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Abstract: The aim of this study was to overcome the impact of vibration generated by agricultural
machinery on the monitoring accuracy and performance of vehicle-mounted crop growth monitoring
systems during field operation. This paper developed a vehicle-mounted crop growth monitoring
system with vibration damping capability to achieve this goal. The system consists of a multispectral
crop growth sensor, signal conditioning module, and truss-type sensor bracket with self-vibration
damping capability. The commercial finite element analysis software ABAQUS 6.10 was used to
conduct modal and dynamic simulation analyses of the sensor bracket, which indicate that the truss-
type sensor bracket can damp vibrations effectively. The p-values (least significant differences) of crop
canopy DNRE (red edge normalized difference vegetation index) under different operating speeds
(1.5, 3, and 4.5 km/h) are 0.454, 0.703, 0.81, and 0.838, respectively, for four different crop growth
stages. In a comparative experiment between the proposed monitoring system and two similar
vehicle-mounted sensors (CropSpec and GreenSeeker RT 200) for measuring agronomic parameters at
different stages of crop growth, the proposed monitoring system yielded R2 values of 0.8757, 0.7194,
and 0.795, respectively, and RMSE values of 0.7157, 2.2341, and 2.0952, respectively, in the tillering
stage, jointing stage, and tillering and jointing stage, outperforming the other two sensors.

Keywords: vehicle-mounted monitoring system; signal conditioning; sensor bracket; self-vibration
damping; simulation analysis

1. Introduction

As a means to improve soil fertility, fertilization is an important measure to improve
grain yield per unit area [1–3]. However, the excessive application of chemical fertilizer
will not only reduce the utilization efficiency of fertilizer, reduce the organic matter in the
soil, harden cultivated land, and acidify soil, but also aggravate non-point source pollution
and increase the cost of agricultural production [4–6]. Therefore, it is desirable to apply
appropriate amounts of fertilizer according to the needs at individual field locations.

Precision fertilization is to scientifically and accurately apply fertilizer according
to the actual demand calculated according to multiple factors, including the fertilizer
demand in each growth stage and the difference between the spatial distribution of local
soil conditions and that of crop growth [7–9]. There are two fundamental approaches of
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variable-rate technology (VRT): (i) map-based and (ii) sensor-based systems. In the map-
based approach, fertilizer may be placed at different locations than the prescribed points on
an application map due to the inaccuracy of the positioning system and/or the longer than
anticipated response time of the machine actuation [10–13]. Therefore, it is more desirable
to have a vehicle-mounted sensing system that is able to monitor the physical and chemical
characteristics of plants and control VRT application of fertilizer according to plant needs
in real time in situ [14,15].

Variable-rate fertilization systems based on vehicle-mounted sensors have stringent
requirements on response time (i.e., the period from the moment of transmitting monitoring
data to the moment of the actuator performing the variable-rate fertilization operation).
To simplify the sensor monitoring data and reduce the data processing time, researchers
have conducted extensive research on vehicle-mounted crop growth monitoring sensor
systems working in crop growth’s sensitive and characteristic wavelength bands. Some of
the research results have been turned into commercial products. Stone et al. [16] fitted a
spectral sensor to a tractor to measure the spectral reflectance of wheat at the wavelength
bands of 671 nm and 780 nm, and established the plant nitrogen spectral index (PNSI)
using the absolute value of the reciprocal of the normalized difference vegetation index
(NDVI). The results showed that there was a good correlation between crop nitrogen
content and the PNSI. This work paved the way for developing the GreenSeeker(NTech
Industries Inc., Ukiah, CA, USA) NDVI active light source sensor, the fruit of joint R&D
by Oklahoma State University and NTech (the product was put on the market in 2001).
Link et al. [17] developed the Hydro-N vehicle-mounted passive sensor and made use of
the NDVI to monitor the nitrogen content of the crop. This sensor is the predecessor of the
Yara-N sensor(Yara International Inc., Oslo, Norway). Holland et al. [18] developed the
Crop Circle(Holland Scientific Inc., Lincoln, NE, USA) active light source sensor, which
uses the reflectance values obtained in the green band and near-infrared band to estimate
the nitrogen content of the crop. The reason for the use of the reflectance in the green
band instead of the red band is as follows: when the leaf area index of the crop exceeds
2.0, the GNVI is more sensitive to the changes in chlorophyll concentration and crop
yield than the NDVI. Other commercialized products available in the market include the
OptRx sensor developed and produced by Ag Leader Technology (Ames, IA, USA) and the
CropSpec active light source sensor developed and produced by Topcon (Tokyo, Japan),
reducing fertilizer consumption, increasing crop yield, and increasing farmers’ incomes [19].
Meanwhile, the research also promotes the application of variable-rate fertilization systems
based on vehicle-mounted sensors [20]. At present, the research on vehicle-mounted crop
growth monitoring systems focuses on the empirical study of the field sensing performance
of vehicle-mounted sensors and the construction of quantitative models for monitoring
different agronomic parameters [21]. The vehicle-mounted sensors are usually directly
fixed to the cantilever beam of agricultural machinery such as tractors, spray vehicles,
etc. When the carrier agricultural machine is working in the field, the sensor bracket will
experience strong vibration due to the engine vibration of the machine, the undulation
of the plot, and the softness of the soil. In particular, as cantilever brackets are highly
flexible, the weak vibration of agricultural machinery will lead to strong vibration and
elastic deformation at the end of the cantilever bracket, which will affect the sensing
performance and accuracy of the vehicle-mounted crop growth sensors installed at the end
of the cantilever bracket [15]. Therefore, there is an urgent need to design sensor brackets
with self-vibration damping capability.

The vibration excitation source of the sensor bracket for installing vehicle-mounted
crop growth sensors is agricultural machinery, so the vibration of the sensor bracket
belongs to forced vibration, and the vibration responses include stress, displacement,
and acceleration response. The finite element method (FEM) is widely used to solve
the vibration characteristics of mechanical structures [22–31]. The nonlinear mechanical
mechanism dynamics FEM is used to solve dynamic problems of mechanical structures
involving nonlinear factors such as geometry, material, or state [32]. Patrik et al. [33] used
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the nonlinear FEM to analyze the vibration dynamic response of the end section of three
types of booms: fixed, pendulum suspension, and trapezoidal suspension. Qiu et al. [34]
and He et al. [35] carried out modal analysis and elastic deformation analysis on the spray
bar of a spray vehicle using the FEM. Chen [36] simulated the dynamic characteristics of a
flexible truss spray bar system using the FEM. Chen et al. [37] simulated and analyzed the
dynamic characteristics of the frame of a spray bar spray vehicle based on the FEM and
designed a damping system based on the analysis results. It can be seen that it is feasible
to design a sensor bracket and analyze its self-vibration damping performance based on
the FEM.

This study aims to simulate and analyze the vibrational characteristics of a vehicle-
mounted crop growth monitoring system during field operation. Based on modal and
dynamic simulation analysis, a truss-type sensor bracket with self-vibration damping capa-
bility was developed. Moreover, a module for sensor signal conditioning with amplification
and noise filtering functions was developed. By integrating the advantages of the truss-
type bracket and the signal conditioning module, the impact of vibration of agricultural
machinery on the monitoring performance of the vehicle-mounted crop growth sensor
is mitigated.

2. Materials and Methods

The proposed vehicle-mounted crop growth monitoring system consists of a vehicle-
mounted crop growth sensor, sensor bracket, and sensor signal conditioning module. The
vehicle-mounted crop growth monitoring system is installed on an agricultural machine
through the sensor bracket. The impact of vibration of agricultural machinery on the
monitoring performance of the vehicle-mounted crop growth sensor is mitigated jointly
by the self-vibration damping function of the sensor bracket structure and the noise fil-
tering function of the sensor signal conditioning module. The structure of the proposed
monitoring system is shown in Figure 1.
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Figure 1. Structure of vehicle-mounted crop growth monitoring system.

2.1. Vehicle-Mounted Crop Growth Sensor

The multispectral crop growth sensor of the proposed monitoring system is the
CGMD302 multispectral crop growth sensor (as shown in Figure 2) developed by Nan-
jing Agricultural University [38,39]. Its key specifications are monitoring wavelength
bands: 730 nm and 815 nm; field of view angle: 27◦; working height: 1.0–1.5 m above the
crop canopy.
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2.2. Design of Sensor Signal Conditioning Module
2.2.1. Design of Sensor Signal Amplification and Filtering Buffer Circuit

Considering that the CGMD302 multispectral crop growth sensor outputs a weak
current signal of the order of nA, we made use of the two cores of the AD8032 single-power
supply voltage dual-core feedback amplifier produced by Analog Devices to design a
T-type resistance feedback network amplification circuit and a Sallen–Key filter circuit
(configured as an operational amplifier working in voltage following mode), thus forming
the amplification and filtering buffer circuit for processing the sensor signal, as shown in
Figure 3. The purpose of the parallel-connection voltage-stabilizing capacitors at the inlet
and outlet of the signal amplification and filtering buffer circuit of the multispectral crop
growth sensor is to improve the stability and anti-interference ability of the circuit. The key
specifications of the AD8032 are input bias current: 0.45 µA, input offset voltage: 1 µV, and
total harmonic distortion (THD): −62 dBc.
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2.2.2. Design of Programmable Filter Based on LTC1064

The original signal of the multispectral crop growth sensor still contains low-frequency
noise signals after being processed by the front filtering buffer circuit. Some noise signals of
different frequencies will be mixed with the original signal in the process of I-V conversion
and amplification performed in the front stage. Therefore, it is necessary to filter the signal
once again in the rear-stage circuit so as to improve the accuracy of the acquired signal. In
the process of designing a conventional filter, the cut-off frequency is set at first, and then
the filter parameters are solved. The filters designed using this design method mostly have
low accuracy, and their cut-off frequency cannot be changed. Because of these deficiencies,
we designed a program-controlled filter circuit based on the LTC1064-3 filter produced
by Analog Devices, as shown in Figure 4. A PWM signal with a duty cycle of 50% is
generated through proper settings of the frequency division coefficient and automatic
reloading coefficient of the general-purpose timer in the STM32429ZET6 chip, and the
PWM signal is passed to pin 11 of the LTC1064-3 chip to provide the clock signal of the
filter. The cut-off frequency of the LTC1064-3 filter is set to 5 Hz to enable the generation of
the 750 Hz PWM signal.
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2.3. Design and Performance Simulation of Sensor Bracket Based on FEM
2.3.1. Design of Sensor Bracket and Establishment of Finite Element Model

To overcome the impact of vibration of agricultural machinery on the sensing accuracy
and performance of crop growth sensors, we designed a truss-type sensor bracket based
on the principles that can be used to improve the dynamic characteristic parameters and
vibration parameters of the sensor bracket. Considering that the support system is a
long cantilever beam, it is necessary to enhance the overall structural stiffness. Based on
experience, we chose a reinforced triangular structure. The rods used to make the plane
truss of the new sensor bracket have a rectangular cross-section; that is, they are made of
square steel. The truss adopts a trapezoidal structure. The web members are arranged in
the fully inclined form, with an inclination angle of 45◦. The steel material used to make
the sensor bracket is Q235 steel. Its specifications are as follows: Poisson’s ratio: 0.3; elastic
modulus: 2.068 × 105 Mpa, material density: 7850 kg/m3, tensile strength: 375–460 MPa,
yield limit: 235 MPa, and allowable stress: 117.5 MPa. The new sensor bracket has a length
of 4 m, and its allowable bending is 4000 × (2/500) = 16 mm. The structure of the truss-type
sensor bracket is shown in Figure 5.
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We built a 3D geometric model of the new sensor bracket and its assembly model in
the Pro/E 2016 3D parametric modeling software, according to the actual size and assembly
relationship of the sensor bracket, and then generated an .stp file and imported it into
the finite element analysis software ABAQUS 6.10 for finite element simulation analysis.
In the process of establishing the finite element model, the non-connecting components,
chamfering, welding sites, and circular angles in the geometric model of the sensor bracket
were simplified, so as to reduce the calculation workload of the geometric model as much
as possible while ensuring the calculation accuracy of the strength and dynamic response of
the main structure of the new sensor bracket. The established finite element model retains
the main structure and key components of the sensor bracket as well as the connection
relationship between them. In addition, the model is loaded with reasonable and effective
constraints and loads [40,41].

2.3.2. Finite Element Modal Simulation of the Sensor Bracket

The theoretical basis of modal analysis is the vibration theory of the elastic body. The
basic equation of typical damp-free modal analysis is the classical eigenvalue solution
problem. The dynamic balance equation for the structure without damping is:(

−ω2[M]{∅}+ [K]{∅}
)

eiωt = 0 (1)

where [M] is the mass matrix of the structure system, which is composed of the mass
matrices of all units; [K] is the stiffness matrix of the structure system; {∅} is the system
modal vector matrix; and ω is the natural frequency.

The eigenvalue solution equation is:(
[K]− ω2[M]

)
{∅} = 0 (2)

The necessary and sufficient condition for the existence of a non-zero solution in
Equation (2) is a determinant ∣∣∣[K]− ω2[M]

∣∣∣ = 0 (3)
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In this study, the Lanczos solution method of ABAQUS/standard implicit analysis
solver was used to analyze and extract the structural modes of a conventional cantilever
bracket and the proposed truss-type sensor bracket.

2.3.3. Finite Element Dynamic Simulation of the Sensor Bracket

To verify the ability of the new sensor bracket to overcome the impact of vibration
when the agricultural machine is moving in the field, we conducted a dynamic simulation
of the new sensor bracket using the finite element analysis method for nonlinear mechanical
structures. The dynamic equation used in the nonlinear dynamic analysis is:

M
..
d(t) + C

.
d(t) + f int(t) = Q(t) (4)

where M is the mass matrix of the sensor bracket, C is the damping matrix of the sensor
bracket, Q(t) is the node load vector, f int(t) is the internal force vector of the sensor bracket,
and

.
d(t) and

..
d(t) represent the velocity and acceleration of the structure, respectively.

The finite element discrete dynamic equation of nonlinear mechanical structure at
the moment of t = tn+1 is established using the Newmark implicit integration method,
which is:

r(dn+1, tn+1) = M
..
d

n+1
+ f int(dn+1, tn+1)− f ext(dn+1, tn+1) (5)

where r(dn+1, tn+1) is the residual column matrix; f ext(dn+1, tn+1) is the external force

matrix of the sensor bracket; and dn+1,
.
d

n+1
, and

..
d

n+1
represent the displacement, velocity,

and acceleration array of the structure, respectively.
The theoretical basis of the implicit integration method is the assumption that the

acceleration changes linearly within the time interval ∆t, and the formulas for calculating

displacement dn+1 and velocity
.
d

n+1
are as follows:

dn+1 = d̃n+1 + β(∆tn)2 ..
d

n+1
(6)

.
d

n+1
=

.̃
d

n+1
+ γ∆tnd̃n+1 (7)

where β and γ are parameters that can be adjusted according to the requirements on

integration accuracy and stability;
∼
d

n+1
and

∼.
d

n+1

are as follows:

d̃n+1 = dn + ∆tn
.
d

n
+ (∆tn)2/2(1 − 2β)

..
d

n
(8)

.̃
d

n+1
=

.
d

n
+ (1 − γ)∆tn

.̃.
d

n
(9)

The formula for calculating acceleration in the time interval ∆t can be obtained by
solving Equation (9):

..
d

n+1
=

1

β(∆tn)2 (d
n+1 − d̃n+1) when β > 0 (10)

The formula for calculating the value in the assumed time interval ∆t using the α
method is:

dn+α = (1 + α)dn+1 − αdn (11)

The internal force vector is defined as f int = Kdn+α = (1 + α)Kdn+1 − αKdn. α is the
parameter that can be adjusted according to the requirement on high-frequency numerical
dissipation.
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Updating Equation (5) using the α method, we can obtain the nonlinear algebraic
equation:

r(dn+1, tn+1) = M
..
d

n+1
+ f int(dn+α, tn+1)− f ext(dn+α, tn+1) (12)

Substituting the acceleration formula (10) in the time interval ∆t into Equation (12),
we can get

r(dn+1, tn+1) =
1

β(∆t)2 M(dn+1 − d̃n+1) + f int(dn+α, tn+1)− f ext(dn+α, tn+1) (13)

Using the Newton–Raphson iterative method to calculate the nonlinear dynamic
equation in the ABAQUS software, we simulated the dynamic response of the new sensor
bracket.

2.4. Design of Experiment
2.4.1. Vibration Testing of Agricultural Machinery and Sensor Bracket

To verify the simulation accuracy of the finite element model and ascertain the fre-
quencies of the excitation a typical agricultural machine exerts on the sensor bracket in the
driving direction, transverse direction, and vertical direction, we conducted an experiment
to investigate the dynamic vibration response characteristics of an agricultural machine
and a conventional cantilever bracket in the Rugao Test and Demonstration Base of Nanjing
Agricultural University in July 2023. In the experiment, a 356A33 micro piezoelectric
triaxial acceleration sensor supplied by PCB Piezotronics Inc. (Depew, NY, USA) was used
to acquire in real time the vibration frequency and vibration amplitude signals of the exper-
imental agricultural machine and conventional cantilever bracket. Its key specifications
are as follows: the frequency acquisition range of the x-axis is 2–7000 hz and the accuracy
is ±5%. The frequency acquisition range of the y-axis and z-axis is 2–10,000 hz, and the
accuracy is ±5%. The vibration analyzer used in the experiment was the DH5981 8-channel
distributed dynamic signal test and analysis system produced by Jangsu Donghua Testing
Technology Co., Ltd (Taizhou, China). Its key specifications are as follows: the sampling
frequency is 128 kHz, and the A/D conversion resolution is 24-bit.

Eight micro piezoelectric triaxial acceleration sensors were fixed to the assembly frame
(used for fixing the sensor bracket to the experimental agricultural machine) of the experi-
mental agricultural machine and different positions of the conventional cantilever bracket
were used to measure the vibration frequency and vibration amplitude of the experimental
agricultural machine as a single excitation source as well as the vibration frequency and
vibration amplitude values at different positions of the conventional cantilever bracket.
The specific installation positions are shown in Figure 6 and Table 1. The engine of the
experimental agricultural machine was working during the test.

Agronomy 2024, 14, x FOR PEER REVIEW 7 of 18 
 

 

1 1 1 int 1 1( , ) ( , ) ( , )n n n n n ext n nr d t Md f d t f d tα α+ + + + + + += + −  (12)

Substituting the acceleration formula (10) in the time interval tΔ  into Equation 
(12), we can get 

1 1 1 1 int 1 1
2

1( , ) ( ) ( , ) ( , )
( )

n n n n n n ext n nr d t M d d f d t f d t
t

α α

β
+ + + + + + + += − + −

Δ
  (13)

Using the Newton–Raphson iterative method to calculate the nonlinear dynamic 
equation in the ABAQUS software, we simulated the dynamic response of the new sen-
sor bracket. 

2.4. Design of Experiment 
2.4.1. Vibration Testing of Agricultural Machinery and Sensor Bracket 

To verify the simulation accuracy of the finite element model and ascertain the fre-
quencies of the excitation a typical agricultural machine exerts on the sensor bracket in the 
driving direction, transverse direction, and vertical direction, we conducted an experiment 
to investigate the dynamic vibration response characteristics of an agricultural machine 
and a conventional cantilever bracket in the Rugao Test and Demonstration Base of Nan-
jing Agricultural University in July 2023. In the experiment, a 356A33 micro piezoelectric 
triaxial acceleration sensor supplied by PCB Piezotronics Inc. (Depew, NY, USA) was used 
to acquire in real time the vibration frequency and vibration amplitude signals of the ex-
perimental agricultural machine and conventional cantilever bracket. Its key specifications 
are as follows: the frequency acquisition range of the x-axis is 2–7000 hz and the accuracy 
is ±5%. The frequency acquisition range of the y-axis and z-axis is 2–10,000 hz, and the ac-
curacy is ±5%. The vibration analyzer used in the experiment was the DH5981 8-channel 
distributed dynamic signal test and analysis system produced by Jangsu Donghua Testing 
Technology Co., Ltd (Taizhou, China). Its key specifications are as follows: the sampling 
frequency is 128 kHz, and the A/D conversion resolution is 24-bit. 

Eight micro piezoelectric triaxial acceleration sensors were fixed to the assembly 
frame (used for fixing the sensor bracket to the experimental agricultural machine) of the 
experimental agricultural machine and different positions of the conventional cantilever 
bracket were used to measure the vibration frequency and vibration amplitude of the 
experimental agricultural machine as a single excitation source as well as the vibration 
frequency and vibration amplitude values at different positions of the conventional can-
tilever bracket. The specific installation positions are shown in Figure 6 and Table 1. The 
engine of the experimental agricultural machine was working during the test. 

Table 1. The distances of the sensors from the fixing point. 

Sensor Number M1 M2 M3 M4 M5 M6 M7 M8 
Distance/cm 0 2 74 122 179.5 207 245 299 

 

  
Figure 6. Installation location of three-axis accelerometer. Figure 6. Installation location of three-axis accelerometer.



Agronomy 2024, 14, 1361 8 of 17

Table 1. The distances of the sensors from the fixing point.

Sensor Number M1 M2 M3 M4 M5 M6 M7 M8

Distance/cm 0 2 74 122 179.5 207 245 299

2.4.2. Experiment of Testing Sensing Performance of Crop Growth Sensor under
Vibration Condition

We conducted an experiment to test the impact of vibration of the sensor bracket
on the sensing performance of vehicle-mounted crop growth sensors in the Rugao Test
and Demonstration Base of Nanjing Agricultural University from May to September 2023.
As shown in Figure 7, the agricultural machinery platform selected for the experiment
was a 3WPZG-800 self-propelled, high-clearance bar-type spray vehicle produced by
Fengzhao Hangtai (Nanjing, China) Mechanization Co., Ltd. (Nanjing, China). The vehicle-
mounted crop growth sensors used in the experiment were CGMD302 multispectral sensors
(spectral bands: 730 nm and 815 nm), the TOPCON CropSpec active light source sensor
(spectral bands: 735 nm and 808 nm), and the GreenSeeker RT 200 active light source sensor
(spectral bands: 656 nm and 774 nm). The experiment site was planted with two varieties
of rice, namely Huaidao 5 and Wuyungeng 27. Three nitrogen levels were used in the
experiment: 0, 150, and 300 kg/ha; the ratio of base fertilizer/tiller fertilizer/flower-
promoting fertilizer/flower-preserving fertilizer was 4:2:2; and two density settings (row
spacing × plant spacing) were used: 30 cm × 15 cm and 50 cm × 15 cm. The experiment
site was partitioned into 36 plots with a size of 5 m × 6 m, and the plots were treated
with 12 kinds of treatments (every three plots were treated with the same treatment). The
positions of the plots were chosen randomly. The effects of the vibration of the spray vehicle
itself and the vibrations generated at different operating speeds (1.5, 3, and 4.5 km/h) on
the sensing performance of the vehicle-mounted sensor were tested, and the performance
levels of different sensors in acquiring agronomic parameters were compared.
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3. Results
3.1. Verification of Simulation Accuracy of Finite Element Model of the Sensor Bracket

To verify the accuracy of the finite element simulation results of the sensor bracket, we
compared and analyzed the time domain response curves of acceleration in three directions
of the bracket tail end (M8) based on the data of vibration testing and finite element
simulation. It can be seen from Figure 8 that the period and amplitude values obtained
through simulation are basically consistent with the values obtained through vibration
testing; the values of the maximum and average relative errors of their amplitude are
shown in Table 2. In the vertical, driving, and transverse directions, the maximum relative
errors are 0.22%, 0.16%, and 0.92%, respectively, and the average relative errors are 0.06%,
0.15%, and 0.32%, respectively. This indicates that the finite element model of the sensor
bracket established in this study has good simulation accuracy.
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Table 2. The relative errors of simulated and experimental acceleration curves.

Direction Vertical Driving Transverse

Maximum relative error 0.22% 0.16% 0.92%
Average relative error 0.06% 0.15% 0.32%

3.2. Analysis of Self-Vibration Damping Performance of Truss-Type Sensor Bracket
3.2.1. Modal Analysis of Sensor Bracket

When an agricultural machine is traveling, the resonance frequencies of the sensor
bracket are mostly in the low-order range. Therefore, we extracted the first eight natural
frequencies of the cantilever bracket and truss-type sensor bracket for comparative analysis.
It can be seen from Table 3 that the first eight natural frequencies of truss-type sensor bracket
obtained by finite element modal analysis are far from the key excitation frequencies of the
spray vehicle, such as 28.564 Hz, 34.18 Hz, 17.09 Hz, and 11.475 Hz. There is a step increase
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from the third-order natural frequency of the truss-type sensor bracket to the fourth-order
natural frequency, indicating that the truss-type sensor bracket can evade the key excitation
frequencies of the spray vehicle better than the cantilever bracket. The comparison results
of vibration modes of the cantilever bracket and truss-type sensor bracket show that the
vibration mode of the truss-type sensor bracket obtained through finite element modal
analysis is better than that of the cantilever bracket. The stability of the truss-type sensor
bracket is even better in the high-order range (as shown in Figure 9).

Table 3. First 8 natural frequencies of new bracket system.

Order 1 2 3 4 5 6 7 8

Natural frequencies of cantilever/Hz 7.5849 9.1734 32.042 36.817 58.016 97.480 117.02 123.51

Natural frequencies of truss/Hz 2.9860 8.6907 22.464 61.709 76.384 114.18 133.81 151.40
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3.2.2. Dynamic Simulation of the Sensor Bracket

Figure 10 shows the curves of the acceleration response (three directions) at the far
end of the truss-type sensor bracket and the cantilever sensor bracket, obtained through
finite element simulation. The curves indicate: (1) the acceleration responses of the two
sensor brackets have roughly the same periodicity; (2) while there is only a small amplitude
difference between the acceleration responses of the two sensor brackets in the vertical
direction, the acceleration amplitude of the truss-type sensor bracket is significantly smaller
than that of the cantilever sensor bracket in the driving and transverse directions, which
proves that the proposed truss-type sensor bracket can damp vibration effectively.
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3.3. Analysis of Sensing Performance of Crop Growth Sensors under the Condition of Vibration
3.3.1. Analysis of the Impact of Stationary Vibration on the Performance of the
Vehicle-Mounted Sensor in Detecting Spectral Reflectance

The variation curves of spectral reflectance plotted according to the data acquired
by the spectral sensor at two different wavelength bands in the experiment conducted to
investigate the impact of stationary vibration on the performance of the vehicle-mounted
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sensor in measuring spectral reflectance are shown in Figure 11. The values of average,
variance, and CV corresponding to the 815 nm and 730 nm wavelength bands are shown
in Table 4. It can be seen from the figure and table that the reflectance curves obtained
at the 815 nm and 730 nm wavelength bands when the spray vehicle Is stationary are
roughly consistent with their counterparts obtained when the spray vehicle is moving. At
the wavelength band of 815 nm, the differences between the values of average, variance,
and coefficient obtained under the condition of stationary vibration and those obtained
under the condition of in-travel vibration are 0.24%, 0.03%, and 0.07%, respectively; the
differences are 0.26%, 0.01%, and 0.03%, respectively, at the wavelength band of 730 nm.
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Table 4. Variation of light reflectance under the impact of vibration.

State Wavelength Mean Var CV

Stationary
815 nm

40.20% 0.16% 0.41%
Vibration 39.96% 0.13% 0.34%
Difference 0.24% 0.03% 0.07%

Stationary
730 nm

19.55% 0.15% 0.75%
Vibration 19.81% 0.15% 0.78%
Difference 0.26% 0.01% 0.03%

3.3.2. Analysis of the Impact of Vibration on the Monitoring Performance of
Vehicle-Mounted Sensors under Different Traveling Speeds

The variation curves of rice canopy NDRE were plotted according to the data acquired
by the vehicle-mounted crop growth sensor in different crop growth stages under different
traveling speeds in the experiment conducted to investigate the impact of in-travel vibration
on the performance of the vehicle-mounted sensor in measuring spectral reflectance are
shown in Figure 12. It can be seen from the figure that the values of significant difference
P of rice canopy NDRE obtained under three traveling speeds are 0.454, 0.703, 0.810, and
0.838, respectively, for the four growth stages; the Cvmax values are 8.3%, 4.6%, 3.7%,
and 3.6%, respectively, for the four growth stages; and the RMSEmax values are 0.008,
0.007, 0.007, and 0.008, respectively, for the four growth stages. The experimental results
show that the vehicle-mounted crop growth monitoring system proposed in this paper can
significantly mitigate the impact of vibration of agricultural machinery on the monitoring
performance of the vehicle-mounted crop growth sensor, and the monitoring performance
of the vehicle-mounted crop growth sensor is quite stable.
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3.3.3. Comparative Analysis of Monitoring Performance of Different Sensors in Monitoring
Agronomic Parameters

Considering that the NDRE values acquired by the GreenSeeker sensor in the booting
and heading stages of rice crops tend to saturate, we compared and analyzed the fitting
results of the NDRE values acquired by different sensors in the tillering, jointing, and
tillering and jointing stages of the rice crop and the plant nitrogen uptake (PNU) values of
the rice crop in the corresponding growth stages. As can be seen from Figure 13, the R2
values obtained by the CGMD, CropSpec, and GreenSeeker sensors in the tillering stage are
0.8757, 0.7781, and 0.6822, respectively, and the RMSE values are 0.7157, 0.9564, and 1.1445,
respectively; the R2 values in the jointing stage are 0.7194, 0.43, and 0.5863, respectively,
and the RMSE values are 2.2341, 3.1843, and 2.7127, respectively; the R2 values in the
tillering and jointing stage are 0.795, 0.6882, and 0.6467, respectively, and the RMSE values
are 2.0952, 2.5841, and 2.7506, respectively. The results show that the proposed crop growth
monitoring system can accurately monitor the growth of rice.
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4. Discussion
4.1. Analysis of the Design and Performance of Vehicle-Mounted Crop Growth Monitoring System

At present, the existing vehicle-mounted crop growth sensors are normally fixed
directly on the cantilever beam extended from the carrier agricultural machine. The crop
growth monitoring is performed when the carrier agricultural machine is idle [42–44], so the
impact of vibration of agricultural machinery on the monitoring performance and accuracy
of the vehicle-mounted crop growth sensor is not considered. Because of this deficiency, we
designed a truss-type sensor bracket, established a finite element structural dynamic model
of the system structure of the new vehicle-mounted sensor bracket using the ABAQUS finite
element analysis software, and analyzed the performance of the sensor bracket structure
through modal and dynamic analysis as well as a vibration testing experiment. The modal
simulation results show that the truss -type sensor bracket can evade the key excitation
frequencies of agricultural machinery better than the cantilever bracket structure, and the
first eight vibration modes of the truss-type sensor bracket are better than those of the
cantilever bracket (its stability is even better in the high-order range). As indicated by
the results of dynamic simulation analysis, the acceleration responses of the two bracket
systems have basically the same periodicity. The acceleration amplitude of the truss-type
sensor bracket is significantly smaller than that of the cantilever sensor bracket in the
driving and transverse directions, which proves that the truss-type sensor bracket can
damp vibration effectively.

As indicated by the results of the experiment conducted to investigate the impact
of stationary vibration on the performance of the vehicle-mounted sensor in measuring
spectral reflectance, the designed sensor signal conditioning circuit can effectively eliminate
the interference of noise signal, which is reflected by the smallness of the difference between
the maximum CV (which is 0.75%) of the spectral reflectance values acquired under the
condition of zero vibration and the maximum CV (which is 0.78%) of the spectral reflectance
values acquired under the condition of stationary vibration. As can be derived from the
results of the experiment conducted to investigate the impact of in-travel vibration on the
performance of the vehicle-mounted sensor in measuring spectral reflectance in different
growth stages, the values of significant difference P of rice canopy NDRE obtained under
different traveling speeds are 0.454, 0.703, 0.810, and 0.838, respectively, for the four
growth stages. The experimental results show that the proposed vehicle-mounted crop
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growth monitoring system can significantly mitigate the impact of vibration of agricultural
machinery on the detection performance of vehicle-mounted crop growth sensors.

The proposed monitoring system exhibits good monitoring accuracy and stability
when the carrier agricultural machine is vibrating. However, we adopted the trial-and-error
method to design a new sensor bracket based on the results of finite element simulation
analysis and past experience, which requires a lengthy period and presents high require-
ments on the expertise of the designers. Therefore, it is necessary to explore the optimal
design methods for sensor brackets in future research, such as the topology optimization
method, so that their vibration can be constrained or minimized. In addition, the proposed
vehicle-mounted monitoring system is quite heavy because the sensor bracket is made of
structural steel. Therefore, there is a need to explore lighter materials suitable for making
sensor brackets.

4.2. PNU Estimation Using Different Vehicle-Mounted Sensors

Plant nitrogen uptake (PNU) refers to the nitrogen accumulation per unit area. It
comprehensively reflects the nitrogen nutrition status and growth quality of the plants and
also provides an important basis for nitrogen application in the middle and late stages.
Some scholars have conducted experiments to monitor rice PNU using the handheld
GreenSeeker sensor, proving that the measured canopy NDVI is significantly correlated
with rice PNU [45–47]. Both the CGMD sensor and the CropSpec sensor can be used to
monitor the NDRE level of the crop canopy. CGMD can measure spectral reflectance at
wavelength bands of 730 nm and 815 nm, while CropSpec can measure spectral reflectance
at wavelength bands of 735 nm and 808 nm.

The results of this study show that the PNU estimation accuracy levels of CGMD and
CropSpec are higher than that of GreenSeeker, which agrees with the research results of
Yu et al. [48] and Cordero et al. [49]. The fact that the PNU estimation accuracy of CGMD
is better than that of CropSpec also indicates that the proposed crop growth monitoring
system can significantly reduce the impact of vibration of agricultural machinery on the
detection performance of vehicle-mounted crop growth sensors.

5. Conclusions

This study developed a vehicle-mounted crop growth monitoring system with vi-
bration suppression capability. The system consists of a crop growth sensor, truss-type
sensor bracket, and sensor signal conditioning module. In an experiment conducted to test
the performance of the proposed monitoring system under different traveling speeds in
different crop growth stages, the values of significant difference P of rice canopy NDRE
obtained under different traveling speeds were 0.454, 0.703, 0.810, and 0.838, respectively,
for the four growth stages; the CVmax values were 8.3%, 4.6%, 3.7%, and 3.6%, respec-
tively, for the four growth stages; and the RMSEmax values were 0.008, 0.007, 0.007, and
0.008, respectively, for the four growth stages. In an experiment conducted to compare the
performance levels of different vehicle-mounted sensors, the proposed monitoring system
achieved the highest performance in PNU prediction, yielding R2 values of 0.8757, 0.7194,
and 0.795, respectively, and RMSE values of 0.7157, 2.2341, and 2.0952, respectively, in the
tillering stage, jointing stage, and tillering and jointing stage.
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