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Abstract: More than half of global water use can be attributed to crop irrigation, and as the human
population grows, so will the water requirements of agriculture. Improved irrigation will be critical
to mitigating the impact of increased requirements. An ideal irrigation system is informed by
measurements of water demand—a combination of water use and water status signals—and delivers
water to plants based on this demand. In this review, examples of methods for monitoring water
status are reviewed, along with details on stem and trunk water potential measurements. Then,
methods for monitoring evapotranspiration (ET), or water use, are described. These methods are
broken into coarse- and fine-scale categories, with a 10 m spatial resolution threshold between them.
Fourteen crop ET technologies are presented, including examples of a successful estimation of ET
in research and field settings, as well as limitations. The focus then shifts to water distribution
technologies, with an emphasis on the challenges associated with the development of systems that
achieve dynamic single plant resolution. Some attention is given to the process of choosing ET
and water status sensing methods as well as water delivery system design given site characteristics
and agronomic goals. This review concludes with a short discussion on the future directions of ET
research and the importance of translating findings into useful tools for growers.
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1. Introduction

As the global population continues to grow, so do the water demands of civilization [1].
These demands are driven principally by agriculture, which over the past decade accounted
for approximately 70% of freshwater withdrawals from surface and subsurface water
systems worldwide; and in developing countries, this percentage may be as high as
90% [2,3]. Irrigation as defined by the Food and Agriculture Organization of the United
Nations is by far the largest consumer of global water, accounting for 90% of all agricultural
water use and more than 63% of overall water use [4]. Given these statistics, it is difficult
to predict the impact of continually increasing irrigated agricultural land throughout the
world, which has almost doubled since the 1970s and now accounts for more than 40%
of the total area used for agricultural production [5]. In 2015, irrigated agricultural land
was estimated to be about 3.14 million km2 globally, but this figure is sensitive to many
sources of error and has continued to rise for almost a decade since [6,7]. Irrigation’s rapid
acceptance over the past 70 years is the result of the proliferation of knowledge about the
importance of irrigation for increasing agricultural production and reducing vulnerability
of crops to failures, both critical to supporting growing populations [8]. While irrigation
technology and ancillary infrastructure principally address crop survival and yield, these
resources also empower farmers to grow high-value crops, which can be more sensitive to
water [9].

Agronomy 2024, 14, 1355. https://doi.org/10.3390/agronomy14071355 https://www.mdpi.com/journal/agronomy

https://doi.org/10.3390/agronomy14071355
https://doi.org/10.3390/agronomy14071355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com
https://orcid.org/0000-0001-9630-396X
https://doi.org/10.3390/agronomy14071355
https://www.mdpi.com/journal/agronomy
https://www.mdpi.com/article/10.3390/agronomy14071355?type=check_update&version=2


Agronomy 2024, 14, 1355 2 of 28

High-value crops, like grapes or tree fruits and nut crops with structured canopies, are
more water-intensive than some seasonal crops such as wheat, corn, and soy, as examples.
For instance, though water footprints of all crops exhibit large spatial and temporal varia-
tion, producing 1 kg of almonds in California has been reported to require approximately
10,000 L of water [10], while producing 1 kg of wheat in Iraq, a similarly arid environment,
has been reported to require approximately 1876 L of water [11]. Due to their significant
water demands, nearly all commercial almond orchards in regions without ample rainfall,
such as the Central Valley of California, are irrigated [12]. Adequate rainfall poses an issue
for viticulturists as well. While water needs vary greatly by region, varietal, and production
style, it is estimated that vineyards require about 650 mm of rainfall per year [13]. In
recent years, these rainfall needs have not been met in many key viticultural areas such as
California, South Australia, and parts of southern Europe. As a result, drip irrigation is
increasingly used in viticulture to make up the gap between vine water demand and what
is available to vines in subsurface water systems from natural rainwater. In addition, it
should be noted that vine water demand will be a strong function of the desired yield, with
larger fruit yield demanding larger water uptake by the plant. While drip irrigation systems
are designed to sustain crops, more importantly, they sustain agricultural industries, the
economic importance of which cannot be understated.

The presence of widespread, sophisticated irrigation technology, while useful, requires
abundant freshwater resources in order to achieve the parallel goals of agricultural and
economic sustainability. The 2012 to 2017 drought in California underscores what happens
when a region depending on agriculture for the majority of its economic activity is faced
with immutable natural resource limitations. Howitt et al., 2015, estimated the total drought
impact on the California economy at USD 2.74 billion, with wide ranging effects on the
environment, economy, and society. Those in the agricultural industry bore the brunt
of the effect, contending with a severe decrease in water resources that lead directly to
nearly 3% losses in crop revenue, and a 75% increase in the cost of water pumping [14].
Over time, the economic pressure created by the multi-year drought led to a 45% increase
in idle land in California, over 21,000 lost jobs, and created the ideal conditions for the
intense 2017 wildfires that caused unprecedented property and environmental damage [15].
This somber example is a salient reminder of the importance of natural water resources.
Clearly, the management of freshwater is paramount to a successful future trajectory of our
agriculture industries, if not civilization itself.

One of the ways regions like California can manage water use is to focus on opti-
mizing agricultural water use, the majority of which is accounted for by irrigation. The
importance of optimizing irrigation is not only in minimizing water use by eliminating
unnecessary overwatering, but also creating optimal conditions for crop development.
Generally speaking, when root zone moisture is ideal throughout a plant’s life cycle, all
crops will see improved yield, decreased disease pressure, and improved vigor compared to
plants grown in less than ideal conditions [16]. Despite this knowledge, the most common
form of irrigation used by commercial growers of high-value crops is drip systems that
treat all plants in a management zone identically, even though it is known that all plants do
not require the same amount of water. Water demand heterogeneity can arise from cultivar
differences, complex topography, canopy orientation, soil structure, and composition, or
rogueing practices for disease control, as examples [17]. When this variability is combined
with complex deficit irrigation strategies, the optimization of irrigation schemes becomes
quite challenging.

If high-value crop growers can meet this challenge head-on, by implementing effective
irrigation strategies that can account for the complexity of plant water demand, or even
approximate it, the possibility of simultaneously reducing unnecessary water use while
maintaining or improving crop quality could become a reality [18]. For example, in 2017,
researchers reported a two-treatment experiment using grapevines at an E&J Gallo vineyard
in Galt, CA, USA. In the study, one block of “stressed” vines was irrigated with 69% of
the amount of water applied to the grower standard irrigation treatment block. Not only
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were no significant yield differences observed between stressed and standard treatments,
but the only significant qualitative difference was an increased concentration of malic acid
content [19].

This review presents a comprehensive overview of the methods available to growers of
high-value crops for estimating evapotranspiration (ET) and informing irrigation schedul-
ing in commercial agriculture systems. While other reviews of methods for estimating ET
exist [20–24], none are focused on applications specific to high-value perennial, woody
cropping systems. To address this gap in the literature, and in order to present ET estima-
tion options for high-value crops in an organized and digestible format, we have organized
the methods into two distinct groups of coarse-scale and fine-scale estimations (Table 1).
For the purpose of this manuscript, we have defined the threshold for the coarse scale as
a 10 m spatial resolution or lower, a decision influenced by the 10 m resolution of images
taken by the Sentinel-2A satellite [25]. We acknowledge that many of the technologies
mentioned in this manuscript could be considered either the fine or coarse scale depending
on the application context, but categorize them anyways for the sake of an organized
discussion. In the following sections, we will first introduce the important nuance between
how much water plants need, and when they need it. Then, we will discuss coarse- and
fine-scale ET technologies. As each technology is introduced, related concepts are explored,
and the forms of data required for calculations are discussed, as well as some examples
of the successful implementation and any known weaknesses or limitations. Then, water
distribution systems are considered in the context of ET estimates, with an emphasis on
high-spatial-resolution distribution systems. In the conclusion section, major themes are
revisited and the future directions of ET research are discussed.

Table 1. ET models are organized into coarse- and fine-scale categories, and summarizing information
is given on the number of plants considered by each model, the time step of ET estimates, and the
appropriate applications.

Model
Resolution

Time Step Application
Footprint Number of Plants

Coarse

Surface Energy Balance,
Remotely or Proximally
Sensed

10 m or greater Multiple Monthly, weekly,
daily, hourly Open field

Original Penman–Monteith 10 m or greater Multiple Daily Open field

Stanghellini 10 m or greater Multiple Hourly Greenhouse or
indoor

Priestly–Taylor 10 m or greater Multiple Daily Open field

Hargreaves and Samani 10 m or greater Multiple Daily Open field

Reference ET and Crop
Coefficients 100 m or greater Multiple Hourly Open field

Eddy Covariance 10 m or greater Multiple Hourly Open field

Soil Moisture Sensors 10 m or greater Multiple Hourly
Open field,
greenhouse, or
indoor

Pan Evaporation 10 m or greater Multiple Daily or hourly Open field
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Table 1. Cont.

Model
Resolution

Time Step Application
Footprint Number of Plants

Fine

Lysimeters Area of Lysimeter Single or Multiple Two minutes or
less

Open field,
greenhouse, or
indoor

Sap Flow Sensors 1–6 m Single Hourly
Open field,
greenhouse, or
indoor

Gas Exchange Measurements Less than 1 m Single Two minutes or
less

Open field,
greenhouse, or
indoor

Infrared Temperature
Measurements Less than 1 m Single Hourly

Open field,
greenhouse, or
indoor

High-Resolution Irrigation
Models and Low-Cost Sensors 1–6 m Single or Multiple Two minutes Open field

1.1. How Much vs. When?

To achieve the abstract goal of watering a plant according to its needs requires two
fundamental components: (1) an engineered system for targeted delivery of water to
each plant, and (2) an understanding of the plant’s water needs that can inform irrigation
decisions. The second component, understanding a plant’s water needs, requires knowing
how much water to apply and when to apply it. While this may seem a trivial distinction,
the questions of how much and when to water a plant have two very different answers,
and arriving at those answers requires collecting and analyzing different types of data.

While estimating ET can inform how much water to give a plant, determining the best
time to give this water to a plant requires understanding something about the plants’ water
status [26]. Water status refers to water potential, a thermodynamic concept describing
the Gibbs free energy per unit volume of some phase of water relative to pure liquid
water at 1 ATM. The magnitude of this value is a result of both the soil water content and
evaporative demand of the atmosphere [27]. In practice, water potential can be a useful
signal for growers because it can indicate whether or not a plant is experiencing debili-
tating water stress that prevents transpiration and reduces growth or photosynthesis [28].
Water potential is most commonly measured using a pressure chamber device, but when
using this kind of device, it is important to consider the difference between stem and leaf
water potential.

In woody plants, such as grapes or tree crops, leaf water potential is not a reliable
indicator of the water status of the whole plant because physiological and micrometeoro-
logical differences can cause local differences in leaf water potential [28,29]. Stem water
potential serves as a better indicator of whole-plant vascular performance and can be
easily measured using a leaf bagging method that allows time for the leaf and petiole to
equilibrate with stem water potential before measurement with a pressure chamber [26].
Although stem water potential can be a useful measurement, it is also a labor-intensive
process and for this reason has only recently become more widespread in commercial agri-
culture [29]. Also, it is known that stem water potential fluctuates diurnally and seasonally,
which makes it difficult to set absolute general water potential thresholds for irrigation
management. In order to use stem water potential information to trigger an irrigation
system, measurements on target plants need to be benchmarked against non-stressed plants
of the same type in the same environment. Another recent study suggests developing crop-
and cultivar-specific thresholds for commercial irrigation scheduling based on trunk water
status measurements [30,31].
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To overcome these challenges, several automated and continuous methods for mea-
suring or inferring stem water potential have been developed, including trunk diameter
fluctuation sensors, sap flow sensors, and microtensiometers. Measuring trunk diameter
fluctuation on a daily basis allows the extraction of a maximum daily shrinkage factor that
has been shown to be effective for estimating the water potential of trees [32–34]. Sap flow
sensors, which measure the flow of water and nutrients through xylem via the compen-
sation heat-pulse method [35], or tensiometer sensors may also be used to estimate plant
water status [36,37]. In the heat-pulse method, a small wire is heated, and the rate at which
this heat dissipates is correlated with the sap flow rate. Tensiometers work by measuring
the tension in the xylem directly via a pressure sensor embedded in the trunk. While many
measurement options exist, it is important to consider when to collect stem water potential
measurements, as midday or solar noon water values for the same plant may give different
results than a pre-dawn measurement, and reflect different physical concepts.

The predawn stem water potential measurement aims to understand the soil water
potential based on the assumption that the roots of well-watered plants will equilibrate
with the soil water potential overnight [38]. A midday or solar noon stem water potential
measurement may be useful for measuring the stress experienced by the plant during the
past few hours, but may not reflect whether a plant has access to water for transpiration.
Despite some limitations, in commercial almond cultivation, for example, midday stem
water potential is considered the best indicator of whole-plant water status because the
pressure signal integrates information from the entire soil–plant–atmosphere continuum,
capturing the effects of root zone and environmental conditions in one measurement [39].
While tools like pressure chambers, trunk diameter calipers, sap flow sensors, or even
observation can be useful for determining when plants are transpiring or when to apply
irrigation, these tools cannot directly measure how much water to apply.

1.2. Measuring Evapotranspiration

Evapotranspiration is a fundamental component of the global water cycle, connecting
water, carbon, and energy systems, but it is also fundamentally difficult to measure and
predict because it integrates evaporation and transpiration [24]. Evaporation is a passive
process that occurs at the soil surface and other wet surfaces. Vegetation transpires prin-
cipally because it allows the plant simultaneous access to carbon dioxide and a means of
keeping itself cool under the heat load of the sun, but it is also essential for plant growth and
drives the transport of nutrients throughout the plant [28]. Measuring the combined effect
of the vaporization of liquid water from surfaces into the atmosphere and the vaporization
of liquid water inside leaves, plus the transport of these water vapors away from the site
of vaporization, is not straightforward. The evaporation aspect of this process is driven
by incident solar energy while the water vapor transport aspect is driven by the vapor
pressure difference between the water vapor near the evaporating surface and the water
vapor in the atmosphere [40].

Over the years, numerous methods have been devised to measure ET but many share
some common characteristics. Some can be classified as mechanistic models, and others
empirical. Mechanistic models are based on physical laws, though they often include
assumptions or simplifications. These models are thought to be more precise because they
can account for crop-related changes, such as the Penman–Monteith model, which includes
terms describing physiological responses to the environment [41]. Empirical models are
based on observed correlations between multiple concepts. While these methods may be
simple and often require less data, they typically lack generalizability. The Hargreaves
model, for example, is well suited to closed greenhouse environments but is not validated
for performance in open field settings [42]. Another limitation of many of the approaches
to measuring ET is the spatial resolution of estimates, which can vary widely from several
hectares to several square meters.
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2. Coarse-Scale ET Estimates

In many cases, it makes more sense to measure ET at a spatial scale greater than
10 m. In fact, it is not uncommon for the scale of estimates to be orders of magnitude
greater than this threshold. In some parts of the world, there is limited or no access to field
measurements of meteorological data, so satellite or other remote sensing-based estimates
are the best or only option for estimating ET. In other cases, there is simply not enough
funding for fine-scale measurements of ET, which are relatively more expensive because
of increased sensor requirements and frequency of consultations with experts for data
collection and analyses. While rare, it is also possible that an environment may be nearly
homogeneous in terms of soil composition, topography, and elevation. In these cases, a
fine-scale estimate of ET is not necessary for adequate management of irrigation.

2.1. Original Penman–Monteith

The Penman–Monteith model is one of the first and seminal methods for estimating ET,
but it is actually the culmination of two scientists’ work spanning decades and institutions.
Working at the Rothamsted Experimental Station, Howard Latimer Penman approached
modeling the evaporation of water from an open surface and devised an equation used
to this day. This model is based on only physical drivers, though, and was originally
validated for open water bodies, well-watered grass, and bare soil [43]. In the 1950s
and 1960s, John Lennox Monteith revisited the problem of the evaporation of water, but
this time with a focus on plant transpiration. To improve estimates of evaporation over
well-watered grass, Monteith measured the resistance of stomata in the field, then added
this diffusion resistance to Penman’s model [44]. The first example of an application of
Penman–Monteith to a two-layer model, which separates energy exchange at the canopy
and soil levels, marked an important shift towards next-generation modeling [45]. Many
later models also focused on simplification, eliminating collinear terms and reducing data
collection requirements without major impacts on accuracy of estimates [46]. Given all the
options, growers must choose which of the numerous Penman–Monteith models to use.
When considering which model to use, it is important that growers are well informed on
which models were designed for and validated in meteorological settings closest to the
field conditions in question.

The original Penman–Monteith equation [Equation (1)] is composed of two main
terms, the surface resistance and aerodynamic resistance terms [40].

λET =
δ(Rn − G) + ρaCp

(es−ea)
ra

δ + γ
(

1 + rs
ra

) (1)

The λ term is the latent heat of the vaporization of water, δ is the slope of the saturation
vapor pressure curve, ρa is the mean air density at isobaric conditions, Cp is the specific
heat of air, es − ea is a vapor pressure deficit term, γ is the psychrometric constant, and rs
and ra are the surface and aerodynamic resistance terms, respectively. Surface resistance
is the resistance of water vapor to movement through the leaf stomata and soil surface,
while aerodynamic resistance is the resistance of vertical water vapor diffusion from the
leaf to the surrounding air. Surface resistance can be further subdivided into terms for
bulk stomatal resistance of a well-illuminated leaf and active leaf area index. The bulk
stomatal resistance is highly dependent on the type of crop, meteorological conditions,
soil moisture content, and solute concentration in water. The active leaf area index is a
dimensionless measure of the upper side area of the leaf per unit area of the soil underneath
it, and as a result depends on the plant type, leaf density, and life-cycle stage. Aerodynamic
resistance is estimated from wind speed measurements and calculated roughness lengths.
These abstract lengths represent aspects of the heat and vapor transfer process, and can be
estimated as one tenth of crop height [40].

While Penman–Monteith is a pioneering model, it also has remarkable longevity in
the field, with many examples of successful applications spanning the past 20 years. As



Agronomy 2024, 14, 1355 7 of 28

an example, a two-layer Shuttle- and Wallace-inspired model with added sub-models for
net radiation and soil heat flux was used in 2010 to estimate the ET of a Merlot vineyard in
Chile [47]. The Penman–Monteith approach has also been validated on a tropical savanna
and an evergreen Eucalyptus forest in Australia, explaining up to 74% of the variation in
ET [48]. Some evidence, however, points to a shortcoming in the Penman–Monteith model,
such as the lack of a term to consider the salinity of water. In the situation in which ideal
meteorological conditions and soil moisture conditions exist for transpiration, high enough
salinity can reduce the magnitude of the pressure gradient driving water flow through
the plant without affecting model estimates [49]. One other major known drawback of
the Penman–Monteith approach is its reliance on the assumption of a homogeneous local
climate. This assumption may be appropriate for open field settings, but is problematic for
greenhouse settings [50].

The greenhouse environment presents a particular challenge for the Penman–Monteith
method. In order to calculate the aerodynamic resistance term, homogeneous local climate
must be assumed, but this assumption is violated in nearly all greenhouses. Greenhouse
architecture and sparse environmental control equipment typically leads to a heterogeneous
environment [51]. To overcome the challenges associated with modeling ET in a greenhouse,
Cecilia Stanghellini revised the Penman–Monteith approach to more accurately account
for the processes associated with ET in a greenhouse, using tomatoes as a reference crop.
The revised model [Equation (2)] includes modifications to the radiation flux terms in the
equation, considering the effects of greenhouse components such as soil covering, surface
materials, heating or cooling devices, or other electronic equipment [52].

λET =
δRn + (

2·LAI·ρaCp
re

VPD)

γ(1 + δ
γ + ri

re
)

(2)

The VPD term is the vapor pressure deficit, and the ri and re terms are the canopy
internal and external resistance terms, respectively. The model also includes a modified leaf
area index (LAI) term, which accounts for exchange of energy from multiple layers of the
canopy [53]. Notably, net radiation is described differently, giving separate weights to short-
and long-wave radiation’s effect on a multi-layered canopy such as those typically found
in greenhouses [22]. Other differences include terms for radiation resistance, external and
aerodynamic resistance that accounts for the non-logarithmic profile of wind as distance
from the canopy increases, and the internal resistance of a leaf in greenhouse settings [54].

Measuring ET using the Stanghellini method requires measuring many of the same
terms as other Penman–Monteith-derived methods. These include the net solar radiation,
vapor pressure deficit, leaf area index, air density, leaf surface temperatures, and concen-
tration of carbon dioxide in the air. Due to the large number of data types that need to be
collected, a revised Stanghellini method was developed, including a simplified irradiance
term called the Canopy Area Index (CAI) [55].

The performance of the Stanghellini method in a greenhouse has been compared to
other methods including the original Penman–Monteith method. While there was not a
significant difference between the performance of the two models, the Stanghellini model
consistently explained more of the variation in crop ET [53]. Researchers attributed this
performance gap to the Stanghellini model’s inclusion of terms, which better consider the
environmental factors affecting bulk stomatal resistance. In another study, the Stanghellini
method was compared to the original Penman–Monteith, the pure Penman approach,
and the Fynn approach, using a Red Maple Tree (Acer rubrum ‘Red Sunset’) grown in a
greenhouse as a subject. The Stanghellini model explained nearly 88% of the variance in
the maple tree ET, likely due to a relatively improved characterization of the environmental
factors impacting ET, whereas the other models explained less than 50% [22].

There are situations, such as in rural areas with no access to sensors or where power is
not ubiquitous, which preclude the measurement of the meteorological and climatological
parameters for calculating the aerodynamic resistance terms in a Penman–Monteith ET
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model. To overcome these challenges, another similar approach was developed by C.H.B.
Priestly and R.J. Taylor but with a simplified approach to aerodynamic resistance. This
model [Equation (3)] replaces the aerodynamic resistance term in the Penman–Monteith
model with a dimensionless coefficient, alpha (α) [56].

ET =
1
λ

δ
Rn − G

δ + γ
α (3)

In the original Priestley–Taylor model, researchers validated an alpha value of 1.26 for
open field systems, a value used even in modern research [57]. Though 1.26 is generally
accepted, researchers in 2011 showed that an alpha value of 1.26 is too low for arid and cold
environments like Iran, where a value in the range of 1.82–2.14 is more appropriate [58].

When using this model, solar radiation, air temperature, and relative humidity will
need to be measured. However, because the aerodynamic term is approximated with the
alpha term, wind speed is not measured and roughness lengths are not approximated. Even
without this term, which proponents of the original Penman–Monteith approach might
argue is critical to accurately describing the environment, the Priestley–Taylor model has
been shown to successfully estimate monthly canopy and soil ET [59]. Though this method
can be effective on its own, several studies have demonstrated successful efforts to improve
the accuracy of predictions by allowing the value of alpha to fluctuate. One method
demonstrated an improved performance of the Priestley–Taylor method by introducing a
term that lets the alpha value vary as a function of NDVI and leaf surface temperature [60].
In another study, researchers working with Sorghum suggested that estimates can be
improved by calculating alpha based on an equation that considers the daily mean vapor
pressure deficit [46].

Several more recent studies, however, have shown that the Priestley–Taylor method
underestimates ET rates under advective conditions [23]. Advection is the movement of
vapor, heat, and air as conveyed by the wind. When advective conditions interact with
the canopy, which is not uncommon in an open field setting, the Priestley–Taylor method
cannot accurately consider the dynamic effect of aerodynamic resistance in the system [61].
Many studies have highlighted this sensitivity to using an appropriate alpha term, but
the alpha term has also been shown to interact with soil moisture content, solar radiation,
atmospheric pressure, and other meteorological concepts [58]. For example, in one study,
researchers showed that as surface resistance increases or humidity decreases, the alpha
coefficient increases [62].

In remote or logistically challenging environments, such as those without access to
grid power, it may be difficult to collect any meteorological data. In these situations, if air
temperature alone may be measured, then it is possible to estimate the regional ET from
these values [63]. The development of this ultra-simplified Penman–Monteith-inspired
method for estimating ET [Equation (4)] was originally motivated by the lack of readily
available meteorological data in developing countries that can limit the applicability of
methods including most of the Penman–Monteith methods developed at the time.

ET = 0.0023(
Tmax + Tmin

2
+ 17.8)

√
Tmax − TminRa (4)

In order to estimate the regional ET without any solar radiation data, or with solar
radiation data of questionable accuracy, researchers devised a method using only air
temperature validated for open field settings. In this method, global solar radiation at the
surface (Ra) is estimated through air temperature values and empirical relationships [64].

With this approach, users measure air temperature throughout the day and night,
recording daily maximum (Tmax) and minimum (Tmin) values. Empirical coefficients based
on site location are also used, to adjust for regional differences. These coefficients are
correlated with temperature, but are also typically lower for interior regions and higher
for coastal regions. Air temperature may be measured or estimated using ground-based
sensors or extra-terrestrial sensors mounted on orbital or aerial devices. Though they were
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designed to improve estimates, in one study, it was found that the empirical site adjustment
coefficient may lead to the Hargreaves and Samani approach overestimating the ET rate in
many situations, leading to excess irrigation [65]. While the tendency to overestimate ET
poses some limitations to the applicability of the Hargreaves approach, some studies have
shown that calibration parameters may be used to reduce the overestimation of ET by up
to 16.3% [66].

2.2. Surface Energy Balance

Energy balance methods are based on the concept of the conservation of energy, which
states that the energy in some problem domain is constant, and neither created nor de-
stroyed. Due to its somewhat flexible footprint, this can be a cost-effective method for
estimating ET on scales ranging from single plots (1–2 hectares) to entire regions [24,67].
With multispectral image data from satellite or aerial observation, surface energy is com-
puted by combining the surface energy balance equation [Equation (5)] with land surface
flux expressions and temperature sensing.

Rn = LE + G + H + ∆Sair + ∆Sair + ∆Sbm + ∆Sph (5)

The energy balance equation states that net radiation (Rn) must be in balance with the
latent heat flux density (LE), ground heat flux density (G), sensible heat flux density (H),
and other less significant energy sinks (∆S terms). While remote sensing can be effective for
estimating regional ET via estimates of NDVI, local effects and the effects of specific plant
morphology may necessitate some proximal sensing as well. For example, the turbulent
structure of air over a vineyard, which is strongly influenced by the geometry of the
underlying canopy, may not be accurately modeled by remote sensing alone [68].

In the context of the plant–soil–atmosphere system, energy balance theory states that
net radiation must be in balance with the latent heat flux density, ground heat flux density,
sensible heat flux density, and other less significant energy sinks. Ground heat flux density
is the rate of heat storage into the soil and vegetation due to conduction, and is either
measured directly or computed using information from Normalized Difference Vegetation
Index (NDVI) measurements [69]. Sensible heat flux density is the energy lost to the air
from the plant, soil, and cover crops via convection and conduction. Multiple methods have
been developed to estimate sensible heat flux including eddy covariance, the Bowen ratio
method, and surface renewal [70]. The energy stored in the air layer and in the biomass
and chemical energy stored in the carbohydrate bonds of plant sugars, formed using ATP
and NADPH from the light reactions of photosynthesis, are usually considered negligible
compared to other terms and are therefore ignored [71]. The latent heat flux density is the
heat lost from the system due to the evaporation of water, and is calculated as a residual,
once all other parameters in the model are determined. Dividing the latent heat flux by the
latent heat of the vaporization of water will give ET.

Generally, surface energy balance methods can be categorized as either one- or two-
layer models, though there are recent examples of three-layer models as well [72]. Single-
layer models do not distinguish between soil and vegetation components of ET, but rec-
ognize contributions to ET from both [73]. Sensitivity to local calibration and relatively
extensive local reference data requirements restrict the use of single-source methods to
several-hectare or smaller-scale applications [24]. The Surface Energy Balance for Land
(SEBAL) overcomes these limitations by empirically estimating the essential meteorological
parameters and can therefore be applied over much larger areas, but it may lack regional
specificity [74]. Two-source surface energy balance methods account for the individual
contribution of soil and vegetation to total heat flux but require more data inputs [73,75].
The three-source model applies to cropping systems such as vineyards, where the row
and inter-row represent two distinct zones of vegetation. The row is the perennial vine
crop but the inter-row is typically composed of seasonally rotated cover crops. In three-
source models, the contributions to ET are partitioned into the soil layer, the cover crop
layer, and the crop layer. Independent of the number of layers, energy balance models
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require frequent and spatially contiguous measurements using ground-based sensors and
potentially also orbiting satellites or airplanes mounted with multispectral cameras for
detecting parameters affecting ET [76]. If overhead sensing is being performed, leaf area
index (LAI) data may also be remotely collected in parallel and these data can be used
to improve Penman–Monteith directly, or other energy-balance-based ET estimates via
empirical relationships between LAI and NDVI [48,77–79].

In one of the earliest studies quantifying large-scale ET trends, researchers reported
a successful implementation of a satellite-sensed NDVI-based model called the Process-
based Land Surface Evapotranspiration/Heat Fluxes algorithm (P-LSH) that separately
computes the contributions of the canopy, soil, and open water bodies to ET [80,81]. Then,
in 2021, researchers successfully used data-driven models to estimate the ET rate, using
physical energy balance models coupled with machine learning, regression, and neural
networks [82]. Three-source models have also been shown to perform well in vineyards,
except under extreme advective conditions [72]. However, methods requiring aerial and
orbital data collection methods may be sensitive to cloud cover and dust, which can impact
estimates of parameters important for calculating ET [83]. Also, sensible heat flux is
sensitive to factors impacting the distribution of energy sources in the canopy including
wind speed and surface roughness, and is therefore affected by canopy size, structure,
trellising, plant phenological stage, and even ground surface heterogeneity [70].

2.3. Reference ET and Crop Coefficients

In other regions of the world, reference ET systems and crop coefficients are one of
the options for estimating local ET. In California, USA, for example, this is an important
method for estimating ET, which allows growers throughout the state to schedule irrigation
based on proxy measurements along with correction factors known as crop coefficients,
specific for the type of plant being grown nearby and management factors [40,84]. These
proxy ET values, known as reference ET, are calculated at 1 of over 200 California Irrigation
Management Information System (CIMIS) weather stations distributed throughout the
state [85]. Some other states in the USA have similar systems including Florida [86],
Colorado [87], Arizona [88], and Washington [89], as well as other countries including
Australia [90], India [91], and the United Kingdom [92]; but the specific data types available
from these systems may differ from CIMIS. At each CIMIS station, meteorological data are
collected at a weather station 2 m above well-watered clipped grass, and then fed into a
modified version of the original Penman–Monteith known as FAO56 Penman–Monteith
because it was introduced in Irrigation and Drainage Paper 56 from the United Nations
Food and Agriculture Organization. While FAO56 Penman–Monteith is generally used for
CIMIS reference ET estimates, it is also possible to use the CIMIS–Penman model, which
is a modified version of the Pruitt/Doorenbus Penman–Monteith equation that includes
wind speed and cloud cover parameters [93].

Once reference ET (ETo) is known, it can be used to calculate true ET of crops grown
nearby by multiplying by a scaling factor known as the crop coefficient [Equation (6)].

ET = ETo · Kc (6)

The crop coefficient (Kc) is an experimentally derived value, specific to the cultivar,
seasonal canopy development, and vine spacing, and sometimes adjusted for other manage-
ment factors [94]. The work of Williams showed that the crop coefficient may be a function
of the shaded area under a grapevine, but this relationship has not been quantified [95].
Other studies have explored a two-part definition for the crop coefficient, splitting the
coefficient into separate terms for the basal crop coefficient representing a factor for crop
transpiration, and the soil evaporation coefficient representing a factor for evaporation
from the soil surface.

Compared to the other approaches for ET estimation, this method has the distinct
advantage of being virtually free for California growers and other growers in areas with
similar programs. However, this approach is limited by its reliance on the assumptions of
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generalizable regional reference ET values and crop coefficients. As a result, this method
can be quite effective at estimating regional reference ET but it can lack local specificity,
not adequately accounting for or ignoring complex factors influencing slight differences in
plant water demand such as management practices, phenological stage, topography, soil
characteristics, and many others [85]. One study found that the difference between crop
coefficients recommended by FAO56 Penman–Monteith methods and locally observed
data can be greater than 40% [20]. Researchers in this study attributed the results to crop
coefficients, which attempt to integrate several physical and biological concepts into one
signal, leaving significant potential for error if they are estimated incorrectly. Due to its
Penman–Monteith origins, the reference ET approach is inherently sensitive to local climatic
conditions at the reference ET measurement site, which may differ from local conditions at
the prediction site. When climatic variation exists between the reference and prediction site,
it may be possible to use direct measurements of stomatal and boundary layer resistance to
calibrate estimates [25,54]. Additionally, these methods do not perform well under deficit
irrigation, when they cannot completely account for the response of plants to water stress,
a common feature in high-value viticulture operations [96].

2.4. Eddy Covariance

Eddy covariance methods are considered one of the only ways to directly measure ET,
via estimates of the sensible heat flux density (H) term in the energy balance equation [see
Equation (5)]. In this method, a flux tower is used to measure changes in vertical air velocity
while simultaneously measuring the concentrations of water vapor in the air, in order to
calculate the vertical flux of water vapor, giving an estimate of ET [97]. This method is
validated for open field crops, vineyards, open water bodies, and grasslands [97,98]. Like
other fundamental energy balance concepts, the eddy covariance method is most suited
to open, flat, and homogeneous vegetation canopies, an uncommon motif in agricultural
settings. The fluxes observed by sensors mounted on flux towers represent ET from a
dynamic area that depends on wind and air stability. This area is called the “footprint” or
“fetch” [99,100]. The uncertainty of the exact dimensions of this area propagates through
calculations, contributing to the error observed in estimates of sensible heat flux and other
parameters, which often only account for 70–80% of total incident energy [101,102]. In
the 2022 Grape Remote Sensing Atmospheric Profile and Evapotranspiration eXperiment
(GRAPEX) project, for example, researchers employed the eddy covariance method and
observed a mean energy closure of 75% across multiple sites and years in the North Coast
and Central Valley of California, USA [17].

In the eddy covariance method, data are recorded at a high frequency, usually about
20 hertz. Data include wind speed and direction and are typically recorded using a sonic
anemometer. Relative humidity and air temperature are also recorded with research-
grade sensors. Gas concentrations in the air are measured using an infrared gas analyzer.
Recording all of these data at high frequency quickly leads to large files, which are difficult
to store locally. Recent progress in computation and automated sensing capabilities was
critical to bringing eddy covariance methods into practice [17]. Also, efforts have been
made to improve data collection protocols in eddy covariance systems by separating
monitoring systems for tall vegetation such as orchard trees and soil surfaces [103,104]. In
these approaches, independent estimates of soil evaporation and crop transpiration are
calculated, but the footprint of ground sensors is typically much smaller than above-canopy
measurements [105].

In one of the more innovative applications of the eddy covariance approach, re-
searchers used the Keeling Plot technique to partition ET data measured at the ecosystem
level into soil and vegetation sources [106]. This work was accomplished using spatially
distributed flux towers, which in addition to measuring parameters for estimates of ET,
were able to detect the portion of heavy isotopes (2H, 18O) in the evaporating water inside
their respective footprint. It is known that water evaporated from soil is depleted in heavy
isotopes relative to other liquid water at the Earth’s surface [107]. Some of the other litera-
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ture reports the eddy covariance method as logistically challenging due to the necessity of
high-frequency meteorological measurements and complex data processing procedures,
which usually require experts [21].

The eddy covariance method, while favored by researchers for its ability to directly
estimate ET, is very challenging to validate. The large scale and high variability of the
flux footprint, as well as the open boundary layer of the volume studied, both affected
by the degree of advection, create issues for those seeking to make direct comparisons
of other ET estimates to the estimates generated by eddy covariance methods [98,108].
The issue of the flexible footprint, which results in energy imbalance between the total
available energy and turbulent fluxes calculated by the eddy covariance technique, can
lead to overuse of water in agricultural settings. Different approaches for computationally
distributing this imbalance to create pseudo-balance can lead to uncertainty in daily ET
estimates up to 50% [17]. The Bambach et al., 2022, team of researchers went on to show
that over the growing season this uncertainty can amount to up to a third of the total annual
applied irrigation.

2.5. Soil Moisture Sensors

Unlike indirect energy balance methods, soil moisture sensors directly measure the
moisture content of the soil environment. Many different techniques have been developed,
but two of the most commonly used categories in high-value crop agriculture are volumetric
and tensiometric sensors. Volumetric moisture sensors, such as neutron probes, capacitance
sensors, and time-domain-reflectometry sensors, measure the way a signal behaves in the
soil, then estimate the percent of water in the soil by volume using known correlations [109].
Tensiometric sensors, on the other hand, directly measure capillary tension, the physical
force holding the water in the soil [110].

Soil moisture sensors have the benefit of automation and continuous data collection,
but these advantages are outweighed by myriad practical disadvantages, including a fun-
damental sensitivity to the heterogeneous distribution of moisture in the soil environment.
Soil moisture sensors are also immobile once placed, and therefore what a sensor measures
is often not what is perceived by the deep, diffuse roots of vines and trees, which can
explore soil space over time. Most importantly though, there is no simple or direct way to
estimate plant water status or ET using soil moisture content [111].

Despite no direct method for calculating ET, soil moisture sensors may be used for irri-
gation management provided there is some knowledge about the water balance properties
of the growing medium. Water balance is a concept referring to the range between the maxi-
mum water holding capacity of a growing medium, or field capacity, and the level at which
the plant can no longer transpire, also known as the wilting point [112]. The field capacity
and wilting point of a growing site may be determined via laboratory tests, sensor-based
estimates, or using the Rosetta model, which exploits pedotransfer equations to estimate
the terms indirectly [113]. It is not uncommon for researchers to simply assume a field
capacity soil matric potential of −33 kPa, though some studies suggest that an assumption
of −10 kPa may be more generalizable [114]. The wilting point may also be assumed, and
the generally accepted value is −1500 kPa, though this value is a function of soil texture,
crop type, and other local factors, which may impact the true wilting point [115].

2.6. Pan Evaporation Method

With the pan evaporation method, it is possible to use nothing more than a standard-
ized pan of open water, a scale, and a watch to estimate local crop ET. While the most basic
of pan evaporation approaches can achieve the aforementioned elegance of nearly optimal
operational efficiency, modern examples of this method typically require the collection of
supplemental meteorological data for model building purposes. Other approaches involve
calculating a pan coefficient (Kp) that when multiplied by pan evaporation (Ep) yields an
estimate of reference and then crop ET [Equation (7)].
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ET = Kp · Ep (7)

The most widely used method for determining a pan coefficient value is a table from
the United Nations Food and Agriculture Organization, which categorizes different values
based on the composition of the ground surrounding the pan, the local climate type, and
the size and type of vegetation near the pan [116].

The pan evaporation method is effective because it takes advantage of the correlation
between pan evaporation and reference ET, which in turn has a known correlation with
crop ET. To reduce error caused by differences between pans, there is a standard pan called
the “class A evaporation pan” issued by the United States National Weather Service, which
allows for more accurate comparisons between sites. While the relationship between pan
evaporation and reference ET is valid under many conditions, there can be conditions
causing differences in energy fluxes and heat storage in an open water pan relative to
vegetation. This effect is pronounced at night when energy stored in the pan during the
day increases the overnight evaporation rate of water in the pan, while canopy resistance
to transpiration will cause little to no nighttime ET [117].

Nevertheless, properly used, the pan evaporation method can produce useful estimates
of crop ET. In one study, researchers developed a method wherein pan coefficient values can
be estimated, eliminating the need for wind speed and relative humidity data. With a scale,
the pan evaporation can be measured and this alone was shown to be a strong predictor of
the pan coefficient value [117]. In another recent study, researchers in the central Himalayas
trained machine learning models using multiple types of data including pan evaporation,
air temperature, relative humidity, wind speed, and illuminated hours. Of the five artificial
intelligence models trained, the neural network and the inference models were the best
performing in terms of estimating crop ET, further demonstrating the relevance of the pan
evaporation technique [118].

3. Fine-Scale ET Estimates

For many years, the methods for fine-scale ET estimation have been relegated to
research applications, but recently several options designed for commercial use have come
to fruition, opening the door to widespread acceptance [31,119]. The development of these
tools was driven by the need for technology that allows for irrigation management at
smaller spatial scales, specifically addressing the spatially heterogeneous water demand
of high-value crops grown in topographically complex and heterogeneous environments.
Intra-vineyard spatial variability, for example, poses a particularly difficult challenge and
has been well characterized as a nearly ubiquitous feature, which has been linked to vine
performance [120–123]. When irrigated with a conventional drip system controlled by
coarse-scale ET estimates, the consequence of this spatially heterogeneous water distribu-
tion is a non-uniform ripening of berries. Ultimately, non-uniform ripening results in an
increased fraction of the resulting must being composed of immature and over-ripe berries
compared to a more uniformly ripened harvest from the same vineyard [124].

In grapes and other high-value crops, water balance contributes directly to overall fruit
quality, not just yield and ripening, layering additional complexity into its management.
For example, in perennial woody crops, well-timed water stress can help control vegetative
vigor and may increase fruit quality at harvest [125,126]. Conversely, moderate-to-severe
water stress caused by extreme deficit irrigation can damage cellular components for
light harvesting, limiting photosynthesis. If this water stress is prolonged, delays in
ripening, sudden plant collapse, and reduced fruitfulness can negatively impact yield
and quality [127]. These constraints can create a problem, however, because the irrigation
manager’s goal is finding this narrow range of applied water by considering the plant’s
needs, but these needs usually vary in a complex way through space and time. Fine-scale
ET estimates seek to reveal this complex patchwork of variable plant water needs.
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3.1. Lysimeters

Lysimeters directly measure ET by sensing changes in the mass of soil and vegeta-
tion inside of a container mounted on a scale. These complex devices were designed by
researchers to study the process of ET, develop ET models, and measure precipitation and
dew and water flow in the unsaturated zone of the soil profile [119,128,129]. A properly
designed lysimeter replicates the natural environmental conditions of the target environ-
ment and vegetation combination. Generally, this means that the overall size, pruning
habit, and other management factors applied to the lysimeter plant are comparable to the
management strategies applied to the vegetation of the same type in the local area [21].
Some lysimeters are buried underground to protect sensory equipment and ensure that
vegetation is maintained at a plausible height, and soil is maintained at a plausible temper-
ature, but examples of above-ground lysimeters demonstrate that this is not a necessity for
achieving good results [119]. Lysimeters may also be equipped with an adjustable ground
water level watering system maintaining soil hydration at levels equal to the surrounding
soil [130]. Typically, all soil plant and meteorological sensors are mounted on the potted
plant infrastructure and then all of this is mounted on a three- or four-point load cell with a
sensitivity of at least 0.01 kg. The surface area of the lysimeter soil may be used to translate
mass units of water into spatial units of millimeters per area.

If the lysimeter is a closed system, in other words, if it has no drain, then ET is
calculated by taking the integral of the derivative of load cell mass with respect to time,
ignoring irrigation and precipitation events [Equation (8)].

ET =
∫ t

0

d
dt

mass (8)

If, however, the lysimeter has a drain to allow for excess water to flow out the bottom
of the potted soil enclosure, mimicking groundwater recharge, then in order to calculate
the ET, this overflow must be measured in addition to the mass of the load cell. ET can
then be calculated by taking the integral of the derivative with respect to time of the load
cell data, adjusted for groundwater recharge. Though calculating ET may be slightly more
complicated, the advantage of lysimeters with drains is that they can provide information
about soil water retention and the percolation of excess irrigation water that no other
methods can provide [108].

The high cost of installation and maintenance of lysimeters limit their applicability
to research applications and some particularly high-value crops [21]. Typically, lysimeters
are used to validate other forms of ET estimates that are less difficult to move to new
areas. For example, in 2017, lysimeters were used by researchers in Switzerland to validate
eddy covariance for ET estimates using well-watered grass as a research subject [129].
Measurements were taken hourly from 2009 to 2015, and using lysimeter data as a reference,
researchers were able to show eddy covariance performs well to estimate ET, especially on
the annual time scale. In this study, direct comparison to lysimeter ground truth ET allowed
researchers to demonstrate that eddy covariance underperforms during and immediately
after precipitation events. This finding highlights the limitations of eddy covariance sensors
under rainfall conditions, contributes to researchers’ understanding of why eddy covariance
methods underestimate ET and how this impacts the energy balance gap, and demonstrates
the value of lysimeters for model validation.

3.2. Sap Flow Sensors and Microtensiometers

Sap flow sensors are another promising technology, with several advantages over
other fine-scale methods. These sensors directly measure the movement of fluid inside the
xylem from the roots to stems and to leaves, where water is transpired through stomata—a
process called sap flow. Sap flow is essential for the maintenance of the hydraulic continuum
from the soil to plant to atmosphere; thus, monitoring this process can yield important
information about the hydraulic function or dysfunction of the plant [131]. Various methods
for estimating the sap flow rate have been developed, including thermal dissipation probes



Agronomy 2024, 14, 1355 15 of 28

and the steam heat balance method [132–134]. Both are based on the concept of measuring
the difference between a heated element and a non-heated reference element; as the sap
flow rate increases, the temperature difference between the two elements decreases. A
variation of this method is also used for standard flow meters in pipes. When applying
this theory to plants, with variable xylem size and flow resistances, a calibration coefficient
must be determined, and this coefficient is sensitive to stress-induced cavitation [131].

Microtensiometer sensors are based on the same principles as soil tensiometers but
have been designed to suit the purpose of measuring plant water status. Sensors such as the
flagship model from FloraPulse in Davis, California, are based on a microelectromechanical
design that allows measurement of plant stem water potential continuously with a high
degree of precision [31,135]. They are also small, consume very little power, allow for
wireless data transmission, and like sap flow sensors are fully automated once installed.
These sensors, mounted on the plant using a custom drill bit and mounting kit, have been
tested extensively, and in one recent study, they were used in Vitis vinifera L. cv. Shiraz
and Cabernet Sauvignon and compared to pressure chamber measurements. Trunk water
potential measurements from the microtensiometers generally agreed with seasonal and
diurnal patterns of stem water potential measured by a pressure chamber [30,136].

While the sap flow and microtensiometer methods will fundamentally achieve single-
plant resolution, individual sensors are expensive and require skilled labor for installation
and routine maintenance. As a result, sensors are typically mounted on only one to three
plants per management zone. Plants are chosen to represent the range of variability, a
problematic assumption that can ignore many sources of heterogeneity.

3.3. Gas Exchange Measurement Systems

Portable gas exchange systems give direct measurements of parameters at the leaf level,
and thereby give estimates of leaf-level gas exchange including carbon dioxide and water
vapor. In these systems, at least one leaf of the target plant is isolated from the environment,
usually by sealing it inside of a clear chamber with several micrometeorological sensors
and a regulated carbon dioxide gas supply [137]. Gases including carbon dioxide and water
vapor concentrations are measured at the inlet and outlet of the sealed chamber using an
infrared gas analyzer that can determine the concentration of gases in air based on the
characteristic absorption of infrared radiation by different gases [138].

When portable gas exchange measurement systems were first introduced in the 1970s,
their adoption was limited to research applications largely due to the size and complexity
of the necessary equipment. These early devices measured the concentrations of carbon-
14 dioxide in the air within plexiglass domes to determine the photosynthesis rate of
grasses [139]. In the 2000s, portable gas exchange systems became much smaller and easier
to use, engendering an era of non-research applications. Despite vast improvements in
the size and portability of these technologies with innovations from companies such as
LI-COR Biosciences (Lincoln, NE, USA), their substantial price, which was USD 50,000 in
2018, prohibits many growers from being able to use these systems [140]. Furthermore, this
technology provides leaf-level estimates of gas exchange and photosynthesis rates, and
extrapolating these rates to whole plants or groups of plants may not be straightforward.

In one recent study, researchers used portable gas exchange measurements to measure
leaf-level photosynthesis and gas exchange rates, then successfully upscaled these estimates
to calculate whole-plant fluxes. Though the efforts to understand canopy level fluxes
were successful, researchers noted that upscaling was sensitive to the accuracy of the leaf
area index and photosynthetic light curve data used in calculations [141]. Many of the
applications of this technology aim to improve ET estimates with other technologies that
are more easily generalized over areas relevant to commercial agriculture. For example,
an infrared gas analysis was used to estimate the effect of increasing carbon dioxide
concentration on the stomatal resistance of plants. Researchers found that elevated carbon
dioxide concentrations reduce transpiration per unit of leaf area, and also water use
efficiency may be improved but only because the photosynthesis rate is increased, not
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because transpiration is reduced [40]. These findings are vital for understanding and
anticipating the effects of increasing atmospheric carbon dioxide on Earth.

3.4. Infrared Temperature Measurement Systems

It is also possible to increase the resolution of coarse-scale ET estimates using infrared
temperature sensors, though this technology alone will not provide enough data to calculate
estimates of ET [142]. These sensors take advantage of the cooling effect that happens when
leaves are transpiring water through their stomata, in which the temperature difference
between ambient air and the surface of the leaf reflects the transpiration rate [28]. If the
temperature of the leaf is lower than the ambient temperature, then the leaf is transpiring,
but if the temperature of the leaf is equal to or higher than the ambient temperature,
then the leaf is not transpiring and is experiencing acute stress [143]. With leaf surface
temperature data, it is possible to add another term to other ET estimation models, such
as one of the surface energy balance models. This new term accounts for when leaves are
actually transpiring instead of assuming this is a constant process during sunlight hours.

Though it is a straightforward concept, the measurement of leaf temperature is non-
trivial. Leaves are not static in space, because of wind, growth over time, and other factors,
and are subject to the meteorological uncertainty associated with an outdoor environment.
The thermocouple approach to measuring leaf temperature involves the direct contact of
a thermocouple to the leaf surface, a design that presents many challenges to the user.
Physical contact with the leaf may be interrupted at any time for numerous unpredictable
reasons, and even when perfect contact is maintained throughout the duration of mea-
surement windows, the thermocouple may absorb solar radiation, causing error [144].
Despite these challenges, thermocouples are quite a popular method for measuring leaf
temperature because of their low cost, simple operation, and relatively fast measurement
time [145]. Recently, infrared sensors have gained popularity for measuring leaf surface
temperature because of their fast measurement time, accuracy, and reliability over longer
measurement windows such as full seasons. However, infrared leaf temperature sensors
are sensitive to changes in the quality of air that affect the way light travels, and as a result,
dust, mist, or smoke may impact the quality of measurements with these sensors [145].

3.5. High-Resolution Irrigation Models

The high-resolution irrigation (HRI) models were developed as algorithms along with
low-cost sensors designed to provide growers with up to single-plant ET resolution in vine-
yard and orchard cropping systems [119]. These methods utilize non-destructive, largely
automated proximal sensing and a computation pipeline, feeding data from biometeoro-
logical sensors to the models. In this process, wind speed, air temperature, and relative
humidity are measured in or near the plant canopy. There are three HRI models that can be
used to calculate the estimated ET rate per area, or mass flux (ṁe in Equation (9)).

The convective mass transfer (CMT) model is one of two HRI models inspired by first
principles. CMT relates transpiration to theory describing the convective mass transfer
from a flat surface of water into moving air. This theory is based on an application of
the Reynolds analogy, which suggests a simple relationship between different transport
phenomena [146]. Using convective heat transfer from a flat solid plate into a fluid with
laminar flow over its surface as an analogy, transpiration is defined as convective mass
transfer from a flat surface of liquid or a gas saturated with water vapor into a gas with
laminar flow over its surface [146]. From this theory, the estimated mass transfer flux
depends on the mass transfer coefficient and the difference between the partial pressure of
water in the air at the saturated surface and in the air in the greater atmosphere.

The CMT model maintains three assumptions. First, all transpiring leaf surfaces are
saturated with water vapor, perfectly flat and having a uniform temperature equal to the
temperature of the air in the canopy. Second, it is assumed that the boundary layer is
maintained at a constant level of saturation, and finally, it is assumed that a laminar flow
of air exists at the leaf surface, which carries water vapor away from the boundary layer.
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While most agricultural systems violate some or all of these assumptions, the CMT model
has been shown to perform well in Vitis vinifera L. cv. Zinfandel vines, explaining up to
86% of the variation in the lysimeter ET rate over three seasons [119].

The second first-principles-inspired HRI model, the Mass Balance (MB) model, is
based on the concept of the conservation of mass, which states that in any closed system,
mass is constant. In the case of a plant canopy, this means that the mass flow rate of water
out of the canopy is equal to the mass flow rate of water into the canopy plus the mass
flow rate from the plant. However, in order for this theory to be used for estimating the ET
rate, it is assumed that the cross-sectional area of the canopy is constant, as is the velocity
of wind through the plant. With these assumptions, the ET rate can be calculated as a
product of the bulk velocity of air, the cross-sectional area of the canopy, and the difference
between the absolute humidity outside and inside the canopy. To capture the characteristics
of air flowing out of the canopy and air flowing into the canopy, meteorological sensors
are mounted both inside and outside of the canopy but the ideal location of these sensors,
specifically the sensor outside the canopy, is not obvious. Typically, the outside of canopy
sensors is mounted downwind of the canopy, given the prevailing wind direction. This
is a problematic assumption though, which does not consider the seasonal and diurnal
variability of wind speed and direction [119]. Researchers suspect the sensitivity to sensor
placement to be the reason the MB model was observed to be the most variable over three
seasons, explaining between 7% and 91% the variability in the lysimeter ET rate [119].

The third HRI model is called the empirical model (EM) because it was selected by
researchers using only statistical methods from a set of more than 25 candidate models,
exploring mass flux as a function of various combinations of biometeorological parameters.
The goals of EM model development were generalizability and dimensional reduction.
In addition to computational efficiency, dimensional reduction has the added benefit of
reducing the number of sensors that would need to be included in the low-cost sensors
being developed in tandem with the HRI project. The final EM model was selected because
in addition to achieving reduced dimensionality, it also performed well in terms of ET
predictions when compared to other candidate models [119].

Unlike the other HRI models, the EM model only includes bulk wind speed and air
temperature parameters as well as the interaction of these parameters. This approach
assumes that humidity measurements and related parameters are not strong enough
predictors of the ET rate to be included in a model designed to explain variation in mass
flux and inform irrigation decisions. Despite having no physical meaning, researchers
observed the EM model to perform well in a viticulture setting, explaining between 57%
and 92% of the variation in lysimeter ET over a three-year period [119].

Once mass flux has been calculated using one of the three HRI models, it is possible to
calculate ET. Each HRI model generates an estimated instantaneous mass flux for every
two-minute interval. This mass flux (ṁe) is integrated over time and multiplied by a plant
scaling coefficient (As), giving estimated ET [Equation (9)].

ET = As ·
∫ t

0
ṁedt (9)

In Jenkins et al.’s work, 2023 [119], the researchers calculated model-estimated ET over
the span of a single hour, surrounding solar noon and a full day, then compared this to
lysimeter measurements. Together, the models explained nearly 63% of the variability in
hourly lysimeter ET and 82% of the variability in daily lysimeter ET. Compared to eddy
covariance and crop coefficient methods, the HRI method explains a similar amount of the
variation in reference ET.

While the observed correlations with ET persisted over multiple plants and multiple
seasons, results indicated that an accurate prediction of ET depends on an accurate cal-
culation of the plant scaling term, which varies with the plant and over time. The area
terms for two of the models, CMT and MB, have an actual physical meaning (leaf area for
CMT and canopy cross-sectional area for MB), but the area term in the EM does not. In
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order to expand the generalizability of HRI estimates and encourage industry adoption,
it will be essential for researchers to develop methods for the direct calculation of area
terms from physical data such as ground-based imagery collected during normal tractor
passes. A downstream image analysis could be automated using a deep learning approach,
similar to the approach used in [147], to extract physical parameters of the vine that are
well correlated with model area terms.

4. Distribution Systems

Fine-scale ET estimates and automated water status sensing may shed light on the
previously undetectable heterogeneity of water demand at small spatial scales, even indi-
vidual plants [37,119], but this knowledge is not very useful without an irrigation system
that can accomplish differential water delivery based on this information. Recent research
has shown that remotely sensed data including LAI and NDVI may be used to identify
areas of relative homogeneity within an overall heterogeneous growing area [148]. These
sub-areas of homogeneous conditions are considered management zones, and may be
identified from LAI and NDVI data using time-series clustering if fine-scale ET estimates
and high-density automated water status are not available. However, not all agricultural
areas are appropriate for a broad subdivision of growing areas into several or even tens of
management zones. In some growing areas, the landscape is too uneven and heterogeneous
to identify any areas larger than 10 square meters with consistent conditions. In others,
management practices such as rogueing for disease control, or the spatial dynamics of
water demand over time, may necessitate higher-resolution irrigation control to achieve
optimal plant health.

Once information about the spatial distribution of water demand is available, through
fine-scale ET estimates and automated water status sensing or via remotely sensed approx-
imations, it is important to choose an appropriate water delivery system. If time-series
clustering results indicate that the growing area in question is characterized by a temporally
stable patchwork of a small number of homogenous areas, it may be optimal to use an
irrigation zoning technology such as the one from Verdi that allows growers to monitor
the health of each zone and adjust settings remotely (Verdi, Vancouver, BC, Canada). If,
however, time-series clustering results indicate that the growing area in question consists
of a small number of homogenous areas but these areas are not stable through time, a more
dynamic approach may be needed. If there are several distinct seasonal stable states of
stable homogeneous zones, then perhaps a Verdi Ag-style system could be developed for
all seasons and adapted from season to season. However, if the dynamism of the location
of homogenous areas is not predictable, then a system that allows for irrigation delivery
at the single plant level may be most appropriate. It is also possible in some extremely
heterogeneous environments or in particularly high-value cropping systems such as some
vineyards or indoor cannabis or cut flower farms that fine-scale individual plant control will
be the most appropriate choice for achieving highly valuable yield and quality outcomes.

Any system designed to deliver water to plants based on their individual needs, or
the needs of small groups of plants, would consist of a high density of water delivery
equipment such as valves and flow sensors. In order to be useful, this armada of water
delivery hardware must have access to power, a system for harmonious and reliable
communication, and sufficient computational power.

To be functional at scale, high-precision water delivery equipment would need to be
low-powered, but still operate 24 h a day in harsh conditions and often in remote locations
without access to grid power. In these situations, researchers have had success using
portable solar energy harvesting panels as well as large-capacity lead-acid batteries to
power field equipment [98,119]. Miniaturized versions of this technology could be used to
power groups of valves, though choosing the location of solar panels would be important to
ensure sufficient sun coverage while also not interfering with plant management practices.
Also, batteries will need to be resistant to outdoor environmental conditions including
many extreme temperature cycles as well as having high energy density. Thanks to recent
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advances in lithium iron phosphate battery technology including an improved thermal
stability, long lifespan, and low risk of combustion, this may be possible [149]. However,
changing thousands of batteries may require too many natural resources and labor to be
sustainable, especially if the batteries cannot be easily recycled. In situations where grid
power is available at growing sites, it could also be possible to use irrigation lines with
incorporated low-voltage power lines, providing a constant supply of power to valves and
other devices mounted along the lines.

Even if power is available to all the irrigation equipment, in order for this equipment
to function properly and deliver water only when conditions warrant it, it is essential that
spatially distributed devices can rapidly and reliably communicate with each other. In the
case of powering irrigation valves with wires embedded in tubing, it would be possible to
also include communication wiring in this tubing. This method would ensure that devices
communicate with each other and any central nodes, and data could be sent from any
central nodes to control each device or many simultaneously. However, in the absence of
irrigation tubing with embedded wires or a similar wired solution, low-power wide-area
networks may provide the best option. Low-power wide-area networks are an ideal option
for low-power IoT devices in agricultural settings.

Several low-power wide-area networks have been investigated for their applicability
to large-scale deployment of networks of devices in rural settings. The Long-Range Wide-
Area Network (LoRaWAN) is a low-data-rate communication protocol specifically designed
for minimum energy budget applications and the longest range coverage for communica-
tion [150]. Another popular low-power wide-area network technology, called Narrowband
IoT (NB-IoT), was developed for efficient connectivity in cellular IoT networks and to
optimize for minimal power consumption [150]. A third option, Sigfox, was designed
for IoT applications operating with only small infrequent data packets. This technology
transmits in the sub-gigahertz range, allowing for extremely low-power consumption, and
because sensor networks are managed by Sigfox, infrastructure management is relatively
simple compared to other options (Sigfox, Labège, France) [151].

Overall, while each of these technologies show great potential to support development
in different areas of IoT innovation, research has shown that the NB-IoT option may be the
most promising for agriculture applications. With NB-IoT, there is the distinct advantage
of being able to connect massive numbers of devices, more than fifty thousand, to a
single node, whereas LoRaWAN and Sigfox are limited to thousands of connections per
node [152]. Furthermore, because it supports larger numbers of devices with a low packet
error rate, NB-IoT is thought to have better scalability properties than LoRaWAN [153].
In terms of coverage, NB-IoT seems to be the frontrunner. In one study, it was found
that LoRaWAN could not provide sufficient indoor coverage, while NB-IoT achieved
connectivity with less than a 5% error rate [154]. Another study demonstrated that NB-IoT
has the best coverage probability, even though link loss with devices was slightly higher
when compared to LoRaWAN [155]. Perhaps the most compelling evidence for NB-IoT’s
promise was a comparative study in rural and urban areas in 2020, which showed in a real-
life scenario that NB-IoT outperformed LoRaWAN. Researchers attributed the relatively
better performance of NB-IoT to directional antennas that allowed for better coverage to
devices [156].

Beyond the energy and communication needs of the irrigation distribution system are
the computational needs. Though irrigation control and status monitoring would likely
require very little onboard computation, if any, it is possible that the data communica-
tion and analysis centers used for irrigation control could also be used for meteorological
data storage and processing, as described in [119]. Whether or not this is the case, on-
board computation hardware would include a low-power consumption design, low-power
communication protocol compatibility, and the ability to control low power and valves.
However, ideally, onboard computation hardware would also include the ability to receive
and store data from flow, meteorological sensors and water status sensors, and sufficient
computation power to perform some onboard analyses. Especially if fine-scale ET sen-
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sors such as those in the HRI approach are used in combination with a single plant or
a high spatial density of irrigation control, then it will be important to strike a balance
between onboard computation and the transmission of raw data in order to achieve optimal
energy efficiency.

5. Discussion

Capitalizing on the potential for ET sensing technologies to improve irrigation manage-
ment will be crucial to sustaining agricultural industries amidst rising global competition
for water resources. Especially in high-value cropping systems such as grapes or tree fruits
and nuts, ET sensing will be important to reducing water use without preventing growers
from continuing to hit economically important yield and quality targets [18], that is, higher
water use efficiency. Beyond higher efficiency, in some high-value crops like grapes, proper
timing of deficit irrigation can improve quality at harvest. Given this knowledge, in order to
fully realize the water use reduction and quality outcomes associated with a well-designed
irrigation management system, growers need to be able to understand and measure water
demand. In this case, water demand represents the integration of two concepts, how much
water plants are using and when plants need this water to be replaced. Combining water
use and water status signals, growers can understand the water demand of crops but the
resolution of this understanding is fundamentally defined by the resolution of ET and
water status measurements (Table 1).

Many of the ET estimation options available to growers were designed for performance
at spatial resolutions greater than 10 m. These technologies were originally developed for
situations in which a host of field-level research-grade sensors are available, as is the case
with the original Penman–Monteith approach [43], or alternatively for situations where
there is little or no access to field-level meteorological data, as is the case with some remotely
sensed methods [24,67]. While most of the methods for estimating coarse-scale ET are
adaptations of the original Penman–Monteith model, others rely on direct measurements
of the environment and empirical correlations for estimating parameters and then ET.
Independent of their origin, each of the coarse-scale approaches relies on some assumptions
that limit their generalizability.

For example, in order to calculate estimates of ET using the SEBAL approach, re-
searchers must assume that the conditions impacting measurements are not significantly
affecting the accuracy of measurements and therefore ET estimates. In practice, this as-
sumption is often violated, as orbiting satellites with spectral cameras routinely encounter
obstructions such as clouds, dust, or other airborne particles [83]. In the Penman–Monteith
approach, many of the factors influencing ET are taken into account, but some soil char-
acteristics are not included, such as salt stress. The assumption that salt stress can be
ignored negatively affects this model’s accuracy in situations where salt stress is limiting
root uptake of otherwise available water [49]. The foundation of the Priestley–Taylor
model is rooted in an assumption that the aerodynamic resistance term in the original
Penman–Monteith model can be well represented by a dimensionless constant. While
the use of this constant expands the utility of the Priestley–Taylor approach beyond the
scope of other Penman–Monteith-style approaches, it also restricts the model to situations
without advective conditions [61]. The reference ET and crop coefficient approach is simi-
larly dependent on the acceptance of at least one assumption. In this case, it is assumed
that crop coefficients are generalizable despite reports of up to a 40% difference between
crop-coefficient-adjusted FAO56 Penman–Monteith-based reference ET estimates and local
estimates [20]. Despite the fundamental concept of energy balance in a closed system, in
the eddy covariance approach for estimating ET, the average observed energy closure is
reported to be about 75% in vineyards. Furthermore, when growers apply methods to
redistribute the residual energy to other terms in the energy balance model, this can lead to
uncertainty in daily estimates of ET up to 50% [17].

Other methods for estimating ET were developed for performance at fine spatial
scales of less than 10 m. These methods are especially useful in high-value cropping



Agronomy 2024, 14, 1355 21 of 28

systems where heterogeneity of terrain is a common feature of growing areas. Landscape
heterogeneity such as soil differences, slope angle, shade, and edge effects, as examples, as
well as genetic and phenotypic heterogeneity, can all lead to differences in water demand.
Even more, in some high-value cropping systems such as vineyards and orchards, it is
common to observe rogueing or replacement as disease control and recovery management
strategies. In situations such as these, fine-scale ET methods along with water status sensing
will empower growers with knowledge of the spatially heterogeneous water demand in
their growing areas. However, like the methods for coarse-scale ET estimates, fine-scale
methods also rely on assumptions that limit their applicability.

For example, informing irrigation decisions with sap flow and microtensiometer data
requires accepting the assumption of generalizable-crop- and -cultivar-based trunk water
status thresholds [30]. When using leaf-level gas exchange measurement systems to esti-
mate whole-plant ET, it is assumed that upscaling methods are accurate, even though these
methods include empirical relationships between plant morphology and measurements
of LAI and light response, which have not been extensively validated [141]. Even simple
methods such as using infrared sensors to measure leaf surface temperature rely on the
assumption of adequate conditions for measurement; otherwise, measurement error caused
by particles in the air like dust or smoke may be ignored [145]. The HRI models also rely
on assumptions of environmental conditions in order to calculate estimates of ET. The CMT
model assumes saturated boundary layer conditions of all leaves and laminar flow of air
over these surfaces, while the MB model assumes a constant cross-sectional area of the
whole plant.

Each of these approaches to ET estimation show great potential for improving irriga-
tion management in different sectors of agriculture, but determining the most appropriate
method for a particular setting can be challenging. Choosing how to measure ET requires
striking a balance between achieving yield and quality goals while also minimizing over-
head and operational costs. Though some landscapes are highly heterogeneous, planted
with very-high-value crops, and represent ideal use cases for high-resolution irrigation
systems along with fine-scale ET sensing technologies, economic limitations or knowl-
edge access may prohibit the use of these technologies, especially as they are still being
developed. Also, the correlation between increasing spatial resolution of ET estimates
and increasing costs associated with installing and operating them leads many growers
towards compromising on spatial resolution and accuracy in order to achieve low costs.
According to a recent survey conducted by the Almond Board of California, 89% of farmers
in California still use the hand feel method for scheduling irrigation, though a notable
fraction reported using science-based methods, too [29]. Crop ET estimates were used
by 75% of respondents, soil moisture sensors were used by 61%, and 23% reported using
water district estimates. Another 43% of respondents reported measuring water status with
microtensiometers and 31% reported monitoring water status with pressure chambers.

Ultimately, the choice of ET and water status sensing method must be compatible with
irrigation system design. If the growing area in question is mostly homogeneous in terms
of landscape and will be planted with an isogenic or a morphologically stable crop, then
a low-cost-per-area coarse-scale estimate of ET would likely be sufficient. For areas such
as these that do not require a high spatial resolution of control over water delivery, the
current industry standard approach of block-based irrigation would likely be sufficient to
achieve agronomic goals. However, if the environment necessitates sub-block-level control,
growers may benefit from choosing a fine-scale estimate of ET along with a plant-level or
sub-block-level irrigation system design.

The future of ET research looks promising. The potential for operational applications
of several new and innovative technologies is substantial and will address the growing need
for higher-resolution, lower-cost, and more reliable ET sensing and water delivery systems.
Single-plant ET methods have recently undergone advancements, with important findings
that will improve how growers determine water status or when to apply water [31] and
water use or how much water to replace [119]. There is also research being performed to
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improve high-resolution water delivery systems. Even with recent advances in variable rate
drip irrigation [157], systems will need to be developed that can simultaneously measure
dispensed water and modulate water flow, to achieve the ideal of truly single-plant resolu-
tion delivery. Coarse-scale ET technologies are improving as well, with recent advances
in eddy-covariance-based estimates and remote sensing technologies. For example, a
two-source energy balance approach including the eddy covariance technique was recently
successfully applied in an environment with significant advective conditions [158]. Also,
remote sensing was recently shown to be an effective means of estimating daily ET, and
identifying distinct irrigation management zones within a larger block of crops [76,148].

Unfortunately, though, honing the spatial resolution of ET technologies and improving
the accuracy of estimates will not be sufficient for achieving widespread acceptance in
commercial agriculture. Technologies simply delivering utility may earn acceptance among
the scientific community, but the alleged target audience of our work in the irrigation space,
the grower, has historically been more challenging to engage. To bridge the gap between the
scholars and the growers, the future workforce in this space will need to seriously consider
how to make water use and water status information available to growers in a practical,
digestible format. Eliminating friction at all steps—from the acquisition, installation, and
operation of hardware to dealing with routine maintenance or troubleshooting, as well
as in user interfaces where carefully curated results may be absorbed or just as easily
ignored—will be essential to driving the acceptance of ET technologies beyond the borders
of the ivory tower.
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