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Abstract: In Indonesia, where the agricultural insurance system has been in full operation since 2016,
a new damage assessment estimation formula for rice diseases was created through integrating the
current damage assessment method and unmanned aerial vehicle (UAV) multispectral remote sensing
data to improve the efficiency and precision of damage assessment work performed for the payments
of insurance claims. The new method can quickly and efficiently output objective assessment results.
In this study, UAV images and bacterial leaf blight (BLB) rice damage assessment data were acquired
during the rainy and dry seasons of 2021 and 2022 in West Java, Indonesia, where serious BLB damage
occurs every year. The six-level BLB score (0, 1, 3, 5, 7, and 9) and damage intensity calculated from
the score were used as the BLB damage assessment data. The relationship between normalized UAV
data, normalized difference vegetation index (NDVI), and BLB score showed significant correlations
at the 1% level. The analysis of damage intensities and UAV data for paddy plots in all cropping
seasons showed high correlation coefficients with the normalized red band, normalized near-infrared
band, and NDVI, similar to the results of the BLB score analysis. However, for paddy plots with
damage intensities of 70% or higher, the biased numbering of the BLB score data may have affected
the evaluation results. Therefore, we conducted an analysis using an average of 1090 survey points
for each BLB score and confirmed a strong relationship, with correlation coefficients exceeding 0.9 for
the normalized red band, normalized near-infrared band, and NDVI. Through comparing the time
required by the current assessment method with that required by the assessment method integrating
UAV data, it was demonstrated that the evaluation time was reduced by more than 60% on average.
We are able to propose a new assessment method for the Indonesian government to achieve complete
objective enumeration.

Keywords: food security; remote sensing; agricultural insurance; pest and diseases

1. Introduction

Climate change is expected to expose humankind to various risks in the future. The
Sixth Assessment Report released by the Intergovernmental Panel on Climate Change
(IPCC) in August 2021 lists food security as a major threat [1]. Diseases, insects, droughts,
and floods caused by extreme weather and other factors can damage crops and require
considerable labor and costs to recover farmland and plant the next crop [2–4]. Farmers
with insecure economic foundations are forced to leave their farms, which further threatens
food security.

Serious damage is expected to occur primarily in developing countries, where a variety
of policies have been proposed. In Indonesia, where rice is the primary crop [5], a farmer
protection and empowerment law was enacted in 2013 [6]. As a result, an agricultural
insurance system was launched in 2016, under which the government paid compensation
for damage to rice paddies caused by pests, diseases, drought, and floods [7–9]. The
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current damage assessment method in Indonesia involves selecting only three paddy plots
from the terminal irrigation area, which includes approximately 50–300 plots, and having
an assessor called a pest observer visually assess the damage to 10 rice plants on the
diagonal of one paddy plot. The average damage to the entire damaged area is calculated
based on the evaluation of 30 rice plants. In Indonesia, an objective evaluation method
acceptable to insurance subscribers is required because the results of the visual damage
evaluation method may differ between assessors [10,11]. Recently, there has been a growing
expectation to build more robust and efficient methods for detecting paddy rice diseases
using machine and deep learning, as automated approaches to detect leaf diseases can help
farmers detect diseases with or without human intervention [12–15].

Promptness is especially important when operating insurance programs in Southeast
Asia. A prolonged evaluation time can lead to further losses, such as missing the next
rice-planting season. Indonesia has wet and dry seasons, and two or three rice crops per
year are commonly grown in two or three cropping seasons. Damaged paddy fields must be
maintained in their current state until damage assessors complete their evaluation; however,
the limited number of assessors limits their ability to quickly produce damage assessment
results. Therefore, we have improved the current evaluation method to construct a new
damage assessment method that can efficiently and quickly evaluate damage and output
objective evaluation results.

Bacterial leaf blight (BLB) is a serious disease that occurs annually in West Java,
Indonesia, where this study was conducted. Although resistant rice varieties have been
cultivated and chemicals are sprayed to ensure stable rice production, the occurrence of
BLB damage has not ended and a policy to protect farmers through agricultural insurance
has been adopted. The key to agricultural insurance is objective, prompt, and inexpensive
damage assessment, and remote sensing technology is expected to be utilized for its
advantages, such as wide-area information, immediacy, and objectivity [16]. Research has
already been conducted in Indonesia using satellite data to estimate paddy rice production,
the transplanting dates of rice crops, and to assess drought damage [17–20], and it has been
reported that satellite remote sensing data can be applied even in Indonesia, where the area
of a single paddy field is small. Meanwhile, remote sensing data has been acquired using
satellites, aircraft, helicopters, and unmanned aerial vehicles, although satellite remote
sensing data has limitations in understanding in-field variability, such as in precision
agriculture [21]. Among these platforms, multirotor drones are the most promising for
smart farming [22], and there is a need to develop a damage assessment method using
unmanned aerial vehicle (UAV) remote sensing for assessment of disease damage.

Previous studies on crop diseases using remote sensing data have reported that the
sensitivity of near-infrared and short-wavelength infrared reflectance to the degree of BLB
infection is high [23] and that the difference in reflectance between healthy and BLB-infected
rice plants is pronounced in the 770–860 nm and 920–1050 nm wavelength ranges [24].
UAV imagery analysis in rice paddies in Bali, Indonesia, confirmed that vegetation indices,
normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), and
normalized difference red edge (NDRE) had a strong linear correlation with BLB damage
intensity [25]. Studies using aircraft and UAV observation data have evaluated the severity
of BLB, rice blast, and rice spot disease [26–28]. Studies have also reported examining crop
growth monitoring using an RGB camera on a UAV, from a low-cost perspective [29,30].
Studies using satellite observation data to detect crop diseases have included the detection
of rice blast, rice sesame leaf blight, and yellow rust [31,32]. Studies using multispectral
data from LISS-IV satellite observations to detect rice stress caused by BLB at the regional
level [33] and a study evaluating the correlation between BLB damage severity and spectral
indices from Sentinel-2 data have also been reported [34–36]. These reports show that
reflectance data in the visible and near-infrared regions and vegetation indices calculated
from reflectance are useful for understanding BLB and other diseases.

Therefore, this study reports a precise assessment of BLB damage using UAV multi-
spectral remote sensing data in West Java, Indonesia, where serious BLB damage occurs
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annually, and examines the feasibility of reducing the damage assessment time via inte-
grating current assessment methods and UAV data to create a new damage assessment
estimation formula.

2. Materials and Methods
2.1. Study Area

The target area for this study was the Cihea Irrigation District (6◦50′ S, 107◦16′ E) in the
northeastern part of Cihea, Cianjur Province, West Java, Republic of Indonesia (Figure 1a).
This area is located just below the equator and has a tropical climate throughout the year,
with a dry season from April to October and a rainy season from November to March. In
this study, both dry and rainy season cropping from 2021 to 2022 were considered.
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The target area was a large irrigated district of approximately 8000 ha. Severe damage
occurred annually over a wide area because the BLB bacteria that developed at one location
were carried downstream by irrigation water and spread over the entire area. In addition,
the shape and size of the fields were not uniform, and each irrigated area was characterized
by a mixture of fields at different growth stages owing to different planting times. In
this study, the 250 ha irrigated area shown in Figure 1b was set as a test site, and several
irrigated areas where BLB had occurred were selected for investigation. The rice variety
grown in both years was Inpari 32, and the soil type in the area was identified as Inceptisol
based on our previous soil auger and soil cross-sectional surveys [17].

2.2. Characteristics of the Target Disease; Bacterial Leaf Blight Disease of Rice

BLB is a disease caused by Xanthomonas oryzae pv. Studies on bacteriophages have
shown that bacteria are transported through the flow of irrigation water. The disease
has been confirmed to occur in rice-growing regions worldwide, including tropical and
temperate Asia, West Africa, and Central and South America [37,38]. Breeding disease-
resistant varieties is an effective and economical method for controlling BLB [39]. Resistant
varieties have been introduced to the study area in recent years; however, disease outbreaks
remain uncontrolled.

The disease symptoms of BLB include yellowing at the leaf margins, yellow irregular
spots, or blotches that gradually expand and merge into wavy lesions that turn yellowish
white or white and then turn grayish white and die at the tip of the leaf [40]. The border
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between the dead and healthy areas, that is, near the leaf margins and lesions, is marked
by the appearance of small yellow granular mucilage masses that overflow from the pores
and harden, distinguishing it from natural mortality. Figure 2 shows the symptoms of BLB
with different degrees of damage observed in the field.
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BLB increases the risk of yield loss early in the infected growth stage. Therefore, proper
cultivation and management are important. Major measures include the cultivation of
resistant varieties, removal of weeds, stumps, and seedlings that harbor the fungus, and
spraying with pesticides.

2.3. Current Damage Assessment Method in Agricultural Insurance in Indonesia

Damage assessments in agricultural insurance are performed by loss assessors known
as pest observers, who are local state government employees. Visual assessment is con-
ducted based on the method indicated in the guidelines for damage assessment procedures
prepared by the Ministry of Agriculture of Indonesia. In recent years, the aging and under-
staffing of pest observers have become major problems, and the area covered by a single
pest observer can be as large as 5000–9000 ha.

An outline of the current BLB damage assessment methodology is shown in Figure 3.
Three rice paddy plots were placed proportionally on the diagonal within the minimum
level irrigation area, and these were set as the plots to be evaluated. Then, in the three
selected plots, 10 plants in each plot diagonal were visually evaluated (a total of 30 plants).
The degree of BLB damage was evaluated on a six-point scale (0, 1, 3, 5, 7, and 9) for each
plant according to the area of diseased leaves. A higher score number indicated more severe
BLB damage. Then, the BLB damage rate was calculated using the following formula, using
the BLB scores of the 30 evaluated plants:

BLB damage intensity(%) =
n1 + n2 + · · ·+ n30

9 × 30
× 100 (1)

where n indicates the BLB damage score of each plant using the six grades.
The BLB damage intensity calculated from Equation (1) was the damage intensity for

the entire area, reflecting the BLB scores of 30 plants in total for the three selected plots in
the area.
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2.4. Field Survey Data

BLB damage scores were assessed in 109 plots: 9 plots during the wet season from
31 December 2020, to 5 March 2021; 30 plots during the dry season from 19 May to
12 August 2021; 18 plots during the transition from the dry to wet season from 12 October
to 3 December 2021; 23 plots during the wet season from 1 March to 6 April 2022; and
29 plots during the dry season from July 7 to 11 September 2022. At approximately
10 d intervals during each growing season, pest observers evaluated the damage scores
according to the current method, and aerial data were acquired using a UAV.

2.5. UAV Image Data

Aerial images were acquired synchronously with field survey data using a Bluegrass
Fields (Parrot Inc., New York, NY, USA) device equipped with a Sequoia multispectral
camera with an observation wavelength range from visible to near-infrared. A sunshine
sensor module was attached to the top of the camera to calibrate the image according to
the intensity of sunlight.

In addition to preliminary observations under various conditions, we used a radiative
transfer model to estimate the effect of the solar radiation environment on the reflectance
measurements acquired via the UAV camera. While the effect of solar altitude was not
observed under cloudy conditions, where scattered light predominated, it was found that
under clear skies, red reflectance increased when the solar altitude was high, and near-
infrared reflectance increased when the solar altitude was low [41]. Therefore, it was found
that taking images at times when the solar altitude was between 45 ◦and 65 ◦reduced the
influence of the solar radiation environment; therefore, aerial images were obtained at times
when the sun was at this altitude. The ground altitude and overlap ratio were determined
through considering the time when UAV flights were possible, the area to be analyzed, and
the resolution. The overlap–sidelap ratio was 80–90% and the altitude was 50–60 m, with a
speed of 5 m/s and a ground sample distance (GDS) of 2.6–3.0 cm/pixel.

The acquisition dates of field data and UAV data used to create the estimation equation
for BLB scores and the digitization footprint size of captured images are shown in Table 1.
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Table 1. The data acquisition date and the digitization footprint size of captured images.

Field and UAV Data Acquisition Date BLB Assessment Plot and Point Digitization Footprint
(Mb/ha)

25 February 2021 6, 60 2336.4

5 March 2021 3, 30 1845.6

19 July 2021 3, 30 3549.8

21 July 2021 3, 30 3106.2

22 July 2021 3, 30 3403.3

28 July 2021 1, 10 2570.0

29 July 2021 3, 30 3314.8

30 July 2021 3, 30 4015.8

7 August 2021 3, 30 3691.8

10 August 2021 3, 30 2835.5

11 August 2021 5, 50 3862.0

12 August 2021 3, 30 2857.5

22 November 2021 3, 30 3138.0

23 November 2021 6, 60 3860.1

30 November 2021 3, 30 3537.8

1 December 2021 3, 30 3299.5

2 December 2021 1, 10 3407.4

3 December 2021 2, 20 3280.1

5 March 2022 3, 30 3197.5

25 March 2022 3, 30 3356.9

28 March 2022 3, 30 2500.6

4 April 2022 6, 60 3160.7

5 April 2022 3, 30 3182.2

6 April 2022 5, 50 3393.6

16 August 2022 6, 60 3044.3

17 August 2022 3, 30 3418.4

29 August 2022 6, 60 3276.5

30 August 2022 6, 60 3447.0

31 August 2022 3, 30 3230.4

10 September 2022 2, 20 3886.7

11 September 2022 3, 30 3610.8

2.6. Creation of Orthomosaic Image

Metashape Professional version 1.8 (Agisoft) with integrated SfM-MVS (Structure
from Motion and Multi-View Stereo) was used to create orthomosaic images. The software
analysis procedure consisted of capturing the UAV images after shooting, reflectivity
calibration, alignment adjustment, adjustment and optimization of camera parameters,
high-density cloud construction, DSM creation, and orthomosaic image generation.

In addition, a geometric correction process using ground control points was applied
between images to ensure that orthomosaic images from different time periods were
not misaligned.
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2.7. UAV Image Normalization Process

Because UAV data acquired in different years and seasons were used in this analysis,
it was necessary to pay attention to the camera type, solar radiation conditions at the time
of acquisition, and the altitude at which the data were collected. Normalized reflectance for
ground-based and satellite data acquired with spectroradiometers can be used to reduce
the differences in observation conditions, terrain effects, and atmospheric effects. The
normalized reflectance was calculated taking advantage of the fact that the shape of the
emission spectrum is similar to that of the ground-based spectra, while the emitted amount
tends to vary depending on the observation conditions and due to using the additive
average of the reflectance over all wavelength bands used. In this study, this method
was applied to normalize UAV images to produce normalized reflectance images. The
normalization procedure consisted of first calculating the additive averages of the four
bands of reflectance from Equation (2) and then normalizing the reflectance of each band
according to the additive averages. The additive mean and normalized reflectance of each
band are expressed as follows:

r0 =
Green + Red + Red edge + NIR

4
(2)

NGreen =
Green

r0
(3)

NRed =
Red
r0

(4)

NRed edge =
Red edge

r0
(5)

NNIR =
NIR

r0
(6)

Comparing the correlation coefficients of the BLB scores with the UAV sample data
before and after the normalization process, it was confirmed that the correlation coefficients
were higher in all bands of reflectance; therefore, we decided to use the UAV images after
normalization in this analysis.

2.8. Method for Identifying Survey Points and Extracting Reflectance Value on Images

To extract the reflectance from the orthomosaic images of the sites where the pest
observers conducted the BLB damage assessment, the assessment sites were identified from
the created orthomosaic images.

The resolution of the UAV image was 2.6–3.0 cm per pixel, which is high resolution.
When the positional information acquired with a handheld GPS in the field was superim-
posed on this high-resolution image, it was difficult to capture the survey points accurately
because of GPS positioning errors. Therefore, a red funnel, as shown in the aerial image
(Figure 4), was placed at the survey site prior to the aerial photography, as shown in
Figure 4. The diameter of the funnel was approximately 20 cm, the buffer radius was set to
50 cm, and the inner radius was set to 15 cm. The reflectance of the image corresponding to
the donut-shaped portion with the inner diameter removed was extracted for analysis.
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2.9. Creation of BLB Damage Assessment Estimation Equation

Multiple regression analysis was conducted using the normalized UAV green band,
red band, red edge band, near-infrared band, and NDVI, GNDVI, and RGI indices as
explanatory variables to develop an estimation equation for the degree of BLB damage from
the averaged value calculated from 1090 survey points, followed by 5-fold cross-validation
to evaluate the accuracy. Each index was calculated using the following equations:

NDVI = (NIR − R)/(NIR + R)

GNDVI = (NIR − G)/(NIR + G)

RGI = G × Red Edge

As described in Section 2.3, the current BLB damage assessment method, as indicated
by the Indonesian Ministry of Agriculture, outputs the damage intensity for a single
plot through substituting a six-level BLB score (0, 1, 3, 5, 7, and 9) for each plant unit
into the formula to calculate the damage intensity. Therefore, this analysis examined the
relationship between the BLB score and UAV data and between the BLB damage intensity
and UAV data.

Furthermore, the effectiveness of integrating UAV data into the current BLB evaluation
method was examined through comparing the time required to output the evaluation
results in order to understand the efficiency of the BLB damage evaluation process.

3. Results and Discussion
3.1. Relationship between Normalized Reflectance for Each Band and Indices and BLB

We analyzed the relationship between the normalized reflectance extracted from the
orthomosaic images and calculated indices and the BLB score. The BLB score was assessed
based on the number of surveyed plants, with 10 plants evaluated per plot.

Figure 5 and Table 2 show the relationship between the reflectance data obtained
during the dry season and the BLB score. Figure 6 and Table 3 show the relationship
between the reflectance data obtained during the rainy season and the BLB score. In the
dry-season data, the correlation coefficients of Nred, NNIR, and NDVI were approximately
0.5, indicating a stronger correlation than those of the other normalized reflectance data
and indices. In the rainy season data, there was no significant difference in the correlation
between the single-year data and the 2-year data; however, when the 2-year rainy season
data were combined, it became clear whether each normalized reflectance and index had a
positive or negative correlation with the BLB score (Figure 6). The relationship between the
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UAV data and BLB scores for the dry and rainy seasons for all cropping seasons in 2021 and
2022 is shown in Figure 7 and Table 4. Regarding BLB disease incidence in the rainy season
crops, no paddy rice with a high degree of damage, such as a score of 7 or 9, was identified,
and the BLB scores of all evaluated rice were 5 or less. This is because there is more rainfall
during the rainy season, which tends to wash away the rice BLB bacteria attached to the
rice bodies, leaving fewer residual bacteria on the rice plants and in the field [42,43]. BLB
enters rice through the water pore apertures in rice leaves and wind-driven wounds on the
plant surface. Research using bacteriophages has shown that BLB can spread to other areas
through irrigation [44].
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Figure 5. Relationship between UAV data and BLB scores acquired during the 2021 and 2022
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Table 2. Correlation coefficient between UAV data and BLB scores acquired during the 2021 and 2022
dry seasons (** significant at the 1% level).

Ngreen Nred Nred Edge NNIR NDVI GNDVI NRGI

Correlation
coefficient 0.261 ** 0.516 ** −0.068 −0.478 ** −0.509 ** −0.354 ** 0.235 **
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Figure 6. Relationship between UAV data and BLB scores acquired during the 2021 and 2022
rainy seasons.

Table 3. Correlation coefficient between UAV data and BLB scores acquired during the 2021 and 2022
rainy season (** significant at the 1% level).

Ngreen Nred Nred Edge NNIR NDVI GNDVI NRGI

Correlation
coefficient 0.481 ** 0.337 ** −0.426 −0.283 ** −0.321 ** −0.443 ** 0.435 **

In addition, the correlation coefficients were slightly lower than those obtained from
single-year or seasonal data analyses. This was presumably due to the weighting of scores
3 and 5, because the total amount of data increased owing to the inclusion of data from
all cropping seasons together, which corresponded to the increase in data with scores 3
and 5 for wet season crops. Furthermore, we observed a range of normalized reflectance
and index values for the same BLB scores. One possible reason for this may be that the
current assessment was based on the pest observers’ visual evaluation of the BLB scores.
It was necessary to be skilled in clearly separating the damage of scores 3 and 5, and it
was inferred that judgment differed significantly among the evaluators. This suggests that
it is necessary to incorporate UAV data into the current method and develop a damage
assessment formula to obtain objective assessment results.
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Figure 7. Relationship between UAV data and BLB scores acquired during the 2021 and 2022 dry and
rainy seasons.

Table 4. Correlation coefficient between UAV data and BLB score acquired during the 2021 and 2022
dry and rainy seasons (** significant at 1% the level).

Ngreen Nred Nred Edge NNIR NDVI GNDVI NRGI

Correlation
coefficient 0.271 ** 0.458 ** −0.049 −0.440 ** −0.456 ** −0.349 ** 0.265 **

Next, a correlation analysis was performed between the UAV data and the field
damage intensity determined from the BLB scores for all cropping seasons (Figure 8,
Table 5). The correlation coefficients for Nred, NNIR, and NDVI exceeded 0.5, which was
higher than those of the other normalized reflectance and indices. Similar to the BLB score
analysis results, for plots with high correlation coefficients with Nred, NNIR, and NDVI
and with more than 70% damage, the amount of data entered with scores 7 and 9 was
lower than for other scores, indicating that they may have been difficult to estimate with
high accuracy.
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Figure 8. Relationship between UAV data and BLB damage intensity acquired during the 2021 and
2022 dry and rainy seasons.

Table 5. Correlation coefficient between UAV data and BLB damage intensity acquired during the
2021 and 2022 dry and rainy seasons (** significant at the 1% level).

Ngreen Nred Nred Edge NNIR NDVI GNDVI NRGI

Correlation
coefficient 0.329 ** 0.558 ** −0.074 −0.537 ** −0.556 ** −0.425 ** 0.316 **

As described above, the correlation analysis between the BLB scores and BLB dam-
age intensities revealed normalized reflectance values and indices that may be effective
indicators for BLB damage assessment. However, it was suggested that the strength of
the correlations differed among the data groups used and that bias in the number of data
obtained for each BLB score may have affected the evaluation results. Therefore, we calcu-
lated the mean values of the normalized reflectance and index for each BLB score for the
1090 survey points and performed a correlation analysis using the six mean scores (Figure 9,
Table 6). For all crop season data, a strong relationship was confirmed for Nred, NNIR, and
NDVI, as well as for the relationships among pre-average scores, damage intensities, and
UAV data, with correlation coefficients exceeding 0.9. Based on the results of the analysis
using the average score, Nred, NNIR, and NDVI had a strong correlation with the BLB
score, increasing their possibility of being effective indicators for BLB damage assessment.
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In addition, from the viewpoint that the current method is conducted according to visual
assessment by the assessors, Nred in the visible range is shown to be an effective index for
the estimation formula of the BLB damage assessment.
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Figure 9. Relationship between UAV data and BLB mean score acquired during the 2021 and 2022
dry and rainy seasons.

Table 6. Correlation coefficient between UAV data and BLB mean score acquired during the 2021 and
2022 dry and rainy seasons (** significant at the 1% level).

Ngreen Nred Nred Edge NNIR NDVI GNDVI NRGI

Correlation
coefficient 0.418 ** 0.895 ** −0.211 −0.876 ** −0.897 ** −0.605 ** 0.389 **

Nred is the absorption band of chlorophyll; the higher the damage, the lower the
chlorophyll content and the higher the reflectance, which may confirm a positive correla-
tion [45–47]. In the case of BLB disease, the leaves fade, with yellowing at the leaf margins
and a grayish white color in the case of advanced infection. A negative correlation between
SPAD values obtained using a chlorophyll meter and BLB damage intensity [34], and the
ability to classify paddy rice with high BLB severity based on the normalized green–red
difference index obtained from the RGB base [48], have also been reported in research
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covering the same area as this study. Research using hyperspectral data has reported that
BLB-infected rice plants show peculiar changes between 757 nm and 1039 nm, correspond-
ing to the near-infrared region, and that reflectance decreases with increasing severity [49];
the same trend was confirmed in this study. The NDVI is the vegetation index calculated
from red and near-infrared, and the GNDVI is the vegetation index calculated from green
and near-infrared. In this study, we found that Ngreen increased, Nred increased, and
NNIR decreased with increasing BLB damage. These results confirmed a negative corre-
lation, because the numerators of the NDVI and GNDVI were smaller when the damage
to the BLB was larger. When rice is infected with BLB, the chlorophyll in the leaves de-
composes, which leads to a loss of vitality in the rice plant, resulting in changes in the
green color of the leaves. This could explain the positive correlation between the Nred
band and degree of BLB infection. It is well known that the reflectance of the NIR band and
vegetation index are related to the biomass volume and amount of crop production [50].

3.2. BLB Damage Assessment Estimation Equations

As described in Section 3.1, the correlation coefficients between UAV multispectral
data categorized according to cropping season and average normalized reflectance in
relation to BLB score were the highest for normalized red reflectance and NDVI. This
corresponds to the selection of the red band, which is the absorption band of chlorophyll,
because the current method allows the assessor to visually assess the degree of BLB damage
based on the leaf color. It can also be reasoned that the NDVI, which is related to biomass,
was selected because, as the degree of BLB damage progresses, the leaves wither and the
crop body becomes smaller than the healthy plant. Therefore, to improve the efficiency
of the current method using UAV data, we propose a formula to estimate the BLB score
from the normalized red band as an evaluation method, reading the evaluator’s decision
as a visual one; that is, we used information in the visible range for damage assessment.
The equation presented below has a coefficient of determination of 0.92 and RMSE of
1.46 ± 0.36:

BLB score = 50.841 × NRed(all season)− 17.475 (7)

For validation of the above equation, we used UAV data acquired in 2023, which were
not used to create the equation. BLB scores were estimated from normalized red band
values calculated from the 2023 UAV data. The estimated BLB score values and the BLB
scores assessed by the pest observers were used to calculate the mean absolute percentage
error (MAPE) [51], expressed with the following equation:

MAPE =
1
n ∑

∣∣∣∣Gt − P
Gt

∣∣∣∣ (8)

MAPE is given by the average of the absolute value of the ratio of the difference
between the ground truth data (Gt) and the estimation (P) to the ground truth, where
n represents the number of the data. The MAPE of the BLB score estimated from the
data of 70 survey points obtained in February and July 2023 was 9.1%, confirming that
the Formula (2) for BLB damage assessment presented in this study was sufficient to be
applicable in other years.

A visualization map of the damage assessment using the BLB score estimation equation
is shown in Figure 10.
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3.3. Improvement of Efficiency and Objectivity of BLB Assessment

The effectiveness of using UAV data was examined through applying the constructed
formula to estimate the BLB damage during the harvest season, using the red band as an
indicator for each irrigated block.

The total time required for the BLB evaluation using UAV data was defined as the
sum of the times required for the following processes: acquisition of field survey data and
UAV data, uploading and downloading of acquired data, confirmation of acquired data
content, preprocessing of UAV data, application of the estimation formula, and creation
of evaluation maps. In addition, the assessors conducted a maximum of 12 field-based
damage assessment surveys per day using the current method. However, because the
number of plots that can be surveyed per day decreases depending on weather conditions,
it is expected to take more time in rainy weather.

The time required for both methods and the efficiency gains are listed in Table 7. For
example, Irrigation Block 1b contained 60 paddy plots. Using the current method, the
evaluator would take 5 days to evaluate all the plots. However, if UAV imagery were
integrated into the current method, the evaluation would be completed in 2 days and 3 h,
with 57.5% time saving. The greater the number of plots, the greater the percentage of
efficiency gain, with a maximum time–cost reduction of 76.4%.

Table 7. Comparison of time required to assess all fields using the current method and the integrated
method with UAV data.

Irrigation
Block Name No. of Plots Area (ha)

Time Required to Assess
All Plots Using the

Current Method

Time Required to Assess All
Plots Using the Integrated

Method with UAV Data

Percentage of
Time Saved (%)

Block 1b 60 3.1 5 days 2 days and 3 h 57.5

Block 2a 43 2.2 4 days 2 days and 3 h 46.9

Block 3a 62 2.9 6 days 2 days and 3 h 64.6

Block 5 38 2.6 4 days 2 days and 2.5 h 47.4

Blcok 7a 54 2.7 5 days 2 days and 2.5 h 57.5

Block 9b 56 3.4 5 days 2 days and 3 h 57.5

Block 11a 67 2.6 6 days 2 days and 3 h 64.6

Block 11b 104 2.8 9 days 2 days and 3 h 76.4

Block 12a 68 2.9 6 days 2 days and 3 h 64.6

Block 14a 84 2.9 7 days 2 days and 3 h 69.6

An example of an evaluation map visualizing the damage to all paddy fields in
an irrigated area obtained via inputting the BLB evaluation estimation equation into a
normalized red-band image is shown in Figures 11–13. The numbers at the tops of the bars
indicate the number of paddy plots with each damage intensity, and the numbers next to
the stars indicate the damage intensities calculated from the three plots using the proposed
method. The damage intensities for irrigation Blocks 1b, 9b, and 11b using the proposed
method were 33.3%, 33.7%, and 40.7%, respectively. However, the damage intensities
estimated from the UAV data differed from plot to plot, and incorporating the UAV data
into the current method enabled an objective and complete enumeration.
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Figure 12. BLB damage assessment intensity map for the dry season in 2022: (Left) visualization
map of Block 11b; (Right) number of paddy plots per damage intensity. (⋆) BLB damage intensity
calculated from three plots using the current damage assessment method described in Section 2.3.
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Figure 13. BLB damage assessment intensity map for the dry season in 2022: (Left) visualization
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calculated from three plots using the current damage assessment method described in Section 2.3.

4. Conclusions

Agricultural insurance, which is expected to be a climate change adaptation measure,
has been operating as an important social infrastructure for food security. However,
there were many challenges in Indonesia soon after its operation. The biggest challenges
were speeding up loss assessment, which is the core of agricultural insurance, and the
objectivity of the assessment results. In this study, a rapid and objective damage assessment
method was developed and implemented in West Java for BLB of rice, a disease covered
by insurance.

Based on the analysis of the relationship between the BLB scores, damage intensities,
and UAV data acquired during the dry and rainy seasons of 2021 and 2022, a BLB damage
assessment estimation equation using normalized red bands was developed. Validation
of the equation was performed using the MAPE. The MAPE of the BLB score estimated
from the data of 70 survey points obtained in February and July 2023 was 9.1%, confirming
that the formula (2) for BLB damage assessment presented in this study was suitable for
application to other years’ data. We integrated the process of UAV aerial photography
and the estimation formula based on UAV data into the current damage assessment steps
proposed by the Ministry of Agriculture of Indonesia and implemented in society. The
evaluation time was reduced by more than 60% on average, and technical guideline is
issued for a new damage evaluation process for agricultural insurance that reduces labor
and ensures objectivity.

The national government is in charge of maintaining and improving the agricultural
insurance system, while the state government is in charge of practices related to losses. It
is necessary to obtain recognition and approval from the Crop Protection Bureau of the
Ministry of Agriculture for the evaluation methodology. Therefore, we approached the
central ministry regarding the actual operation of the new evaluation method and sent a
letter from the Director of the Crop Protection Department of the Ministry of Agriculture
supporting the use of the method established in the project to the Director of the West
Java Provincial Department of Agricultural Policy, which was highly appreciated by the
government. Currently, we aim to accumulate damage assessment data and improve the
assessment method through incorporating machine learning and other methods.
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