied, with PC1 accounting for 90.04 percent of the variation and PC2 for 5.54 percent.
Furthermore, the first two components successfully displaced all of the applied treatments.
This treatment experiment demonstrated that the application of acidified manure, alone or
in combination with zinc, had a substantial ameliorative effect on all of the examined lentil
plant characteristics compared to the control (Figure 5). The PCA variables with parameters
had a beneficial impact on PC1 (relative water contents, SPAD value, pH, pods weight,
root fresh weight, root length, No. of nodules, nitrogen in grain, protein grain, shoot
fresh weight, potassium in grain, Biological yield, Zn in grain, 100 grains weight, husk
weight, stomatal conductance, transpiration rate, photosynthetic rate, and phosphorus in
grain), whereas PC2 was positively influenced in the PCA observations of Con SS, Con NS,
Con + Zn (NS), Con + Zn (5S), NM, NM + Zn, CM, CM + Zn, and AM. Furthermore, the
parameters of PC1 and PC2 were found to have a solid negative connection.
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Figure 5. (A) In the principal component analysis of observations and variables, the first two
components revealed 95.59% of the variability between the used treatments. They investigated the
parameters of lentil plants under different organic amendments with and without Zn in normal
and saline soil. Observations are as follows: NM = normal manure; CM = composted manure;
AM = acidified manure; NM + Zn = normal manure + zinc; CM + Zn = composted manure + zing;
AM + Zn = acidified manure + zinc. (B) A statistically significant relationship exists between lentil
agronomic, physiological, chemical, and biochemical parameters and their grain Zn concentrations
(p = 0.05) in non-saline and saline soil under different organic amendments with or without Zn. Trans
Rate: transpiration rate; Stom Con: stomatal conductance; Sh fresh wt: shoot fresh weight; Sh dry wit:
shoot dry weight; Ro fresh wt: Root fresh weight; Ro dry wt: root dry weight; RWC: relative water
contents; Prote in grain: protein in grain; Pods wt: pod weight; Phot Rate: photosynthesis rate; P in
grain: phosphorus in grain; K in grain: potassium in grain; Husk wt: husk weight; SPAD Chlo: SPAD
chlorophyll; No. of nodu: number of nodules; 1000 G.W: 1000 grain weight; Bio Yi: biological yield.

4. Discussion

Increased plant growth indicates the best effects from the acidified manure, which, by
improving the pH, activates the soil’s micronutrients (i.e., Zn) and makes them available
for the plant. This may be due to various mechanisms, including the pH of the soil, to make
the nutrients mobilize in the soil and more available to the plant [42]; manure contains
substances that increase the number of nutrients in the soil that regulate plant growth
by reducing the ammonia volatilization [43,44]. In both non-saline and saline soils, the
physiological parameters like photosynthetic rate, transpiration rate, and chlorophyll were
much higher when AM with Zn was applied than in the control and all the other treatments
in both non-saline and saline soils. This is because micronutrients play a crucial role in
many of the plant’s physiological processes, like enzyme activity [45], photosynthesis [46],
and physiology, which are essential for the growth and development of plants [47].

Adding acidified manure to the soil improved the physiological properties of maize
grown in tannery-polluted soil [48]. By disorganizing chloroplasts and halting the electron
transport chain reaction, chromium toxicity in soil has a detrimental impact on chlorophyll
concentration, electrolyte leakage, and relative water content in leaves [49]. Protoporphyrin
binding is disrupted due to decreased iron availability caused by chromium poisoning, and
ROS generation destroys protein complexes and hinders chlorophyll synthesis [50]. Biochar
significantly improved chlorophyll content, photosynthetic rate, transpiration rate, and
stomatal conductance when coupled with solid acidified manure and lowered electrolyte
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leakage [48]. These findings can be explained by the fact that after adding acidified manure
to polluted soil, the concentration of AB-DTPA Cr in the soil was significantly reduced.

Zinc spraying boosted chlorophyll production in safflower, according to research,
demonstrating the importance of zinc in nitrogen metabolism and chlorophyll forma-
tion [51]. Zinc caused chlorophyll to be produced due to sulfhydryl group protection [52].
In reality, zinc is essential for the functioning of enzymes involved in the manufacture of
chlorophyll [53]. The fall in chlorophyll content was due to a lack of water. The highest
chlorophyll concentration was found in zinc oxide during blooming, heading, and grain-
filling stages, whereas the lowest was found in the control. Behtash et al.’s [54] findings
on red beet embryos reveal that zinc prevented cadmium from destroying chlorophyll
and substantially influenced chlorophyll index and chlorophyll content compared to the
control treatment.

When stressed, plants close their stomata to limit their transpiration rate, reducing
water loss to the environment. The signaling molecule, abscisic acid, produced in the
roots, regulates this process. The generation of reactive oxygen species (ROS) is slowed
by limiting transpiration [55]. In reaction to drought and salinity stress, stomata close due
to reduced leaf turgor, air vapor pressure, and root-generated chemical signals [56]. Thus,
mesophyll conductance and stomatal closure reduction in tense situations are typically
linked to a decreased photosynthetic rate [56]. To preserve water, plants grown in drought
have decreased stomatal conductance. According to several studies, stomata shut during
the early phases of drought stress, resulting in higher water use efficiency. Zn shortage
reduces photosynthetic capacity due to a decrease in stomatal conductance, according to
Wang and Jin [57]. Stomata closure has been shown to restrict water transpiration more
than CO, diffusion into leaf tissues [58]. According to Saboor et al. [59], biofertilizers and
zinc application increase stomatal conductance in the flowering, heading, and grain-filling
stages compared to the control under the same water limitation level. This could be due to
acidified manure, which lowered soil pH and increased plant zinc availability.

When zinc was added, the electrical conductivity content dropped considerably [60].
Plant membranes undergo alterations in response to environmental stresses, typically
linked to increased permeability and integrity loss [60]. Plants” ability to preserve mem-
brane integrity under drought impacts their drought tolerance. Drought-stressed maize
plants have more electrolyte leakage than plants grown under control conditions, according
to Quan et al. [61]. Zn also protects the bio-membrane from oxidative and peroxidative
damage, loss of plasma membrane integrity, and changes in membrane permeability by
stabilizing and protecting it [52]. These findings are comparable to those of navy beans and
spinach [62]. Enzyme activity rose linearly as Zn concentration in leaf blades increased,
indicating that enzyme activity and Zn concentration were closely linked. According to
Huang [63], Zn closely interacts with enzymes. The extent of net photosynthesis and chloro-
phyll synthesis suppression was determined by the blade’s Zn status [64]. Fu et al. [65]
found that a Zn shortage in apple leaves reduced net photosynthesis. Photosynthesis has
been connected to Zn content in the leaves of plants that grow in higher Zn-supplied soils,
with a critical Zn content of 14 g/g [64]. According to our findings, as zinc concentration
rises, enzyme activity increases, resulting in a higher rate of photosynthesis.

Agronomic parameters, like the number of nodules, biological yield, root-shoot fresh
weight, and root-shoot length, were greatly enhanced when zinc was used with the AM.
Pedersen et al. [66] recently found that applying sulfuric acid-acidified manure slurry to
sandy soil increased nutrient bioavailability and plant vegetative development. Other
researchers agreed that micronutrients improved plant growth characteristics such as
leaf numbers per plant [67], plant biological yield [68], the diameter of the stem, plant
length [69], and other production-related parameters [45]. Substantial increase in the
amount of Zn and growth stage improvement increases the number of nodules [70] per
plant, productive number of branches [71], and dry weight of the shoot [72]. In the case
of 100-grain weight, a combined application of zinc + AM exhibited the most significant
increase, which was related to improved nutrient uptake because of a decrease in pH, faster
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growth of roots, and thus higher 100-grain weight and plant biomass. Zhao et al. [18]
discovered that soil pH was the most critical factor in controlling the solubility of nutrients
from soil surfaces, mineral diversification, and the ultimate accessibility and transport of
essential micronutrients in the soil. According to Uprety et al. [73], applying acidic compost
to the soil can significantly boost the concentration of micronutrients in soil; manure was
used as a basic material in this case, which increased micronutrient availability for a maize
plant and its development and production [74]. Our findings agreed with those of Tariq
et al. [67] and Lana et al. [75], who found that micronutrients were important in achieving
greater yields and growth of plants. Other crops have seen significant increases in grain
production after the Zn application [52].

The uptake of nitrogen, phosphorus, potassium, and zinc was measured in the roots,
shoots, husks, and grains of lentils, with the best results coming from treatments that
included both acidified manure and zinc. As a result of S, oxidation, acid was produced,
lowering the pH of the soil and permitting the dissolution of adsorbed and precipitated
nutrients [76,77]. It was also hypothesized that S, oxidation would desorb the valuable
nutrients from the surfaces of the minerals and substitute micronutrients such as Zn, Fe,
Mn, etc., from minerals surfaces like aluminum hydroxide and organic compounds [78,79].
Moreover, the sulfate formed by S, oxidation has sites with a negative charge where metal
complexation occurs, which seems easy for plant roots to access. Correcting pH with acids
like organic acids (gallic, oxalic, and citric acids), HNOj3, and acetic acid improved nutrient
availability and explored the effect that the addition of acids to soil mobilizes nutrients
from minerals through carbonate dissolution, which aids in the soils” buffering [80-82]. The
acids aid in dissolving calcium minerals, and the amount and kind of carbonate present;
these, in addition to particle size and sample size, all influence solubility. Consequently,
these improve micronutrient uptake by plants and the properties of salt-affected soil [83].
Finally, in both non-saline and saline soils, the application of acidified manure with zinc
improved all lentil growth, yield, and nutrient uptake metrics compared to the control and
other treatments. Further, acidified manure (1% w/w of soil) with the recommended dose of
zinc ensures there is enough for plants without additional input, as plants did not respond
well to NM and composted manure with the recommended dose of zinc in non-saline
and saline soils compared to the acidified manure. In the case of the acidified manure,
the greatest response was attributed to factors such as the solubilization of minerals by
H,S0, and bacterial production of organic acids, both of which aid in the dissolution and
absorption of micronutrients, as well as micronutrient buildup in plants and their grains.

5. Conclusions

e  Saline conditions most significantly affected plant growth, yield, and nutrient uptake
in lentils. Applying zinc with various types of manure alleviated saline toxicity
in lentils.

e Acidified manure with zinc (62.2 mg kg~ ') showed the most significant increase
in plant growth, physiology, yield, and nutrient uptake in lentils under saline and
non-saline conditions.

e  The treated zinc and acidified manure yielded higher N, P, K, and Zn contents, but the
difference between sole and combined applications of these treatments was negligible.
The Zn and acidified manure allowed plants to absorb the nutrients necessary to attain
their sufficiency level.

e The pH of the soil dropped for a shorter length of time due to acidification by S
oxidation, and this pH shock mobilized soil nutrients and made them highly accessible
to the plants.

e  On the other hand, the tested soil was equipped with a capacity for buffering pH
changes; therefore, this product would be better used when the crop has its highest
nutritional requirement.
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