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Abstract: Mushroom cap is a key trait in the growth process and its phenotypic parameters are
essential for automatic cultivation and smart breeding. However, the edible mushrooms are usu-
ally grown densely with mutual occlusion, which is difficult to obtain the phenotypic parameters
non-destructively. Although deep learning methods achieve impressive performance with superior
generalization capabilities, they require a large amount of ground truth label of the occluded target,
which is a challenging task due to the substantial workload. To overcome this obstacle, a novel
synthetic cap occlusion image method was proposed for rapidly generating edible mushroom occlu-
sion datasets using raw images, in which the ground truth is obtained from the real world and the
occlusion is randomly generated for simulating real scenes. Moreover, variants of amodal instance
segmentation models with different backbone were trained and evaluated on our synthetic occlusion
image datasets. Finally, an amodal mask-based size estimation method was presented to calculate the
width and length of the cap. The experimental results showed that the amodal instance segmentation
achieved an AP@[0.5:0.95] of 82%, 93% and 96% on Oudemansiella raphanipes, Agrocybe cylindraceas and
Pholiota nameko synthetic cap datasets, respectively, with a size of 1024 × 1024 px, which indicates
that our occlusion image synthesis method can effectively simulate the real cap occlusion situation.
The size estimation method achieved an R2 of 0.95 and 0.98 between predictive amodal caps and
manually labeled caps for the length and width of Agrocybe cylindraceas cap, respectively, which can
be applied to obtain the phenotypic parameters of each cap effectively and accurately. These methods
not only meet the demand for automatic monitoring of edible mushroom morphology in factories
but also provide technical support for intelligent breeding.

Keywords: amodal segmentation; deep learning; edible mushroom; mushroom phenotype

1. Introduction

The edible mushroom is rich in vitamins and minerals, which provide the human
body with required nutrients. With the increased awareness of edible mushrooms, they are
becoming increasingly popular [1,2]. The morphological characteristics of the mushroom
cap are one of the key features in their cultivation. The changes in its size and morphology
not only allow farmers to understand its growth status but also provide breeders with
evidence for the breeding process. Furthermore, it is also an important indicator of the
physiology, genetics and evolution of edible mushrooms, and it is essential to improve the
yield of mushroom and mycology research. Unfortunately, traditional cap parameter mea-
surement of edible mushrooms relies on manual measuring, which is subjective, repetitive
and time-consuming [3]. Therefore, it is necessary to develop a non-destructive and rapid
approach for obtaining the morphological parameters of edible mushroom caps.
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With the rapid development of computer vision technology, image-based research
has applied to non-contact, non-destructive, high-throughput acquisition of acquiring
plants’ morphological parameters. It was first applied in edible mushroom agriculture by
Vooren et al. [4]. They combined DNA analysis and phenotypic data to verify the variety of
Agaricus bisporus. In their subsequent work [5], the researchers attempted to obtain more
accurate morphological characteristics through a series of image-based operations, such
as gray-level transformation, expansion and erosion [6], etc. Conventionally, segmenting
the cap of the edible mushroom is the prerequisite and difficulty for phenotype parameter
measurements. Ref. [7] proposed an improved YOLOv5 for Oudemansiella raphanipes
detection, which focuses on solving the problems of low recognition of background soil
and mushrooms, dense distribution of samples, and mutual occlusion between instances
in planting environments. Ref. [8] designed an algorithm for fitting the edge of the cap
of the Oudemansiella raphanipes based on RGB images, which also provided an idea for
cap segmentation. Despite the fact that these methods achieve superior performance with
different edible mushrooms, respectively, traditional image processing methods are still
highly reliant on the selection of a variety which has same the cultivation environment and
growth density.

Compared to traditional methods, deep learning-based methods, which contain more
nodes and layers than primary neural networks, could effectively segment expert-labeled
images [9] and have exhibited high performance on public datasets such as the COCO
dataset [10]. However, training a specific deep learning model requires a large amount
of already labeled data, which is costly and requires diverse data. In addition, despite
the impressive performance of existing instance segmentation methods in the agricul-
ture field [3,11,12], there are still some problems that needed to be addressed, such as
the occlusion between instances. Commonly, in edible mushroom fields, the mushroom
grows rapidly and densely and occlusion occurs between the cap, which has a similar
shape and texture information. The challenge for an applied deep learning-based instance
segmentation algorithm is that it is difficult to obtain the amodal ground truth of the
target [13,14].

Inspired by Yang et al. and Kuznichov et al. [9,13], a way to acquire the amodal ground
truth is to synthesize occlusion image data through a small amount of labeled amodal data.
Toda et al. [14] have proved that a synthetic image dataset can be effectively applied to train
an instance segmentation network and can achieve high-throughput segmentation of barley
seeds from real-world images. Although the synthetic dataset is not as authentic as the real-
world dataset, its advantages are that it can automatically generate an unlimited amount
of labeled images without manual labor. Moreover, a synthetic image dataset contains
various conditions, such as different occlusions, different scales, and background, which
is difficult to generate through image augmentation of real-world images. To segment
edible mushroom caps quickly and effectively and obtain their phenotypic parameters, we
proposed a synthetic cap occlusion image dataset generation method with the categories
of Oudemansiella raphanipes (OR), Agrocybe cylindraceas (AC) and Pholiota nameko (PN), as
shown in Figure 1. The main contributions of this research are as follows:

(1) A novel edible mushroom synthetic cap occlusion image dataset generation method
was proposed, which could automatically generate synthetic occlusion images and
corresponding annotation in the realm of image processing. The method could also be
applied to generate other amodal instance segmentation datasets and could effectively
solve the problem in which the amodal ground truth cannot be obtained and greatly
reduce the time for data collection and data annotation.

(2) Based on the method of generating a synthetic image dataset, an Oudemansiella rapha-
nipes, Agrocybe cylindraceas and Pholiota nameko amodal instance segmentation dataset
was proposed to simulate a real-world dataset. It is the first synthetic edible mush-
room image dataset for cap amodal instance segmentation.
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(3) An amodal mask-based method was proposed for calculating the width and length of
caps. To the best of our knowledge, this is the first work that applies amodal instance
segmentation to measure the width and length of caps based on synthetic training.
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Figure 1. Three different varieties of edible mushrooms: Oudemansiella raphanipes (OR), Agrocybe
cylindraceas (AC) and Pholiota nameko (PN).

2. Materials and Methods
2.1. Raw Data Acquisition

The edible mushrooms used in this study were of three species: Agrocybe cylindraceas,
Oudemansiella raphanipes and Pholiota nameko. Specifically, both the Agrocybe cylindraceas and
Pholiota nameko were supplied by the Bioengineering and Technological Research Centre
for Edible and Medicinal Fungi, Jiangxi Agricultural University. The Agrocybe cylindraceas
contained 8 different varieties (JAUCC 0727, JAUCC 0532, JAUCC 2133, JAUCC 2135,
JAUCC 1847, JAUCC 1920, JAUCC 1852, JAUCC 2110). The Oudemansiella raphanipes was
cultivated in the edible mushroom factory in Zhangshu City, Jiangxi Province of China.

To accomplish our experiment, we chose a smart phone (Redmi K20 Pro, Xiaomi
Technology Co., Ltd., Beijing, China) for data acquisition. For Agrocybe cylindraceass and
Pholiota nameko, our workbench mainly consisted of a camera, a computer, and a light strip,
as shown in Figure 2. Specifically, we fixed the view-point of the camera perpendicular to
the mushroom bag and set a horizontal distance of 50 cm from the camera to the mushroom
bag. For Oudemansiella raphanipe, we randomly shot from different perspectives and the
distance was in the range from 10 to 30 cm. All RGB images were saved in JPEG format.

Agronomy 2024, 14, 1337 3 of 17

Figure 1. Three different varieties of edible mushrooms: Oudemansiella raphanipes (OR), Agrocybe 
cylindraceas (AC) and Pholiota nameko (PN). 

2. Materials and Methods
2.1. Raw Data Acquisition 

The edible mushrooms used in this study were of three species: Agrocybe cylindraceas, 
Oudemansiella raphanipes and Pholiota nameko. Specifically, both the Agrocybe cylindraceas and 
Pholiota nameko were supplied by the Bioengineering and Technological Research Centre for 
Edible and Medicinal Fungi, Jiangxi Agricultural University. The Agrocybe cylindraceas con-
tained 8 different varieties (JAUCC 0727, JAUCC 0532, JAUCC 2133, JAUCC 2135, JAUCC 
1847, JAUCC 1920, JAUCC 1852, JAUCC 2110). The Oudemansiella raphanipes was cultivated 
in the edible mushroom factory in Zhangshu City, Jiangxi Province of China. 

To accomplish our experiment, we chose a smart phone (Redmi K20 Pro, Xiaomi 
Technology Co., Ltd., Beijing, China) for data acquisition. For Agrocybe cylindraceass and 
Pholiota nameko, our workbench mainly consisted of a camera, a computer, and a light
strip, as shown in Figure 2. Specifically, we fixed the view-point of the camera perpendic-
ular to the mushroom bag and set a horizontal distance of 50 cm from the camera to the 
mushroom bag. For Oudemansiella raphanipe, we randomly shot from different perspec-
tives and the distance was in the range from 10 to 30 cm. All RGB images were saved in 
JPEG format.

Figure 2. The schematic of data acquisition workbench. 

To validate whether the synthetic dataset can effectively be a substitute for a real cap 
occlusion dataset, we constructed two other subsets: one named subset A, which included
100 images with a fixed camera position and position of the mushroom bag and also in-
cluded removal of the occluder cap to obtain the full shape of the occluded cap (ground
truth). The other was named subset B, which was composed of images randomly selected 
from dataset A and contained a total of 300 occluded caps, annotated with occluded re-
gions based on our experience. 
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To validate whether the synthetic dataset can effectively be a substitute for a real cap
occlusion dataset, we constructed two other subsets: one named subset A, which included
100 images with a fixed camera position and position of the mushroom bag and also
included removal of the occluder cap to obtain the full shape of the occluded cap (ground
truth). The other was named subset B, which was composed of images randomly selected
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from dataset A and contained a total of 300 occluded caps, annotated with occluded regions
based on our experience.

2.2. Synthetic Image Generation and Annotation Method

The overview of the synthetic process is shown in Figure 3. First, to obtain the ground
truth of the cap, we manually annotated cap images and saved the annotation information
as a JSON file. Only the cap was needed in the subsequent step, so we intercepted the cap
according to size of the cap. Furthermore, we generated the background image at a fixed
size of 256 × 256, 512 × 512, 1024 × 1024 px, which ensured that the image covered the
cap. All cap images were as a cap mask image pool (CMIP).
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Then, we synthetized the high-throughput cap images. The detailed steps are as follows:

(1) Select a cap mask image, B, randomly as occluder and another Ni (i ∈ [1, 4]). Images
from CMIP were occluded.

(2) As shown in Figure 4, calculate the position of the cap; we considered WB, HB,
WNi, HNi, respectively, as the width and height of the bounding box of B and Ni.
Furthermore, we set a movable area based on Equation (1) and generated a random
point in the area of the circle with radius ri as the initial move position of the Ni. The
center of Ni was mapped on B (xNi, yNi) according to the random point and then a
mapped image Mi was obtained.

(3) Occlusion processing. Based on step (2), iterate over the point of Mi and B; we
considered that if the point belongs both to Mi and B, then it is the occluded point,
and then we removed it.

(4) Denoising processing. As the synthetic image after step (3) sometimes has more than
one region, we only maintained the largest region. Finally, combine the synthetic
images and the Json file when annotated manually to generate a new Json file, which
is suitable for LabelMe.

ri =

√
(WB + WNi)

2 + (HB + HNi)
2

2
(1)
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2.3. Amodal Instance Segmentation and Size Estimation

This study not only aims to rapidly generate synthetic cap occlusion images but also
attempts de-occlusion for occluded mushrooms in situ. The flowchart of the de-occlusion
process is shown in Figure 5. First, we used the synthetic image dataset to train and
evaluate the amodal instance segmentation network. Then, we input an occluded cap
binary image, which was cut into the same size as those of the training data. After feeding
the pre-processed image into the trained model, a cap amodal mask was output. To restore
the cropped mask coordinates, we created a new mask image, of which the size was the
same as the input image, and calculated the cap mask image coordinates to visualize the
predictions in RGB images. Furthermore, the coordinates were saved in the annotation file
in the LabelMe format. Finally, the annotation file was visualized through the matlibplot
library by converting the annotation file into the COCO format.
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2.3.1. Occlusion R-CNN

The Occlusion R-CNN (ORCNN) [15], which was extended from Mask R-CNN [16],
added additional heads for the prediction of amodal masks (amodal mask head) and occlu-
sion masks (occlusion mask head). It is a classic method for amodal instance segmentation,
which aims to segment objects even if they are partially occluded or out of the image frame.
The method consists of four main components, as shown in Figure 6: the backbone layers,
the RPN module [17], the RoI module and the prediction branch. The backbone layers,
composed of ResNet [18] and FPN [19] structures, are used to extract features from the
input image and generate a coarse segmentation mask. The RPN networks typically consist
of two branches: one for regressing bounding box offsets and the other for predicting target
ness scores. These two branches share the convolutional feature extraction layer to generate
candidate regions with different sizes at different scales and aspect ratios. According to the
candidate regions generated by RPN, a RoI Pooling operation is performed on the feature
map to map candidate regions of different sizes to a fixed-size feature map. This maintains
the spatial information of the candidate regions [17]. The prediction branch includes four
sub-branches: the classification branch, the bounding box regression branch, the visible
mask branch and the amodal mask branch [15]. In our work, since our dataset is relatively
homogeneous, we removed the first three branches and output only the amodal masks.
The entire system was trained in an end-to-end manner using a combination of image-level
classification loss and instance-level amodal segmentation loss. The model was trained on
our synthetic cap occlusion image dataset to demonstrate the effectiveness of our synthetic
image method.

Agronomy 2024, 14, 1337 6 of 17 
 

 

2.3.1. Occlusion R-CNN 
The Occlusion R-CNN (ORCNN) [15], which was extended from Mask R-CNN [16], 

added additional heads for the prediction of amodal masks (amodal mask head) and oc-
clusion masks (occlusion mask head). It is a classic method for amodal instance segmen-
tation, which aims to segment objects even if they are partially occluded or out of the 
image frame. The method consists of four main components, as shown in Figure 6: the 
backbone layers, the RPN module [17], the RoI module and the prediction branch. The 
backbone layers, composed of ResNet [18] and FPN [19] structures, are used to extract 
features from the input image and generate a coarse segmentation mask. The RPN net-
works typically consist of two branches: one for regressing bounding box offsets and the 
other for predicting target ness scores. These two branches share the convolutional feature 
extraction layer to generate candidate regions with different sizes at different scales and 
aspect ratios. According to the candidate regions generated by RPN, a RoI Pooling opera-
tion is performed on the feature map to map candidate regions of different sizes to a fixed-
size feature map. This maintains the spatial information of the candidate regions [17]. The 
prediction branch includes four sub-branches: the classification branch, the bounding box 
regression branch, the visible mask branch and the amodal mask branch [15]. In our work, 
since our dataset is relatively homogeneous, we removed the first three branches and out-
put only the amodal masks. The entire system was trained in an end-to-end manner using 
a combination of image-level classification loss and instance-level amodal segmentation 
loss. The model was trained on our synthetic cap occlusion image dataset to demonstrate 
the effectiveness of our synthetic image method. 

 
Figure 6. Pipeline of deoccluded task. The part within the green dashed box represents the architec-
ture of the ORCNN network. The output of ORCNN is the amodal mask of the occluded cap. 

2.3.2. Size Estimation 
Given an amodal mask of caps, the morphology phenotype parameters calculated by 

the bounding box would introduce systematic error, as shown in Figure 7a. We first used 
the principal component analysis (PCA) algorithm to acquire the main direction of the 
cap, as shown in Figure 7b. Then, we rotated the cap so that the main direction of the cap 
aligned with the image coordinate system, as shown in Figure 7c. Finally, we found that the 
length of the revised bounding box could be considered as the length of the cap, and the 
width could be acquired by calculating the valid pixel length of the cap center according to 
the width direction of the revised bounding box, shown approximatively in Figure 7d. 

Figure 6. Pipeline of deoccluded task. The part within the green dashed box represents the architec-
ture of the ORCNN network. The output of ORCNN is the amodal mask of the occluded cap.

2.3.2. Size Estimation

Given an amodal mask of caps, the morphology phenotype parameters calculated by
the bounding box would introduce systematic error, as shown in Figure 7a. We first used
the principal component analysis (PCA) algorithm to acquire the main direction of the
cap, as shown in Figure 7b. Then, we rotated the cap so that the main direction of the cap
aligned with the image coordinate system, as shown in Figure 7c. Finally, we found that the
length of the revised bounding box could be considered as the length of the cap, and the
width could be acquired by calculating the valid pixel length of the cap center according to
the width direction of the revised bounding box, shown approximatively in Figure 7d.
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Figure 7. The revising process of the bounding box of caps. (a) The original bounding box of amodal
mask. (b) Computing the main direction using PCA algorithm. (c) Amodal mask after rotation with
PCA. (d) The revised bounding box of rotated amodal mask.

2.4. Implementation Details

In our work, we utilized an Intel (R) Xeon (R) Silver 4214R @2.40 GHz CPU, 128 GB
RAM, single-GPU computer (NVIDIA Quadro RTX 8000 with 48 GB memory). The software
environment included python 3.7, a deep learning framework (Pytorch 1.4 [20]), CUDA
10.1, CUDNN 7.6.5, OpenCV 4 (ver. 4.7.0.72) and LabelMe 5.1 [21], which were installed in
the Ubuntu 20.04 operation system. The model training and the synthetic image generation-
related operation were accomplished on the same computer and environment.

2.5. Evaluation Metrics

To evaluate the performance of the edible mushroom instance segmentation model
on the synthetic image dataset, average precision (AP) and recall (R) were applied in
our work. Furthermore, AP is one of the most commonly used evaluation metrics in
target detection, and it measures the performance by calculating the precision and recall
at different confidence thresholds and then averaging the area under the precision–recall
curve, while recall refers to the ability of the model to successfully find positive samples in
the predicted results, which is usually applied in combination with AP.

To compute the value of AP and R, the Intersection over Union (IoU) was used in
our work. Based on the overlapping area of the bounding box, the IoU ranged from
0.5 to 0.95 with an interval of 0.05. Generally, AP50 and AP75 are the most common
evaluation indicators when IoU thresholds are 0.5 and 0.75, respectively. The definition
of the bounding box’s IoU and mask’s IoU are depicted and the IoU can be calculated by
Equations (2) and (3).

IoU =
Bg ∩ Bp

Bg ∪ Bp
(2)

MaskIoU =
Mg ∩ Mp

Mg ∪ Mp
(3)

To evaluate the performance of cap size estimation, the root mean square error (RMSE)
and the coefficient of determination (R2) were introduced. The RMSE was computed by
taking the square root of the mean of the squared differences between predicted values
and manually labeled values. R2 is a statistical measure that represents the proportion of
the variance in the dependent variable that is predictable from the independent variables.
The size estimation evaluation metrics were calculated by Equations (4) and (5), where n
represented the size of the sample, y represented the manually labeled values, ŷi represented
the predicted value and yi represented the average predicted value.

RMSE =

√
∑n

i=1(ŷi − yi)
2

n
(4)
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R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (5)

3. Results
3.1. Synthetic Cap Occlusion Image Dataset

We generated different scale sizes of the cap occlusion image dataset of 256 × 256,
512 × 512 and 1024 × 1024, respectively, and the cap was randomly covered with another
cap, which indicated that the occlusion degree was randomly generated. Furthermore, we
prepared a training dataset for each size per category of variety of synthetic occlusion image
to fine-tune the amodal instance segmentation. The detail of the synthetic occlusion image
dataset of caps is described in Table 1. Each training dataset was made up of 17,000 pairs of
synthetic cap occlusion images and their corresponding masks, with 12,000 of those images
used for training, 3000 for validation and 2000 for testing. The time consumption of image
generation is shown in Table 1 for all the datasets of each image size of each category and
some examples of the synthesized results are shown in Figure 8.

Table 1. The detail of the occlusion image datasets for training, validation and testing generated by
our synthetic image method.

Dataset Image Size
Dataset

Test Dataset Generation
Time/hTrain./Val.

AC
256 12,000/3000 2000 5.19
512 12,000/3000 2000 20.31
1024 12,000/3000 2000 79.90

OR
256 12,000/3000 2000 4.72
512 12,000/3000 2000 18.42
1024 12,000/3000 2000 72.63

PN
256 12,000/3000 2000 5.67
512 12,000/3000 2000 21.25
1024 12,000/3000 2000 83.82

3.2. Amodal Instance Segmentation Results of Cap

The curves, including the training loss and validation loss curve of the model, of our
synthetic cap occlusion image dataset, of 256 × 256 px, 512 × 512 px, 1024 × 1024 px, are
shown in Figure 9, in which the backbone layer is ResNet50-FPN and ResNet101-FPN and
for the pre-trained model is ImageNet weights. From Figure 9, we know that the model
trained by each size of our synthetic dataset with ImageNet weights and the ResNet101-
FPN backbone layer, including 4000 iterations, converges, and training and validation loss
rapidly decrease between 0 and 1250 iterations and then become slower.

The model was evaluated using test datasets that included our synthetic occlusion
image dataset with three different image sizes per category. Table 2 reports the quantified
evaluation metrics of the model trained with ResNet101-FPN backbone and different image
sizes (256 × 256, 512 × 512, 1024 × 1024 px) of our synthetic dataset, while Figure 9
illustrates examples of the amodal instance segmentation results for each category. From
Table 2, we find that the AP@[0.5:0.95] of the model trained on Agrocybe cylindraceas (AC)
and Oudemansiella raphanipes (OR) gradually decreases with the image size increases, but
was still above 0.76. For Pholiota nameko (PN), the results of 256 × 256 px evaluated by the
model trained on 512 × 512 and 1024 × 1024 px were only 0.51. Despite that, we applied
the model trained with 256 × 256 px images per category to predict the test set and then
visualized the results in RGB images, as shown in Figure 10.
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Furthermore, the model was trained and evaluated on our synthetic image dataset with
different backbone depths (ResNet50-FPN and ResNet101-FPN). Table 3 presents the quan-
tified evaluation metrics of the model trained with the ResNet101-FPN and ResNet50-FPN
backbone on our synthetic dataset with image sizes of 1024 × 1024 px. Some researchers
have demonstrated that the ResNet101-FPN backbone can learn deeper features compared
to the ResNet50-FPN backbone [16,18,22]. Generally, the deeper the layer is, the better
the model is, but also the higher the number of parameters and cost. From Table 3, we
found that both models where the backbone was ResNet50-FPN, as well as the model
trained with the ResNet101-FPN backbone, worked well on our synthetic occlusion image
dataset. We also found that regardless of if the backbone was ResNet50-FPN or ResNet101-
FPN, each variety of AP@[0.5:0.95] decreased as the image size increased from 256 × 256 to
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1024 × 1024 px. In addition, we applied the models to predict the test dataset and found
that both output an excellent amodal mask. Additionally, some visualization results of
amodal instance segmentation on RGB images are shown in Figure 11.

Table 2. The evaluated results of amodal instance segmentation using our synthetic dataset of different
image sizes (256 × 256, 512 × 512, 1024 × 1024 px) with ImageNet weights and 4000 iterations.

Pre-trained model Pre-trained ImageNet weights

Iteration 4000

Backbone ResNet101-FPN

Dataset 256 × 256 512 × 512 1024 × 1024

Test dataset 256 512 1024 256 512 1024 256 512 1024

AC

R 0.9 0.86 0.80 0.96 0.90 0.81 0.91 0.89 0.85
AP0.5 1.0 0.99 0.99 1.0 1.0 0.99 1.0 1.0 1.0
AP0.75 0.98 0.95 0.88 0.99 0.98 0.90 0.99 0.99 0.96
AP@[0.5:0.95] 0.93 0.85 0.76 0.93 0.88 0.79 0.88 0.86 0.82

OR

R 0.97 0.94 0.89 0.97 0.95 0.92 0.96 0.95 0.94
AP0.5 1.0 1.0 0.99 1.0 1.0 1.0 1.0 1.0 1.0
AP0.75 0.99 0.98 0.95 0.99 0.99 0.97 0.99 0.99 0.98
AP@[0.5:0.95] 0.96 0.92 0.88 0.95 0.94 0.90 0.94 0.94 0.93

PN

R 0.96 0.48 0.45 0.60 0.98 0.97 0.60 0.98 0.97
AP0.5 1.0 0.79 0.73 0.94 0.99 0.99 0.94 0.99 0.99
AP0.75 0.99 0.36 0.33 0.47 0.99 0.99 0.46 0.99 0.99
AP@[0.5:0.95] 0.95 0.40 0.37 0.51 0.96 0.96 0.51 0.96 0.96
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Table 3. The evaluated results of amodal instance segmentation using our synthetic dataset of
1024 × 1024 px with ImageNet weights and 4000 iterations with different backbone layers.

Dataset 1024 × 1024

Pre-trained model Pre-trained ImageNet weights

Iteration 4000

Backbone ResNet50-FPN ResNet101-FPN

Image size 256 512 1024 256 512 1024

AC

R 0.90 0.87 0.84 0.91 0.89 0.85
AP0.5 1.0 1.0 1.0 1.0 1.0 1.0
AP0.75 0.99 0.97 0.93 0.99 0.99 0.96
AP@[0.5:0.95] 0.88 0.84 0.81 0.88 0.86 0.82

OR

R 0.94 0.91 0.88 0.96 0.95 0.94
AP0.5 1.0 1.0 0.99 1.0 1.0 1.0
AP0.75 0.99 0.99 0.98 0.99 0.99 0.98
AP@[0.5:0.95] 0.92 0.89 0.86 0.94 0.94 0.93

PN

R 0.6 0.97 0.97 0.60 0.98 0.97
AP0.5 0.94 0.99 0.99 0.94 0.99 0.99
AP0.75 0.50 0.99 0.99 0.46 0.99 0.99
AP@[0.5:0.95] 0.52 0.96 0.96 0.51 0.96 0.96
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cylindraceas. (b) Oudemansiella raphanipes. (c) Pholiota nameko.

3.3. Performance of the Models Trained on Different Datasets

To compare the performance of ORCNN on the synthetic dataset and the real dataset,
we set up four subsets. The details of subset A and B were described in Section 2.1. Subset
C included the training set and validation set, as shown in Table 1. Dataset D consisted of
300 images of occluded caps generated by our synthetic approach. Subset B, C and D were
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used to train and evaluate the amodal instance segmentation model, respectively, while
dataset A was only used to evaluate the performance of the models. The results are shown
in Table 4.

Table 4. The evaluated results using dataset A, B, C and D.

Training Set Evaluated Set AP

B
B 0.80
A 0.79

C
C 0.89
A 0.97

D
D 0.81
A 0.79

From Table 4, we found that the average precision of the model trained on subset D
was only 0.01 percentage points higher than that using subset B, both with the synthetic
dataset and the manually labeled dataset. This demonstrates that our synthetic occlusion
image dataset has the same performance as the manually labeled dataset on the ORCNN.
Compared with the models trained on subset B, the model trained on dataset C had an AP
of 0.97 percentage points, which was 0.18 percentage points higher than the former. This
indicates that the addition of synthetic data increases the predictive ability of the model.
In addition, we used the models trained on a small amount of data to predict the amodal
masks of the occluded caps, as shown in Figure 12.
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3.4. Size Estimation of Caps

We selected different caps to generate occlusion images and then estimated the cap
size based on the amodal masks, and the results of the cap length and width estimations are
shown in Figure 13. The results indicate that the proposed method estimated that the width
(R2 = 0.98) and length (R2 = 0.97) of the caps of AC had a fine linear relationship with the
manually labeled data before PCA processing and had an R2 = 0.96 and 0.99, respectively,
after PCA processing. Moreover, the R2 of the width and length of OR between the
estimated measurement and manual measurement before PCA processing was 0.99 and
0.96, respectively, while after PCA processing, the R2 was 0.99 and 0.96, respectively. In
addition, the RMSE of the width and length of AC between the estimated measurement and
manual measurement after PCA processing was 2.45 and 6.62, respectively, which decreased
by 0.58 and 0.64 compared to the RMSE before PCA processing. The measurements based
on our synthetic occlusion image dataset are almost the same as the manually labeled ones.

Agronomy 2024, 14, 1337 14 of 17 
 

 

3.4. Size Estimation of Caps 
We selected different caps to generate occlusion images and then estimated the cap 

size based on the amodal masks, and the results of the cap length and width estimations 
are shown in Figure 13. The results indicate that the proposed method estimated that the 
width (𝑅ଶ = 0.98) and length (𝑅ଶ = 0.97) of the caps of AC had a fine linear relationship 
with the manually labeled data before PCA processing and had an 𝑅ଶ = 0.96 and 0.99, 
respectively, after PCA processing. Moreover, the 𝑅ଶ of the width and length of OR be-
tween the estimated measurement and manual measurement before PCA processing was 
0.99 and 0.96, respectively, while after PCA processing, the 𝑅ଶ was 0.99 and 0.96, respec-
tively. In addition, the 𝑅𝑀𝑆𝐸 of the width and length of AC between the estimated meas-
urement and manual measurement after PCA processing was 2.45 and 6.62, respectively, 
which decreased by 0.58 and 0.64 compared to the 𝑅𝑀𝑆𝐸 before PCA processing. The 
measurements based on our synthetic occlusion image dataset are almost the same as the 
manually labeled ones. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)  
Figure 13. Scatter plot and linear correlation of width and length between the manual measurement 
and estimated measurement. (a) The width of AC before PCA processing. (b) The length of AC be-
fore PCA processing. (c) The width of AC after PCA processing. (d) The length of AC after PCA 
processing. (e) The width of OR before PCA processing. (f) The length of OR before PCA processing. 
(g) The width of OR after PCA processing. (h) The width of OR after PCA processing. (i) The width 
of PN before PCA processing. (j) The length of PN before PCA processing. (k) The width of PN after 
PCA processing. (l) The length of PN after PCA processing. 

4. Discussion 
Regarding the edible mushroom occlusion cap image dataset generation task, the fi-

nal dataset includes 12,000 images for training, 3000 images for validation and 2000 im-
ages for testing for each variety of Oudemansiella raphanipes, Agrocybe cylindraceas and Pho-
liota nameko. From Figure 8, we can find that the synthetic occlusion image dataset method 

Figure 13. Scatter plot and linear correlation of width and length between the manual measurement
and estimated measurement. (a) The width of AC before PCA processing. (b) The length of AC
before PCA processing. (c) The width of AC after PCA processing. (d) The length of AC after PCA
processing. (e) The width of OR before PCA processing. (f) The length of OR before PCA processing.
(g) The width of OR after PCA processing. (h) The width of OR after PCA processing. (i) The width
of PN before PCA processing. (j) The length of PN before PCA processing. (k) The width of PN after
PCA processing. (l) The length of PN after PCA processing.

4. Discussion

Regarding the edible mushroom occlusion cap image dataset generation task, the final
dataset includes 12,000 images for training, 3000 images for validation and 2000 images
for testing for each variety of Oudemansiella raphanipes, Agrocybe cylindraceas and Pholiota
nameko. From Figure 8, we can find that the synthetic occlusion image dataset method
can randomly generate occlusion cap images based on the non-occluded caps, which can
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simulate the visible region when the cap is occluded. The main reason for this is that we
controlled the area for randomly generating the position of the upper cap and the center of
the location of the upper cap was close to the edge of the occluded cap. However, there
are also some cases that do not conform to the real occlusion. As shown in Figure 14a, no
occlusion is generated. This is because the area of upper cap is bigger than the occluded cap
and the placement of the upper cap generates randomly near to the center of occluded cap.
Moreover, if two or more caps randomly generate occlusion to another cap, the situation
in Figure 14b may occur. The reason for this is that the edge of the upper caps is adjacent
to others, which results in a line in the middle of the occluded cap. Despite the fact that
the synthetic occlusion image dataset method has the probability of generating the above
implausible data, the majority of the data are still those of the actual occlusion situation.
Furthermore, with enough normal data, these abnormal data have little effect on model
training and evaluation.
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Furthermore, the amodal segmentation results showed an AP@[0.5:0.95] of 82%, 93%
and 96% on the Oudemansiella raphanipes, Agrocybe cylindraceas and Pholiota nameko synthetic
cap datasets, respectively, with a size of 1024 × 1024 px. Compared with [23], using the
synthetic dataset results in a 17% improvement in amodal segmentation accuracy. Despite
that, from Table 2, we learned that by using either the model trained with 512 × 512 or
1024 × 1024 px, the evaluation results of AP@[0.5:0.95] for 256 × 256 px are much lower for
Agrocybe cylindraceas and Oudemansiella raphanipes. Meanwhile, the results of 512 × 512 and
1024 × 1024 px evaluated by the model trained with 256 × 256 px are also much lower
than the results of 256 × 256 px. We hypothesize that the insufficient data of the original
image used to generate the occluded image result in overfitting of the trained model. From
Figure 10, it is obvious that the amodal instance segmentation model segments well on our
cap synthetic occlusion image dataset. Despite the superior performance, there are some
unsatisfactory results, as shown in Figure 15. The main reason is that the heavy occlusion
results in a small visible region, which may output a myriad of cap fits. Unfortunately,
heavy occlusion is common during the actual growth of edible mushrooms.
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From Figure 12, we can see that our size estimation method for cap length and width
has a fine linear relationship with the manually labeled data. Despite that, there are still
some estimated measurements that differ significantly from the manual measurements.
The reasons are as follows: (1) Error introduced by manual measurement. We need to
manually label a cap from the RGB image one by one and measure the cap length and
width with the labeling results, which is prone to subjective errors. (2) Error introduced by
the cap size estimation method. The cap length and width are measured by calculating the
width of the bounding box, which is acquired by approximatively revising the bounding
box, which can also introduce error. (3) Error introduced by amodal segmentation. The
cap length and width size estimation rely on the results of the amodal segmentation, while
the results of the PCA algorithm will vary slightly with the amodal segmentation results.
Unfortunately, if the cap is heavily occluded, the only non-occluded region can fit countless
caps, which can differ largely from the labeled cap and introduce error. Additionally, our
edible mushroom size estimation method is pixel-based, which lacks the depth distance to
transform from image to world coordinates.

5. Conclusions

The proposed method can be used in automatic high-throughput edible mushroom
cap phenotype research, which solves the difficulty of not being able to obtain the complete
shape of occluded caps from one image view-point and provides a quicker and more precise
annotation method for experts to reduce time costs. For growers and breeders, our method
provides rapid access to cap phenotypic parameters, providing a rich reference of data for
growth monitoring and breeding designs. Additionally, farmers can apply it to quickly
estimate mushroom yields.

However, our methods have a few limitations. Firstly, we always try to measure the
caps quickly and with high precision, and therefore we only use the RGB images for study,
ignoring the effect of the depth information on the accuracy. Secondly, our synthetic image
approach is limited to the object, of which the shape is simple; thus, our methods still need
to be improved for complex shaped targets. In our future research, constructing datasets
that contain depth information is a priority. Additionally, other research on methods
for analyzing the phenotypic parameters of edible mushrooms in complex environments
is necessary.
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